Xin-Kang Tong

McGill University, Montréal, Quebec, Canada

Are you Xin-Kang Tong?

Claim your profile

Publications (24)114.47 Total impact

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (AngII) receptor blockers that bind selectively AngII type 1 (AT1) receptors may protect from Alzheimer’s disease (AD). We studied the ability of the AT1 receptor antagonist losartan to cure or prevent AD hallmarks in aged (~ 18 months at endpoint, 3 months treatment) or adult (~ 12 months at endpoint, 10 months treatment) human amyloid precursor protein (APP) transgenic mice. We tested learning and memory with the Morris water maze, and evaluated neurometabolic and neurovascular coupling using [18 F]fluoro-2-deoxy-D-glucose-PET and laser Doppler flowmetry responses to whisker stimulation. Cerebrovascular reactivity was assessed with on-line videomicroscopy. We measured protein levels of oxidative stress enzymes (superoxide dismutases SOD1, SOD2 and NADPH oxidase subunit p67phox), and quantified soluble and deposited amyloid-β (Aβ) peptide, glial fibrillary acidic protein (GFAP), AngII receptors AT1 and AT2, angiotensin IV receptor AT4, and cortical cholinergic innervation. In aged APP mice, losartan did not improve learning but it consolidated memory acquisition and recall, and rescued neurovascular and neurometabolic coupling and cerebrovascular dilatory capacity. Losartan normalized cerebrovascular p67phox and SOD2 protein levels and upregulated those of SOD1. Losartan attenuated astrogliosis, normalized AT1 and AT4 receptor levels, but failed to rescue the cholinergic deficit and the Aβ pathology. Given preventively, losartan protected cognitive function, cerebrovascular reactivity, and AT4 receptor levels. Like in aged APP mice, these benefits occurred without a decrease in soluble Aβ species or plaque load. We conclude that losartan exerts potent preventive and restorative effects on AD hallmarks, possibly by mitigating AT1-initiated oxidative stress and normalizing memory-related AT4 receptors.
    Neurobiology of Disease 01/2014; · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive and cerebrovascular deficits are 2 landmarks of Alzheimer's disease (AD) to target for effective therapy. Here, we evaluated the efficacy of simvastatin in bitransgenic A/T mice overexpressing a mutated form of the human amyloid precursor protein (APPSwe,Ind) and a constitutively active form of transforming growth factor-β1. These mice feature the AD amyloid beta (Aβ) and cerebrovascular pathology. Simvastatin significantly decreased insoluble Aβ peptide levels and Aβ plaque load despite no effect on β-site amyloid precursor protein-cleaving enzyme and Aβ-degrading enzyme neprilysin protein levels. However, simvastatin failed to improve spatial learning and memory deficits and the decreased baseline levels of the memory-related protein early growth response-1 (Egr-1) in the hippocampus CA1 area. The impaired hyperemic response to whisker stimulation in A/T mice was not improved with treatment, but simvastatin fully restored constitutive nitric oxide synthesis in vessel walls and exacerbated agonist-mediated dilatory deficits. These findings point to the efficacy of simvastatin on selective AD features in a complex model of the disease, likely reflecting the challenges faced by recent clinical trials in assessing statin efficacy.
