Kristine L Witt

National Institute of Environmental Health Sciences, Durham, North Carolina, United States

Are you Kristine L Witt?

Claim your profile

Publications (56)218.45 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Endocrine disrupting chemicals (EDCs) interfere with the biosynthesis, metabolism, and functions of steroid hormones, including estrogens and androgens. Aromatase enzyme converts androgen to estrogen. Thus, EDCs against aromatase significantly impact estrogen- and/or androgen-dependent functions, including the development of breast cancer. The current study aimed to develop a biologically relevant cell-based high-throughput screening assay to identify EDCs that act as aromatase inhibitors (AIs), ER agonists, and/or ER antagonists. The AroER tri-screen™ assay was developed by stable transfection of ER-positive, aromatase-expressing MCF-7 breast cancer cells with an estrogen-responsive element (ERE)-driven luciferase reporter plasmid. The AroER tri-screen™ can identify: estrogenic EDCs, which increase luciferase signal without 17β-estradiol (E2); anti-estrogenic EDCs, which inhibit the E2-induced luciferase signal; and AI-like EDCs, which suppress a testosterone-induced luciferase signal. The assay was first optimized in a 96-well plate format and then miniaturized into a 1,536-well plate format. The AroER tri-screen™ was demonstrated to be suitable for high throughput screening in 1,536-well plate format, with a 6.9-fold signal to background ratio, a 5.4% coefficient of variation (CV), and a screening window coefficient (Z-factor) of 0.78. The assay suggested that bisphenol A (BPA) functions mainly as an ER agonist. Results from screening the 446 drugs in the NIH Clinical Collection revealed 106 compounds that modulated ER and/or aromatase activities. Among these, two AIs (bifonazole and oxiconazole) and one ER agonist (paroxetine) were confirmed through alternative aromatase and ER activity assays. These findings indicate that AroER tri-screen™ is a useful high-throughput screening system for identifying ER ligands and aromatase-inhibiting chemicals.
    Toxicological Sciences 02/2014; · 4.33 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for one or five h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled identification of 20 compounds as uncouplers. This comprehensive approach allows for evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs.
    Chemical Research in Toxicology 07/2013; · 3.67 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In late 2012, the members of the Environmental Mutagen Society voted to change its name to the Environmental Mutagenesis and Genomics Society. Here, we describe the thought process that led to adoption of the new name, which both respects the rich history of a Society founded in 1969 and reflects the many advances in our understanding of the nature and breadth of gene-environment interactions during the intervening 43 years. Environ. Mol. Mutagen., 2013. © 2013 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 02/2013; · 3.71 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Hexavalent chromium (Cr(VI)) is a contaminant of water and soil and is a human lung carcinogen. Trivalent chromium (Cr(III)), a proposed essential element, is ingested by humans in the diet and in dietary supplements such as chromium picolinate (CP). The National Toxicology Program (NTP) demonstrated that Cr(VI) is also carcinogenic in rodents when administered in drinking water as sodium dichromate dihydrate (SDD), inducing neoplasms of the oral cavity and small intestine in rats and mice, respectively. In contrast, there was no definitive evidence of toxicity or carcinogenicity following exposure to Cr(III) administered in feed as CP monohydrate (CPM). Cr(VI) readily enters cells via nonspecific anion channels, in contrast to Cr(III), which cannot easily pass through the cell membrane. Extracellular reduction of Cr(VI) to Cr(III), which occurs primarily in the stomach, is considered a mechanism of detoxification, while intracellular reduction is thought to be a mechanism of genotoxicity and carcinogenicity. Tissue distribution studies in additional groups of male rats and female mice demonstrated higher Cr concentrations in tissues following exposure to Cr(VI) compared to controls and Cr(III) exposure at a similar external dose, indicating that some of the Cr(VI) escaped gastric reduction and was distributed systemically. The multiple potential pathways of Cr-induced genotoxicity will be discussed.
