David A Reardon

Stanford University, Palo Alto, California, United States

Are you David A Reardon?

Claim your profile

Publications (223)1447.79 Total impact

  • Martha R Neagu, David A Reardon
    Immunotherapy 06/2015; DOI:10.2217/imt.15.39 · 2.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite a high symptom burden, little is known about the incidence or predictors of hospitalization among glioblastoma patients, including risks during chemoradiation (CRT). We studied 196 consecutive newly diagnosed glioblastoma patients treated at our institution from 2006-2010. Toxicity data were reviewed during and after the CRT phase, defined as the period between diagnosis and 6 weeks after radiotherapy completion. Logistic regression and proportional hazards modeling identified predictors of hospitalization and overall survival (OS). Median age was 59 years (range, 23-90) and 83 % had Karnofsky performance status (KPS) score ≥ 70. Twenty-six percent of patients underwent gross total resection, 77 % received ≥ 59.4 Gy of radiotherapy, and 89 % received concurrent temozolomide. Median OS was 15.6 months (IQR, 8.5-26.8 months). Forty-three percent of patients were hospitalized during the CRT phase; OS was 10.7 vs. 17.8 months for patients who were vs. were not hospitalized, respectively (P P = .034) and KPS (OR, 0.95; 95 % CI, 0.93-0.97; P Hospitalization during the CRT phase was associated with decreased OS (adjusted hazard ratio, 1.47; 95 % CI, 1.01-2.13; P = .043), after adjustment for known prognostic factors. Hospitalization during the CRT phase is common among glioblastoma patients in the temozolomide era and is associated with shorter overall survival.
    Journal of Neuro-Oncology 06/2015; DOI:10.1007/s11060-015-1820-3 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trials focusing on unresectable multifocal glioblastoma are needed because of the extremely poor prognosis and challenges in receiving standard therapy, such as concurrent radiation and chemotherapy.Developing a strategy to chemically debulk tumors before radiation and/or surgery is warranted. Extent of resection remains a key prognostic factor in glioblastoma (GBM), with gross total resection providing a better prognosis than biopsy or subtotal resection. We conducted a phase II trial of upfront therapy with bevacizumab (BV), irinotecan (CPT-11), and temozolomide (TMZ) prior to chemoradiation in patients with unresectable, subtotally resected, and/or multifocal GBM. Patients received up to 4 cycles of TMZ at 200 mg/m(2) per day on days 1-5 (standard dosing) and BV at 10 mg/kg every 2 weeks on a 28-day cycle. CPT-11 was given every 2 weeks on a 28-day cycle at 125 mg/m(2) or 340 mg/m(2) depending on antiepileptic drugs. Magnetic resonance imaging of the brain was done every 4 weeks, and treatment continued as long as there was no tumor progression or unmanageable toxicity. The primary endpoint was tumor response rate, with a goal of 26% or greater. Forty-one patients were enrolled from December 2009 to November 2010. Radiographic responses were as follows: 9 patients (22.0%) had partial response, 25 (61.0%) had stable disease, and 2 (4.9%) had progression; 5 patients were not assessed. Cumulative response rate was 22%. Median overall survival was 12 months (95% confidence interval: 7.2-13.5 months). Upfront treatment with BV, TMZ, and CPT-11 is tolerable and can lead to radiographic response in unresectable and/or subtotally resected GBM. ©AlphaMed Press; the data published online to support this summary is the property of the authors.
    The Oncologist 05/2015; DOI:10.1634/theoncologist.2015-0135 · 4.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multicentric low-grade gliomas are rare entities that occur in disparate regions of the brain. They can present with distinct pathologic and imaging findings, and may harbor a worse prognosis. We present a case of multicentric low-grade gliomas and highlight their pathogenesis, imaging characteristics, and molecular signatures, with implications for clinical management. A 49-year-old man presented with three months of left-sided headaches. MRI revealed concurrent non-enhancing lesions in the left medial temporal lobe and superior cerebellum. Increased size and development of contrast enhancement in the temporal lesion promoted a left temporal craniotomy, with pathology revealing a grade II ganglioglioma. Three months later, the cerebellar lesion also acquired new contrast enhancement and was found to be a grade II astrocytoma following a supracerebellar infratentorial approach for resection. At two years follow-up, the patient remains clinically stable, receiving adjuvant chemotherapy for new non-enhancing, unresectable pontine lesion. Tumor growth rate, detailed pathologic findings, imaging characteristics and molecular signatures influence the clinical course of multicentric low-grade gliomas. PDGFRA amplifications and IDH1 wildtype status may act in a concerted fashion to produce an accelerated course of radiologic changes and tumor recurrence, as noted in our case. Additional research is needed to stratify the risk of transformation in multicentric low-grade glioma patients and to guide management strategies. Copyright © 2015 Elsevier Inc. All rights reserved.