    Neurobiology of aging 08/2013; · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Recent evidence suggests that the inducible kinin B1 receptor (B1R) contributes to pathogenic neuroinflammation induced by amyloid-beta (Abeta) peptide. The present study aims at identifying the cellular distribution and potentially detrimental role of B1R on cognitive and cerebrovascular functions in a mouse model of Alzheimer's disease (AD). METHODS: Transgenic mice overexpressing a mutated form of the human amyloid precursor protein (APPSwe,Ind, line J20) were treated with a selective and brain penetrant B1R antagonist (SSR240612, 10 mg/kg/day for 5 or 10 weeks) or vehicle. The impact of B1R blockade was measured on i) spatial learning and memory performance in the Morris water maze, ii) cerebral blood flow (CBF) responses to sensory stimulation using laser Doppler flowmetry, and iii) reactivity of isolated cerebral arteries using online videomicroscopy. Abeta burden was quantified by ELISA and immunostaining, while other AD landmarks were measured by western blot and immunohistochemistry. RESULTS: B1R protein levels were increased in APP mouse hippocampus and, prominently, in reactive astrocytes surrounding Abeta plaques. In APP mice, B1R antagonism with SSR240612 improved spatial learning, memory and normalized protein levels of the memory-related early gene Egr-1 in the dentate gyrus of the hippocampus. B1R antagonism restored sensory-evoked CBF responses, endothelium-dependent dilations, and normalized cerebrovascular protein levels of endothelial nitric oxide synthase and B2R. In addition, SSR240612 reduced (approximately 50%) microglial, but not astroglial, activation, brain levels of soluble Abeta1-42, diffuse and dense-core Abeta plaques, and it increased protein levels of the Abeta brain efflux transporter lipoprotein receptor-related protein-1 in cerebral microvessels. CONCLUSION: These findings show a selective upregulation of astroglial B1R in the APP mouse brain, and the capacity of the B1R antagonist to abrogate amyloidosis, cerebrovascular and memory deficits. Collectively, these findings provide convincing evidence for a role of B1R in AD pathogenesis.
    Journal of Neuroinflammation 05/2013; 10(1):57. · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delineation of key molecules that act epigenetically to transduce diverse stressors into established patterns of disease would facilitate the advent of preventive and disease-modifying therapeutics for a host of neurological disorders. Herein, we demonstrate that selective overexpression of the stress protein heme oxygenase-1 (HO-1) in astrocytes of novel GFAP.HMOX1 transgenic mice results in subcortical oxidative stress and mitochondrial damage/autophagy; diminished neuronal reelin content (males); induction of Nurr1 and Pitx3 with attendant suppression of their targeting miRNAs, 145 and 133b; increased tyrosine hydroxylase and α-synuclein expression with downregulation of the targeting miR-7b of the latter; augmented dopamine and serotonin levels in basal ganglia; reduced D1 receptor binding in nucleus accumbens; axodendritic pathology and altered hippocampal cytoarchitectonics; impaired neurovascular coupling; attenuated prepulse inhibition (males); and hyperkinetic behavior. The GFAP.HMOX1 neurophenotype bears resemblances to human schizophrenia and other neurodevelopmental conditions and implicates glial HO-1 as a prime transducer of inimical (endogenous and environmental) influences on the development of monoaminergic circuitry. Containment of the glial HO-1 response to noxious stimuli at strategic points of the life cycle may afford novel opportunities for the effective management of human neurodevelopmental and neurodegenerative conditions.
    Journal of Neuroscience 08/2012; 32(32):10841-53. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is now established as a progressive compromise not only of the neurons but also of the cerebral vasculature. Increasing evidence also indicates that cerebrovascular dysfunction may be a key or an aggravating pathogenic factor in AD, emphasizing the importance to properly control this deficit when aiming for effective therapy. Here, we report that simvastatin (3-6 months, 40 mg/kg/d) completely rescued cerebrovascular reactivity, basal endothelial nitric oxide synthesis, and activity-induced neurometabolic and neurovascular coupling in adult (6 months) and aged (12 months) transgenic mice overexpressing the Swedish and Indiana mutations of the human amyloid precursor protein (AD mice). Remarkably, simvastatin fully restored short- and long-term memory in adult, but not in aged AD mice. These beneficial effects occurred without any decreasing effect of simvastatin on brain amyloid-β (Aβ) levels or plaque load. However, in AD mice with recovered memory, protein levels of the learning- and memory-related immediate early genes c-Fos and Egr-1 were normalized or upregulated in hippocampal CA1 neurons, indicative of restored neuronal function. In contrast, the levels of phospholipase A2, enkephalin, PSD-95, synaptophysin, or glutamate NMDA receptor subunit type 2B were either unaltered in AD mice or unaffected by treatment. These findings disclose new sites of action for statins against Aβ-induced neuronal and cerebrovascular deficits that could be predictive of therapeutic benefit in AD patients. They further indicate that simvastatin and, possibly, other brain penetrant statins bear high therapeutic promise in early AD and in patients with vascular diseases who are at risk of developing AD.