    Toxicologic Pathology 01/2013; · 2.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The breast cancer 1 (BRCA1) protein is a tumor suppressor playing roles in DNA repair and cell cycle regulation. Studies of DNA repair functions of BRCA1 have focused on double-strand break (DSB) repair pathways and have recently included base excision repair (BER). However, the function of BRCA1 in BER is not well defined. Here, we examined a BRCA1 role in BER, first in relation to alkylating agent (MMS) treatment of cells and the BER enzyme DNA polymerase β (pol β). MMS treatment of BRCA1 negative human ovarian and chicken DT40 cells revealed hypersensitivity, and the combined gene deletion of BRCA1 and pol β in DT40 cells was consistent with these factors acting in the same repair pathway, possibly BER. Using cell extracts and purified proteins, BRCA1 and pol β were found to interact in immunoprecipitation assays, yet in vivo and in vitro assays for a BER role of BRCA1 were negative. An alternate approach with the human cells of immunofluorescence imaging and laser-induced DNA damage revealed negligible BRCA1 recruitment during the first 60 s after irradiation, the period typical of recruitment of pol β and other BER factors. Instead, 15 min after irradiation, BRCA1 recruitment was strong and there was γ-H2AX co-localization, consistent with DSBs and repair. The rapid recruitment of pol β was similar in BRCA1 positive and negative cells. However, a fraction of pol β initially recruited remained associated with damage sites much longer in BRCA1 positive than negative cells. Interestingly, pol β expression was required for BRCA1 recruitment, suggesting a partnership between these repair factors in DSB repair.
    PLoS ONE 01/2013; 8(6):e66801. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Ginkgo biloba leaf extract (GBE) has been used for centuries in traditional Chinese medicine and today is used as an herbal supplement touted for improving neural function and for its antioxidant and anticancer effects. Herbal supplements have the potential for consumption over extended periods of time, with a general lack of sufficient data on long-term carcinogenicity risk. Exposure of B6C3F1 mice to GBE in the 2-year National Toxicology Program carcinogenicity bioassay resulted in a dose-dependent increase in hepatocellular tumors, including hepatocellular carcinoma (HCC). We show that the mechanism of hepatocarcinogenesis in GBE exposed animals is complex, involving alterations in H-ras and Ctnnb1 mutation spectra, WNT pathway dysregulation, and significantly altered gene expression associated with oncogenesis, HCC development, and chronic xenobiotic and oxidative stress compared to spontaneous HCC. This study provides a molecular context for the genetic changes associated with hepatocarcinogenesis in GBE exposed mice and illustrates the marked differences between these tumors and those arising spontaneously in the B6C3F1 mouse. The molecular changes observed in HCC from GBE-treated animals may be of relevance to those seen in human HCC and other types of cancer, and provide important data on potential mechanisms of GBE hepatocarcinogenesis.
    Toxicologic Pathology 12/2012; · 2.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Next-generation sequencing technologies can now be used to directly measure heritable de novo DNA sequence mutations in humans. However, these techniques have not been used to examine environmental factors that induce such mutations and their associated diseases. To address this issue, a working group on environmentally induced germline mutation analysis (ENIGMA) met in October 2011 to propose the necessary foundational studies, which include sequencing of parent-offspring trios from highly exposed human populations, and controlled dose-response experiments in animals. These studies will establish background levels of variability in germline mutation rates and identify environmental agents that influence these rates and heritable disease. Guidance for the types of exposures to examine come from rodent studies that have identified agents such as cancer chemotherapeutic drugs, ionizing radiation, cigarette smoke, and air pollution as germ-cell mutagens. Research is urgently needed to establish the health consequences of parental exposures on subsequent generations.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 08/2012; · 3.90 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Black cohosh rhizome (Actaea racemosa) is used as a remedy for pain and gynecological ailments; modern preparations are commonly sold as ethanolic extracts available as dietary supplements. Black cohosh was nominated to the National Toxicology Program (NTP) for toxicity testing due to its widespread use and lack of safety data. Several commercially available black cohosh extracts (BCE) were characterized by the NTP, and one with chemical composition closest to formulations available to consumers was used for all studies. Female B6C3F1/N mice and Wistar Han rats were given 0, 15 (rats only), 62.5 (mice only), 125, 250, 500, or 1000 mg/kg/day BCE by gavage for 90 days starting at weaning. BCE induced dose-dependent hematological changes consistent with a non-regenerative macrocytic anemia and increased frequencies of peripheral micronucleated red blood cells (RBC) in both species. Effects were more severe in mice, which had decreased RBC counts in all treatment groups and increased micronucleated RBC at doses above 125 mg/kg. Dose-dependent thymus and liver toxicity was observed in rats but not mice. No biologically significant effects were observed in other organs. Puberty was delayed 2.9 days at the highest treatment dose in rats; a similar magnitude delay in mice occurred in the 125 and 250 mg/kg groups but not at the higher doses. An additional uterotrophic assay conducted in mice exposed for 3 days to 0.001, 0.01, 0.1, 1, 10, 100 and 500 mg/kg found no estrogenic or anti-estrogenic activity. These are the first studies to observe adverse effects of BCE in rodents.