    World Neurosurgery 05/2015; DOI:10.1016/j.wneu.2015.05.021 · 2.42 Impact Factor
  • Neuro-Oncology 05/2015; DOI:10.1093/neuonc/nov071 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Older patients with newly diagnosed glioblastoma have poor outcomes, and optimal treatment is controversial. Hypofractionated radiation therapy (HRT) is frequently used but has not been compared to patients receiving standard fractionated radiation therapy (SRT) and temozolomide (TMZ). We conducted a retrospective analysis of patients ≥65 years of age who received radiation for the treatment of newly diagnosed glioblastoma from 1994 to 2013. The distribution of clinical covariates across various radiation regimens was analyzed for possible selection bias. Survival was calculated using the Kaplan-Meier method. Comparison of hypofractionated radiation (typically, 40 Gy/15 fractions) versus standard fractionation (typically, 60 Gy/30 fractions) in the setting of temozolomide was conducted using Cox regression and propensity score analysis. Patients received SRT + TMZ (n=57), SRT (n=35), HRT + TMZ (n=34), or HRT (n=9). Patients receiving HRT were significantly older (median: 79 vs 69 years of age; P<.001) and had worse baseline performance status (P<.001) than those receiving SRT. On multivariate analysis, older age (adjusted hazard ratio [AHR]: 1.06; 95% confidence interval [CI]: 1.01-1.10, P=.01), lower Karnofsky performance status (AHR: 1.02; 95% CI: 1.01-1.03; P=.01), multifocal disease (AHR: 2.11; 95% CI: 1.23-3.61, P=.007), and radiation alone (vs SRT + TMZ; SRT: AHR: 1.72; 95% CI: 1.06-2.79; P=.03; HRT: AHR: 3.92; 95% CI: 1.44-10.60, P=.007) were associated with decreased overall survival. After propensity score adjustment, patients receiving HRT with TMZ had similar overall survival compared with those receiving SRT with TMZ (AHR: 1.10, 95% CI: 0.50-2.4, P=.82). With no randomized data demonstrating equivalence between HRT and SRT in the setting of TMZ for glioblastoma, significant selection bias exists in the implementation of HRT. Controlling for this bias, we observed similar overall survival for HRT and SRT with concurrent TMZ among elderly patients, suggesting the need for a randomized trial to compare these regimens directly. Copyright © 2015 Elsevier Inc. All rights reserved.
    International journal of radiation oncology, biology, physics 04/2015; 92(2). DOI:10.1016/j.ijrobp.2015.01.017 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma (GBM), the most common malignant primary tumor in adults, carries a dismal prognosis with an average median survival of 14-16 months. The current standard of care for newly diagnosed GBM consists of maximal safe resection followed by fractionated radiotherapy combined with concurrent temozolomide and 6 to 12 cycles of adjuvant temozolomide. The determination of treatment response and clinical decision-making in the treatment of GBM depends on accurate radiographic assessment. Differentiating treatment response from tumor progression is challenging and combines long-term follow-up using standard MRI, with assessing clinical status and corticosteroid dependency. At progression, bevacizumab is the mainstay of treatment. Incorporation of antiangiogenic therapies leads to rapid blood-brain barrier normalization with remarkable radiographic response often not accompanied by the expected survival benefit, further complicating imaging assessment. Improved radiographic interpretation criteria, such as the Response Assessment in Neuro-Oncology (RANO) criteria, incorporate non-enhancing disease but still fall short of definitely distinguishing tumor progression, pseudoresponse, and pseudoprogression. With new evolving treatment modalities for this devastating disease, advanced imaging modalities are increasingly becoming part of routine clinical care in a field where neuroimaging has such essential role in guiding treatment decisions and defining clinical trial eligibility and efficacy.
    Current Treatment Options in Neurology 04/2015; 17(4):343. DOI:10.1007/s11940-015-0343-8 · 2.18 Impact Factor
  • Source
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.