    Journal of Neuroscience 04/2012; 32(14):4705-15. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of the basal forebrain (BF), the primary source of acetylcholine (ACh) in the cortex, broadly increases cortical cerebral blood flow (CBF), a response downstream to ACh release. Although endothelial nitric oxide and cholinoceptive GABA (γ-aminobutyric acid) interneurons have been implicated, little is known about the role of pyramidal cells in this response and their possible interaction with astrocytes. Using c-Fos immunohistochemistry as a marker of neuronal activation and laser-Doppler flowmetry, we measured changes in CBF evoked by BF stimulation following pharmacological blockade of c-Fos-identified excitatory pathways, astroglial metabolism, or vasoactive mediators. Pyramidal cells including those that express cyclooxygenase-2 (COX-2) displayed c-Fos upregulation. Glutamate acting via NMDA, AMPA, and mGlu receptors was involved in the evoked CBF response, NMDA receptors having the highest contribution (~33%). In contrast, nonselective and selective COX-2 inhibition did not affect the evoked CBF response (+0.4% to 6.9%, ns). The metabolic gliotoxins fluorocitrate and fluoroacetate, the cytochrome P450 epoxygenase inhibitor MS-PPOH and the selective epoxyeicosatrienoic acids (EETs) antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) all blocked the evoked CBF response by ~50%. Together, the data demonstrate that the hyperemic response to BF stimulation is largely mediated by glutamate released from activated pyramidal cells and by vasoactive EETs, likely originating from activated astrocytes.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 02/2012; 32(5):896-906. · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the central nervous system, the nerve growth factor (NGF) receptor TrkA is expressed primarily in cholinergic neurons that are implicated in spatial learning and memory, whereas the NGF receptor p75(NTR) is expressed in many neuronal populations and glia. We asked whether selective TrkA activation may have a different impact on learning, short-term memory, and long-term memory. We also asked whether TrkA activation might affect cognition differently in wild-type mice versus mice with cognitive deficits due to transgenic overexpression of mutant amyloid-precursor protein (APP mice). Mice were treated with wild-type NGF (a ligand of TrkA and p75(NTR)) or with selective pharmacological agonists of TrkA that do not bind to p75(NTR). In APP mice, the selective TrkA agonists significantly improved learning and short-term memory. These improvements are associated with a reduction of soluble Aβ levels in the cortex and AKT activation in the cortex and hippocampus. However, this improved phenotype did not translate into improved long-term memory. In normal wild-type mice, none of the treatments affected learning or short-term memory, but a TrkA-selective agonist caused persistent deficits in long-term memory. The deficit in wild-type mice was associated temporally, in the hippocampus, with increased AKT activity, increased brain-derived neurotrophic factor precursor, increased neurotrophin receptor homolog-2 (p75-related protein), and long-term depression. Together, these data indicate that selective TrkA activation affects cognition but does so differently in impaired APP mice versus normal wild-type mice. Understanding mechanisms that govern learning and memory is important for better treatment of cognitive disorders.