    Toxicology and Applied Pharmacology 06/2012; 263(2):138-47. · 3.98 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Background: Oxidative stress has been implicated in the pathogenesis of a variety of diseases ranging from cancer to neurodegeneration, highlighting the need to identify chemicals that can induce this effect. The antioxidant response element (ARE) signaling pathway plays an important role in the amelioration of oxidative stress. Thus, assays that detect the up-regulation of this pathway could be useful for identifying chemicals that induce oxidative stress.Objectives: We used cell-based reporter methods and informatics tools to efficiently screen a large collection of environmental chemicals and identify compounds that induce oxidative stress.Methods: We utilized two cell-based ARE assay reporters, β-lactamase and luciferase, to screen a U.S. National Toxicology Program 1,408-compound library (NTP 1408, which contains 1,340 unique compounds) for their ability to induce oxidative stress in HepG2 cells using quantitative high throughput screening (qHTS).Results: Roughly 3% (34 of 1,340) of the unique compounds demonstrated activity across both cell-based assays. Based on biological activity and structure-activity relationship profiles, we selected 50 compounds for retesting in the two ARE assays and in an additional follow-up assay that employed a mutated ARE linked to β-lactamase. Using this strategy, we identified 30 compounds that demonstrated activity in the ARE-bla and ARE-luc assays and were able to determine structural features conferring compound activity across assays.Conclusions: Our results support the robustness of using two different cell-based approaches for identifying compounds that induce ARE signaling. Together, these methods are useful for prioritizing chemicals for further in-depth mechanism-based toxicity testing.
    Environmental Health Perspectives 05/2012; 120(8):1150-6. · 7.26 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Styrene-acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer.
    Environmental and Molecular Mutagenesis 04/2012; 53(3):227-38. · 3.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Attention deficit/hyperactivity disorder (ADHD), a common children's behavioral disorder, is characterized by inattention, hyperactivity and impulsivity. The disorder is thought to stem from abnormalities in the catecholamine pathway and the symptoms of the disorder have been successfully treated with methylphenidate (MPH) since the FDA approved the drug in the 1950s. MPH underwent the appropriate safety testing as part of the FDA approval process; however, a publication in 2005 that reported significant increases in cytogenetic damage in the lymphocytes of MPH-treated pediatric patients caused concern for patients and their families, the pharmaceutical industry and regulatory agencies. This communication will review the many studies that were subsequently initiated worldwide to address the genetic safety of MPH in both animal models and human subjects. Animal experiments broadened the study protocols used in the 2005 investigation to include a wider dose-range, a longer treatment period and automated scoring of biological endpoints, where possible, to reduce observer bias. The human subject studies replicated the experimental design used in the 2005 study, but increased the treatment periods and the sizes of the study populations. Neither the laboratory animal nor human subject studies found an increase in any of the measures of genetic damage that were evaluated. Taken together, these new studies are consistent with the original safety evaluation of the FDA and do not support the hypothesis that MPH treatment increases the risk of genetic damage in ADHD patients. Published 2012. This article is a US Government work and is in the public domain in the USA.
    Journal of Applied Toxicology 02/2012; 32(10):756-64. · 2.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The National Toxicology Program (NTP) is using the Comet assay to evaluate genotoxic potential, and is investigating the integration of this assay into repeat-dose toxicity studies. To reduce sample-to-sample variability, address logistical concerns associated with evaluating multiple tissues from many animals, and accommodate sample collection at geographically distant testing facilities, tissue samples collected for Comet analysis by the NTP are routinely flash-frozen in liquid nitrogen and stored in a -80°C freezer until evaluation. To compare data obtained from frozen tissues to data from freshly isolated tissues, we conducted a dose-response study in male Sprague Dawley rats. Rats (5 per treatment group) were administered ethyl methanesulfonate (EMS; 0, 25, 50, 100, or 200 mg/kg) by gavage twice at an interval of 21 hr; blood, liver, stomach, and colon tissues were harvested 3 hr after the second treatment. Single-cell preparations from each of the four tissues were put into Hank's balanced salt solution with 10% fresh dimethyl sulfoxide. One aliquot of each tissue preparation was used for immediate analysis, while additional aliquots were flash-frozen in liquid nitrogen and stored in a -80°C freezer for 1 or 8 weeks. One set of 8-week frozen samples was shipped roundtrip via air courier from Research Triangle Park, NC to Rochester, NY prior to analysis. For all four tissues, results from frozen, nontransported samples showed a similar dose-response pattern for EMS-induced genotoxicity. We also demonstrated that for three tissues (blood, liver, stomach), air transport did not alter the sensitivity of the Comet assay for detecting DNA damage.