    Nature 03/2015; 519(7543). DOI:10.1038/nature14320 · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Survival outcomes for patients with glioblastoma remain poor, particularly for patients with unmethylated O(6)-methylguanine-DNA methyltransferase (MGMT) gene promoter. This phase II, randomized, open-label, multicenter trial investigated the efficacy and safety of 2 dose regimens of the selective integrin inhibitor cilengitide combined with standard chemoradiotherapy in patients with newly diagnosed glioblastoma and an unmethylated MGMT promoter. Overall, 265 patients were randomized (1:1:1) to standard cilengitide (2000 mg 2×/wk; n = 88), intensive cilengitide (2000 mg 5×/wk during wk 1-6, thereafter 2×/wk; n = 88), or a control arm (chemoradiotherapy alone; n = 89). Cilengitide was administered intravenously in combination with daily temozolomide (TMZ) and concomitant radiotherapy (RT; wk 1-6), followed by TMZ maintenance therapy (TMZ/RT→TMZ). The primary endpoint was overall survival; secondary endpoints included progression-free survival, pharmacokinetics, and safety and tolerability. Median overall survival was 16.3 months in the standard cilengitide arm (hazard ratio [HR], 0.686; 95% CI: 0.484, 0.972; P = .032) and 14.5 months in the intensive cilengitide arm (HR, 0.858; 95% CI: 0.612, 1.204; P = .3771) versus 13.4 months in the control arm. Median progression-free survival assessed per independent review committee was 5.6 months (HR, 0.822; 95% CI: 0.595, 1.134) and 5.9 months (HR, 0.794; 95% CI: 0.575, 1.096) in the standard and intensive cilengitide arms, respectively, versus 4.1 months in the control arm. Cilengitide was well tolerated. Standard and intensive cilengitide dose regimens were well tolerated in combination with TMZ/RT→TMZ. Inconsistent overall survival and progression-free survival outcomes and a limited sample size did not allow firm conclusions regarding clinical efficacy in this exploratory phase II study. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Neuro-Oncology 03/2015; 17(5). DOI:10.1093/neuonc/nou356 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multidimensional genotyping of formalin-fixed paraffin-embedded (FFPE) samples has the potential to improve diagnostics and clinical trials for brain tumors, but prospective use in the clinical setting is not yet routine. We report our experience with implementing a multiplexed copy number and mutation-testing program in a diagnostic laboratory certified by the Clinical Laboratory Improvement Amendments. We collected and analyzed clinical testing results from whole-genome array comparative genomic hybridization (OncoCopy) of 420 brain tumors, including 148 glioblastomas. Mass spectrometry-based mutation genotyping (OncoMap, 471 mutations) was performed on 86 glioblastomas. OncoCopy was successful in 99% of samples for which sufficient DNA was obtained (n = 415). All clinically relevant loci for glioblastomas were detected, including amplifications (EGFR, PDGFRA, MET) and deletions (EGFRvIII, PTEN, 1p/19q). Glioblastoma patients ≤40 years old had distinct profiles compared with patients >40 years. OncoMap testing reliably identified mutations in IDH1, TP53, and PTEN. Seventy-seven glioblastoma patients enrolled on trials, of whom 51% participated in targeted therapeutic trials where multiplex data informed eligibility or outcomes. Data integration identified patients with complete tumor suppressor inactivation, albeit rarely (5% of patients) due to lack of whole-gene coverage in OncoMap. Combined use of multiplexed copy number and mutation detection from FFPE samples in the clinical setting can efficiently replace singleton tests for clinical diagnosis and prognosis in most settings. Our results support incorporation of these assays into clinical trials as integral biomarkers and their potential to impact interpretation of results. Limited tumor suppressor variant capture by targeted genotyping highlights the need for whole-gene sequencing in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
  • Source
    Neuro-Oncology 02/2015; 17(5). DOI:10.1093/neuonc/nov021 · 5.29 Impact Factor
  • David A Reardon, Hideho Okada
    [Show abstract] [Hide abstract]
    ABSTRACT: In much of medical oncology, including neuro-oncology, there is great interest to evaluate the therapeutic potential of immune-based therapies including vaccines, adoptive T cell strategies and modulators of immune checkpoint regulators such as cytotoxic T lymphocyte antigen 4 and programmed death 1. Immune-based treatments exert an indirect anti-tumor effect by generating potent, tumor-targeting immune responses. Robust anti-tumor immune responses have been shown to achieve encouraging radiographic responses across the spectrum of applied immunotherapeutics which are felt to be indicative of a bona fide anti-tumor effect. Conversely, worsening of imaging findings, particularly early in the course of immunotherapy administration, can be challenging to interpret with growing evidence demonstrating that at least a subset of such patients ultimately will derive meaningful clinical benefit. The immune related response criteria were generated to provide guidance regarding the interpretation of such complex imaging findings, for general medical oncologists prescribing immunotherapeutics. An analogous effort that addresses challenges associated with imaging assessment and incorporates nuances associated with neuro-oncology patients is underway and is referred to as the immunotherapy response assessment in neuro-oncology criteria.