    Molecular pharmacology 05/2011; 80(3):498-508. · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The roles of chronic brain hypoperfusion and transforming growth factor-beta 1 (TGF-β1) in Alzheimer's disease (AD) are unresolved. We investigated the interplay between TGF-β1, cerebrovascular function, and cognition using transgenic TGF mice featuring astrocytic TGF-β1 overexpression. We further assessed the impact of short, late therapy in elderly animals with the antioxidant N-acetyl-L-cysteine (NAC) or the peroxisome proliferator-activated receptor-γ agonist pioglitazone. The latter was also administered to pups as a prophylactic 1-year treatment. Elderly TGF mice featured cerebrovascular dysfunction that was not remedied with NAC. In contrast, pioglitazone prevented or reversed this deficit, and rescued the impaired neurovascular coupling response to whisker stimulation, although it failed to normalize the vascular structure. In aged TGF mice, neuronal and cognitive indices--the stimulus-evoked neurometabolic response, cortical cholinergic innervation, and spatial memory in the Morris water maze--were intact. Our findings show that impaired brain hemodynamics and cerebrovascular function are not accompanied by memory impairment in this model. Conceivably in AD, they constitute aggravating factors against a background of aging and underlying pathology. Our data further highlight the ability of pioglitazone to protect the cerebrovasculature marked by TGF-β1 increase, aging, fibrosis, and antioxidant resistance, thus of high relevance for AD patients.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 01/2011; 31(1):200-11. · 5.46 Impact Factor
  • Alzheimers & Dementia - ALZHEIMERS DEMENT. 01/2011; 7(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High brain levels of amyloid-β (Aβ) and transforming growth factor-β1 (TGF-β1) have been implicated in the cognitive and cerebrovascular alterations of Alzheimer's disease (AD). We sought to investigate the impact of combined increases in Aβ and TGF-β1 on cerebrovascular, neuronal, and mnemonic function using transgenic mice overproducing these peptides (A/T mice). In particular, we measured cerebrovascular reactivity, evoked cerebral blood flow and glucose uptake during brain activation, cholinergic status, and spatial memory, along with cerebrovascular fibrosis, amyloidosis, and astrogliosis, and their evolution with age. An assessment of perfusion and metabolic responses was considered timely, given ongoing efforts for their validation as AD biomarkers. Relative to wild-type littermates, A/T mice displayed an early progressive decline in cerebrovascular dilatory ability, preserved contractility, and reduction in constitutive nitric oxide synthesis that establishes resting vessel tone. Altered levels of vasodilator-synthesizing enzymes and fibrotic proteins, resistance to antioxidant treatment, and unchanged levels of the antioxidant enzyme, superoxide dismutase-2, accompanied these impairments. A/T mice featured deficient neurovascular and neurometabolic coupling to whisker stimulation, cholinergic denervation, cerebral and cerebrovascular Aβ deposition, astrocyte activation, and impaired Morris water maze performance, which gained severity with age. The combined Aβ- and TGF-β1-driven pathology recapitulates salient cerebrovascular, neuronal, and cognitive AD landmarks and yields a versatile model toward highly anticipated diagnostic and therapeutic tools for patients featuring Aβ and TGF-β1 increments.
    American Journal Of Pathology 11/2010; 177(6):3071-80. · 4.60 Impact Factor
  • Alzheimers & Dementia - ALZHEIMERS DEMENT. 01/2009; 5(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebrovascular dysfunctions appear to contribute to Alzheimer's disease (AD) pathogenesis and the associated cognitive decline. Recently, it has been suggested that statins could be beneficial to AD patients independently from their cholesterol-lowering effects. Using 10 month-old amyloid precursor protein transgenic mice (APP mice), we sought to reverse cerebrovascular, neuronal and memory impairments with simvastatin (20 mg/kg/day, 8 weeks). Simvastatin improved reactivity of cerebral arteries, rescued the blood flow response to neuronal activation, attenuated oxidative stress and inflammation, and reduced cortical soluble amyloid-beta (Aβ) levels and the number of Aβ plaque-related dystrophic neurites. However, at such an advanced stage of the pathology, it failed to reduce Aβ plaque load and normalize cholinergic and memory deficits. These findings demonstrate that low-dose simvastatin treatment in aged APP mice largely salvages cerebrovascular function and has benefits on several AD landmarks, which could explain some of the positive effects of statins reported in AD patients.