    Environmental and Molecular Mutagenesis 11/2011; 53(2):101-13. · 3.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Androstenedione was marketed as a dietary supplement to increase muscle mass during training. Due to concern over long-term use, the NTP evaluated the subchronic and chronic toxicity and carcinogenicity of androstenedione in male and female F344/N rats and B6C3F1 mice. In subchronic studies, dose limiting effects were not observed. A chronic (2-year) exposure by gavage at 10, 20, or 50 mg/kg in rats and male mice, and 2, 10, or 50 mg/kg in female mice (50 mg/kg, maximum feasible dose) was conducted. Increased incidences of lung alveolar/bronchiolar adenoma and carcinoma occurred in the 20 mg/kg male rats and increases in mononuclear cell leukemia occurred in the 20 and 50 mg/kg female rats, which may have been related to androstenedione administration. In male and female mice, androstenedione was carcinogenic based upon a significant increase in hepatocellular tumors. A marginal increase in pancreatic islet cell adenomas in male (50 mg/kg) and female (2, 10, 50 mg/kg) mice was considered to be related to androstenedione administration. Interestingly, incidences of male rat Leydig cell adenomas and female rat mammary gland fibroadenomas decreased. In conclusion, androstenedione was determined to be carcinogenic in male and female mice, and may have been carcinogenic in rats.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 05/2011; 49(9):2116-24. · 2.99 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The large and increasing number of chemicals released into the environment demands more efficient and cost-effective approaches for assessing environmental chemical toxicity. The U.S. Tox21 program has responded to this challenge by proposing alternative strategies for toxicity testing, among which the quantitative high-throughput screening (qHTS) paradigm has been adopted as the primary tool for generating data from screening large chemical libraries using a wide spectrum of assays. The goal of this study was to develop methods to evaluate the data generated from these assays to guide future assay selection and prioritization for the Tox21 program. We examined the data from the Tox21 pilot-phase collection of approximately 3,000 environmental chemicals profiled in qHTS format against a panel of 10 human nuclear receptors (AR, ERα, FXR, GR, LXRβ, PPARγ, PPARδ, RXRα, TRβ, and VDR) for reproducibility, concordance of biological activity profiles with sequence homology of the receptor ligand binding domains, and structure-activity relationships. We determined the assays to be appropriate in terms of biological relevance. We found better concordance for replicate compounds for the agonist-mode than for the antagonist-mode assays, likely due to interference of cytotoxicity in the latter assays. This exercise also enabled us to formulate data-driven strategies for discriminating true signals from artifacts, and to prioritize assays based on data quality. The results demonstrate the feasibility of qHTS to identify the potential for environmentally relevant chemicals to interact with key toxicity pathways related to human disease induction.
    Environmental Health Perspectives 05/2011; 119(8):1142-8. · 7.26 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis.
    Environmental and Molecular Mutagenesis 04/2011; 52(7):547-61. · 3.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K(+)) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially leads to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC(50) potencies ranging from 0.26 to 22μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC(50) value of 260nM in the thallium influx assay and 80nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo.
    Toxicology and Applied Pharmacology 02/2011; 252(3):250-8. · 3.98 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Appropriate follow-up actions and decisions are needed when evaluating and interpreting clear positive results obtained in the in vitro assays used in the initial genotoxicity screening battery (i.e., the battery of tests generally required by regulatory authorities) to assist in overall risk-based decision making concerning the potential effects of human exposure to the agent under test. Over the past few years, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing developed a decision process flow chart to be applied in case of clear positive results in vitro. It provides for a variety of different possibilities and allows flexibility in choosing follow-up action(s), depending on the results obtained in the initial battery of assays and available information. The intent of the Review Subgroup was not to provide a prescriptive testing strategy, but rather to reinforce the concept of weighing the totality of the evidence. The Review Subgroup of the IVGT committee highlighted the importance of properly analyzing the existing data, and considering potential confounding factors (e.g., possible interactions with the test systems, presence of impurities, irrelevant metabolism), and chemical modes of action when analyzing and interpreting positive results in the in vitro genotoxicity assays and determining appropriate follow-up testing. The Review Subgroup also examined the characteristics, strengths, and limitations of each of the existing in vitro and in vivo genotoxicity assays to determine their usefulness in any follow-up testing.