    Journal of Neuro-Oncology 02/2015; DOI:10.1007/s11060-015-1748-7 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma, the most common malignant primary brain tumor in adults is a devastating diagnosis with an average survival of 14-16 months using the current standard of care treatment. The determination of treatment response and clinical decision making is based on the accuracy of radiographic assessment. Notwithstanding, challenges exist in the neuroimaging evaluation of patients undergoing treatment for malignant glioma. Differentiating treatment response from tumor progression is problematic and currently combines long-term follow-up using standard magnetic resonance imaging (MRI), with clinical status and corticosteroid-dependency assessments. In the clinical trial setting, treatment with gene therapy, vaccines, immunotherapy, and targeted biologicals similarly produces MRI changes mimicking disease progression. A neuroimaging method to clearly distinguish between pseudoprogression and tumor progression has unfortunately not been found to date. With the incorporation of antiangiogenic therapies, a further pitfall in imaging interpretation is pseudoresponse. The Macdonald criteria that correlate tumor burden with contrast-enhanced imaging proved insufficient and misleading in the context of rapid blood-brain barrier normalization following antiangiogenic treatment that is not accompanied by expected survival benefit. Even improved criteria, such as the RANO criteria, which incorporate non-enhancing disease, clinical status, and need for corticosteroid use, fall short of definitively distinguishing tumor progression, pseudoresponse, and pseudoprogression. This review focuses on advanced imaging techniques including perfusion MRI, diffusion MRI, MR spectroscopy, and new positron emission tomography imaging tracers. The relevant image analysis algorithms and interpretation methods of these promising techniques are discussed in the context of determining response and progression during treatment of glioblastoma both in the standard of care and in clinical trial context.
    Frontiers in Neurology 02/2015; 6:33. DOI:10.3389/fneur.2015.00033
  • [Show abstract] [Hide abstract]
    ABSTRACT: The epidermal growth factor receptor variant III deletion mutation, EGFRvIII, is expressed in ∼30% of primary glioblastoma and linked to poor long-term survival. Rindopepimut consists of the unique EGFRvIII peptide sequence conjugated to keyhole limpet hemocyanin. In previous phase II trials (ACTIVATE/ACT II), rindopepimut was well tolerated with robust EGFRvIII-specific immune responses and promising progression-free and overall survival. This multicenter, single-arm phase II clinical trial (ACT III) was performed to confirm these results. Rindopepimut and standard adjuvant temozolomide chemotherapy were administered to 65 patients with newly diagnosed EGFRvIII-expressing (EGFRvIII+) glioblastoma after gross total resection and chemoradiation. Progression-free survival at 5.5 months (∼8.5 mo from diagnosis) was 66%. Relative to study entry, median overall survival was 21.8 months, and 36-month overall survival was 26%. Extended rindopepimut vaccination (up to 3.5+ years) was well tolerated. Grades 1-2 injection site reactions were frequent. Anti-EGFRvIII antibody titers increased ≥4-fold in 85% of patients, and increased with duration of treatment. EGFRvIII was eliminated in 4/6 (67%) tumor samples obtained after >3 months of therapy. This study confirms, in a multicenter setting, the preliminary results seen in previous phase II trials of rindopepimut. A pivotal, double-blind, randomized, phase III trial ("ACT IV") is under way. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Neuro-Oncology 01/2015; 17(6). DOI:10.1093/neuonc/nou348 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Panobinostat is a histone deacetylase inhibitor with antineoplastic and antiangiogenic effects in glioma that may work synergistically with bevacizumab. We conducted a multicenter phase II trial of panobinostat combined with bevacizumab in patients with recurrent high-grade glioma (HGG). Patients with recurrent HGG were treated with oral panobinostat 30 mg 3 times per week, every other week, in combination with bevacizumab 10 mg/kg every other week. The primary endpoint was a 6-month progression-fee survival (PFS6) rate for participants with recurrent glioblastoma (GBM). Patients with recurrent anaplastic glioma (AG) were evaluated as an exploratory arm of the study. At interim analysis, the GBM arm did not meet criteria for continued accrual, and the GBM arm was closed. A total of 24 patients with GBM were accrued prior to closure. The PFS6 rate was 30.4% (95%, CI 12.4%-50.7%), median PFS was 5 months (range, 3-9 months), and median overall survival (OS) was 9 months (range, 6-19 months). Accrual in the AG arm continued to completion, and a total of 15 patients were enrolled. The PFS6 rate was 46.7% (range, 21%-73%), median PFS was 7 months (range, 2-10 months), and median OS was 17 months (range, 5 months-27 months). This phase II study of panobinostat and bevacizumab in participants with recurrent GBM did not meet criteria for continued accrual, and the GBM cohort of the study was closed. Although it was reasonably well tolerated, the addition of panobinostat to bevacizumab did not significantly improve PFS6 compared with historical controls of bevacizumab monotherapy in either cohort. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Neuro-Oncology 01/2015; 17(6). DOI:10.1093/neuonc/nou350 · 5.29 Impact Factor
  • David A Reardon, Patrick Y Wen
    Nature Reviews Clinical Oncology 01/2015; 12(2). DOI:10.1038/nrclinonc.2014.223 · 15.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Importance Conclusive intraoperative pathologic confirmation of diffuse infiltrative glioma guides the decision to pursue definitive neurosurgical resection. Establishing the intraoperative diagnosis by histologic analysis can be difficult in low-cellularity infiltrative gliomas. Therefore, we developed a rapid and sensitive genotyping assay to detect somatic single-nucleotide variants in the telomerase reverse transcriptase (TERT) promoter and isocitrate dehydrogenase 1 (IDH1).Observations This assay was applied to tissue samples from 190 patients with diffuse gliomas, including archived fixed and frozen specimens and tissue obtained intraoperatively. Results demonstrated 96% sensitivity (95% CI, 90%-99%) and 100% specificity (95% CI, 95%-100%) for World Health Organization grades II and III gliomas. In a series of live cases, glioma-defining mutations could be identified within 60 minutes, which could facilitate the diagnosis in an intraoperative timeframe.Conclusions and Relevance The genotyping method described herein can establish the diagnosis of low-cellularity tumors like glioma and could be adapted to the point-of-care diagnosis of other lesions that are similarly defined by highly recurrent somatic mutations.
    01/2015; DOI:10.1001/jamaoncol.2015.0917
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are no effective medical treatments for WHO grade III (anaplastic) meningioma. Patients with this high-grade malignancy have a median survival of less than two years. Therapeutics that modulate the mechanisms that inhibit local immune responses in the tumor microenvironment are showing significant and durable clinical responses in patients with treatment refractory high-grade tumors. We examined the immune infiltrate of 291 meningiomas including WHO grade I-III meningiomas using immunohistochemistry and we examined the expression of PD-L1 mRNA by RNAscope in situ hybridization and PD-L1 protein by immunohistochemistry. In meningioma, the tumor infiltrating lymphocytes are predominantly T cells. In anaplastic meningioma, there is a sharp decrease in the number of T cells, including the numbers of CD4+ and CD8+ T cells and cells expressing PD-1 and there is also an increase in the number of FOXP3 expressing immunoregulatory (Treg) cells. PD-L1 expression is increased in anaplastic meningioma - both mRNA and protein. Using patient derived meningioma cell, we confirm that PD-L1 is expressed in meningioma cells themselves, and not solely in infiltrating immune cells. This work indicates that high-grade meningioma harbor an immunosuppressive tumor microenviroment and that increased Treg cells and elevated PD-L1 may contribute to the aggressive phenotype of these tumors.
    Oncotarget 12/2014; · 6.63 Impact Factor

Publication Stats

10k Citations
1,447.79 Total Impact Points


  • 2015
    • Stanford University
      Palo Alto, California, United States
  • 2013–2015
    • Harvard Medical School
      • • Department of Radiation Oncology
      • • Department of Pathology
      Boston, Massachusetts, United States
  • 2011–2015
    • Dana-Farber Cancer Institute
      • Center for Neuro-Oncology
      Boston, Massachusetts, United States
  • 2002–2015
    • Duke University Medical Center
      • • Department of Pathology
      • • Department of Biostatistics and Bioinformatics
      • • Division of Neurosurgery
      • • Department of Surgery
      • • Department of Medicine
      Durham, North Carolina, United States
  • 2014
    • Brigham and Women's Hospital
      Boston, Massachusetts, United States
  • 2011–2014
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2002–2014
    • Duke University
      • Department of Surgery
      Durham, North Carolina, United States
  • 2012
    • Fred Hutchinson Cancer Research Center
      Seattle, Washington, United States
  • 2010
    • University of Toronto
      Toronto, Ontario, Canada