    Neurobiology of Disease 01/2009; · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that cerebrovascular dysfunction is an important factor in the pathogenesis of Alzheimer's disease (AD). Using aged ( approximately 16 months) amyloid precursor protein (APP) transgenic mice that exhibit increased production of the amyloid-beta (Abeta) peptide and severe cerebrovascular and memory deficits, we examined the capacity of in vivo treatments with the antioxidants N-acetyl-L-cysteine (NAC) and tempol, or the peroxisome proliferator-activated receptor gamma agonist pioglitazone to rescue cerebrovascular function and selected markers of AD neuropathology. Additionally, we tested the ability of pioglitazone to normalize the impaired increases in cerebral blood flow (CBF) and glucose uptake (CGU) induced by whisker stimulation, and to reverse spatial memory deficits in the Morris water maze. All compounds fully restored cerebrovascular reactivity of isolated cerebral arteries concomitantly with changes in proteins regulating oxidative stress, without reducing brain Abeta levels or Abeta plaque load. Pioglitazone, but not NAC, significantly attenuated astroglial activation and improved, albeit nonsignificantly, the reduced cortical cholinergic innervation. Furthermore, pioglitazone completely normalized the CBF and CGU responses to increased neuronal activity, but it failed to improve spatial memory. Our results are the first to demonstrate that late pharmacological intervention with pioglitazone not only overcomes cerebrovascular dysfunction and altered neurometabolic coupling in aged APP mice, but also counteracts cerebral oxidative stress, glial activation, and, partly, cholinergic denervation. Although early or combined therapy may be warranted to improve cognition, these findings unequivocally point to pioglitazone as a most promising strategy for restoring cerebrovascular function and counteracting several AD markers detrimental to neuronal function.
    Journal of Neuroscience 10/2008; 28(37):9287-96. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurovascular coupling, or the tight coupling between neuronal activity and regional cerebral blood flow (CBF), seems largely driven by the local processing of incoming afferent signals within the activated area. To test if cortical gamma-aminobutyric acid (GABA) interneurons-the local integrators of cortical activity-are involved in this coupling, we stimulated the basalocortical pathway in vivo, monitored cortical CBF, and identified the activated interneurons (c-Fos-immunopositive) and the neuromediators involved in this response. Basal forebrain (BF) stimulation induced ipsilateral increases in CBF and selective activation of layers II to VI somatostatin- and/or neuropeptide Y-containing, as well as layer I GABA interneurons. Nitric oxide synthase interneurons displayed weak bilateral activation, whereas vasoactive intestinal polypeptide- or acetylcholine (ACh)-containing GABA interneurons were not activated. Selective cholinergic deafferentation indicated that ACh released from stimulated BF afferents triggered the CBF response, but the latter was mediated, in part, by the local release of GABA from cholinoceptive cortical interneurons, and through GABA-A receptor-mediated transmission. These data show that activation of specific subsets of GABA interneurons and their GABA-A-mediated effects on neuronal, vascular, and/or astroglial targets are necessary for the full expression of the hemodynamic response to BF stimulation. Further, these findings highlight the importance of understanding the cellular networks and circuitry that underlie hemodynamic signals, as only specific subsets of neurons may be activated by a given stimulus, depending on the afferent inputs they receive and integrate.
    Journal of Cerebral Blood Flow & Metabolism 03/2008; 28(2):221-31. · 5.40 Impact Factor
  • Xin-Kang Tong, Edith Hamel
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain levels of transforming growth factor-beta1 (TGF-beta1) are increased in Alzheimer's disease and have been implicated in the associated cerebrovascular pathology. We recently reported that transgenic mice that overexpress TGF-beta1 (TGF+ mice) display, with aging, selectively reduced endothelin-1 (ET-1)-mediated contractions. Because ET-1 is a key regulator of cerebrovascular tone and homeostasis, we investigated how increased levels of TGF-beta1 could selectively alter this contractile response. We found that ETA receptors, via activation of p38 mitogen-activated protein (MAP) kinase, mediate the ET-1-induced contraction in mouse cerebral arteries, a response significantly decreased in aged TGF+ mice (-39%; p < 0.01) despite unaltered ETA receptor levels or affinity. In cerebrovascular smooth muscle cell cultures, long-term treatment with TGF-beta1 significantly decreased (>50%; p < 0.05) the ET-1-induced activation of the p38 MAPK/27-kDa heat shock protein (HSP27) signaling pathway. This occurred with no effect upstream to p38 MAP kinase but with the concomitant induction of mitogen-activated protein kinase phosphatase-1 (MKP-1) expression. Inhibition of MKP-1 expression with Ro-31-8220 or suppression of MKP-1 expression by short interfering RNA restored the ET-1-mediated p38 MAP kinase response. These results disclose a new role for long-term increases of TGF-beta1 in modulating cerebrovascular tone by dampening ET-1-mediated activation of the p38 MAPK/HSP27 signaling pathway. Such changes in ET-1-mediated signaling may help maintain vascular wall homeostasis by compensating for the diminished dilatory function induced by TGF-beta1 and amyloid-beta; brain levels of these two molecules are increased in patients with Alzheimer's disease.