    Environmental and Molecular Mutagenesis 10/2010; 52(3):177-204. · 3.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The in vivo micronucleus (MN) assay has proven to be an effective measure of genotoxicity potential. However, sampling a single tissue (bone marrow) for a single indicator of genetic damage using the MN assay provides a limited genotoxicity profile. The in vivo alkaline (pH >13) Comet assay, which detects a broad spectrum of DNA damage, can be applied to a variety of rodent tissues following administration of test agents. To determine if the Comet assay is a useful supplement to the in vivo MN assay, a combined test protocol (MN/Comet assay) was conducted in male B6C3F1 mice and F344/N rats using four model genotoxicants: ethyl methanesulfonate (EMS), acrylamide (ACM), cyclophosphamide (CP), and vincristine sulfate (VS). Test compounds were administered on 4 consecutive days at 24-hr intervals (VS was administered to rats for 3 days); animals were euthanized 4 hr after the last administration. All compounds induced significant increases in micronucleated reticulocytes (MN-RET) in the peripheral blood of mice, and all but ACM induced MN-RET in rats. EMS and ACM induced significant increases in DNA damage, measured by the Comet assay, in multiple tissues of mice and rats. CP-induced DNA damage was detected in leukocytes and duodenum cells. VS, a spindle fiber disrupting agent, was negative in the Comet assay. Based on these results, the MN/Comet assay holds promise for providing more comprehensive assessments of potential genotoxicants, and the National Toxicology Program (NTP) is presently using this combined protocol in its overall evaluation of the genotoxicity of substances of public health concern.
    The Journal of Toxicological Sciences 01/2010; 35(2):149-62. · 1.38 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: This manuscript presents an overview of a symposium held at the 2009 annual meeting of the Environmental Mutagen Society (EMS) in St. Louis, MO. The symposium was sponsored by the Women in the Environmental Mutagen Society (WEMS) special interest group, and it covered current molecular genetics technologies and their impact on diagnosis and treatment of diseases that primarily or differentially affect women. Four speakers presented groundbreaking new information from such areas as cancer genetics, gene-environment interactions, epigenetics, DNA repair, and molecular epidemiology. Although cancer was a primary focus of the symposium, other health issues such as obesity and cardiovascular disease were addressed. The rapid evolution in genomic technologies discussed in this symposium should provide new tools to explore some of the critical questions raised by the research projects described in this article. This symposium demonstrates that EMS provides a forum for the presentation, discussion, and extension of the data generated by the investigators featured in this article and other researchers engaged in the study of the molecular mechanisms and gene-environment interactions that impact women's health.
    Environmental and Molecular Mutagenesis 01/2010; 51(8-9):774-80. · 3.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. [2007]: Prog Neuropsychopharmacol Biol Psychiatry 31:1282-1288) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats.
    Environmental and Molecular Mutagenesis 08/2009; 51(1):80-8. · 3.71 Impact Factor

Publication Stats

814 Citations
218.45 Total Impact Points

Institutions

  • 1993–2013
    • National Institute of Environmental Health Sciences
      • • National Toxicology Program (NTP)
      • • Laboratory of Molecular Genetics (LMG)
      Durham, North Carolina, United States
  • 2012
    • Health Canada
      Ottawa, Ontario, Canada
    • Integrated Laboratory Systems
      • Department of Genetic and Molecular Toxicology
      North Carolina, United States
  • 2011
    • National Eye Institute
      Maryland, United States
  • 2002–2011
    • ILS Genomics
      Raleigh, North Carolina, United States
  • 1996–2011
    • National Institutes of Health
      • • NIH Chemical Genomics Center (NCGC)
      • • Molecular Targets Laboratory
      Bethesda, MD, United States
  • 2007
    • Lawrence Berkeley National Laboratory
      Berkeley, California, United States
  • 2001–2004
    • Research Triangle Park Laboratories, Inc.
      Raleigh, North Carolina, United States
  • 1992–1993
    • Oak Ridge Associated Universities
      Oak Ridge, Tennessee, United States