    Molecular pharmacology 12/2007; 72(6):1476-83. · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tight coupling between increased neuronal activity and local cerebral blood flow, known as functional hyperemia, is essential for normal brain function. However, its cellular and molecular mechanisms remain poorly understood. In the cerebellum, functional hyperemia depends almost exclusively on nitric oxide (NO). Here, we investigated the role of different neuronal populations in the control of microvascular tone by in situ amperometric detection of NO and infrared videomicroscopy of microvessel movements in rat cerebellar slices. Bath application of an NO donor induced both NO flux and vasodilation. Surprisingly, endogenous release of NO elicited by glutamate was accompanied by vasoconstriction that was abolished by inhibition of Ca2+-phopholipase A2 and impaired by cyclooxygenase and thromboxane synthase inhibition and endothelin A receptor blockade, indicating a role for prostanoids and endothelin 1 in this response. Interestingly, direct stimulation of single endothelin 1-immunopositive Purkinje cells elicited constriction of neighboring microvessels. In contrast to glutamate, NMDA induced both NO flux and vasodilation that were abolished by treatment with a NO synthase inhibitor or with tetrodotoxin. These findings indicate that NO derived from neuronal origin is necessary for vasodilation induced by NMDA and, furthermore, that NO-producing interneurons mediate this vasomotor response. Correspondingly, electrophysiological stimulation of single nitrergic stellate cells by patch clamp was sufficient to release NO and dilate both intraparenchymal and upstream pial microvessels. These findings demonstrate that cerebellar stellate and Purkinje cells dilate and constrict, respectively, neighboring microvessels and highlight distinct roles for different neurons in neurovascular coupling.
    Journal of Neuroscience 07/2006; 26(26):6997-7006. · 6.91 Impact Factor
  • Nitric Oxide. 06/2006; 14(4):22–23.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The roles of oxidative stress and structural alterations in the cerebrovascular dysfunctions associated with Alzheimer's disease (AD) were investigated in transgenic mice overexpressing amyloid precusor protein (APP+) or transforming growth factor-beta1 (TGF+). Age-related impairments and their in vitro reversibility were evaluated, and underlying pathogenic mechanisms were assessed and compared with those seen in AD brains. Vasoconstrictions to 5-HT and endothelin-1 were preserved, except in the oldest (18-21 months of age) TGF+ mice. Despite unaltered relaxations to sodium nitroprusside, acetylcholine (ACh) and calcitonin gene-related peptide-mediated dilatations were impaired, and there was an age-related deficit in the basal availability of nitric oxide (NO) that progressed more gradually in TGF+ mice. The expression and progression of these deficits were unrelated to the onset or extent of thioflavin-S-positive vessels. Manganese superoxide dismutase (SOD2) was upregulated in pial vessels and around brain microvessels of APP+ mice, pointing to a role of superoxide in the dysfunctions elicited by amyloidosis. In contrast, vascular wall remodeling associated with decreased levels of endothelial NO synthase and cyclooxygenase-2 and increased contents of vascular endothelial growth factor and collagen-I and -IV characterized TGF+ mice. Exogenous SOD or catalase normalized ACh dilatations and NO availability in vessels from aged APP+ mice but had no effect in those of TGF+ mice. Increased perivascular oxidative stress was not evidenced in AD brains, but vascular wall alterations compared well with those seen in TGF+ mice. We conclude that brain vessel remodeling and associated alterations in levels of vasoactive signaling molecules are key contributors to AD cerebrovascular dysfunctions.
    Journal of Neuroscience 12/2005; 25(48):11165-74. · 6.91 Impact Factor
  • Journal of Cerebral Blood Flow & Metabolism 07/2005; · 5.40 Impact Factor