Erhard Kranz

University of Hamburg, Hamburg, Hamburg, Germany

Are you Erhard Kranz?

Claim your profile

Publications (49)216.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Methods have been developed to isolate gametes of higher plants and to fertilize them in vitro. Zygotes, embryos, fertile plants and endosperm can now be obtained from in vitro fusion of pairs of sperm and egg cells and of pairs of sperm and central cells, respectively. This allows examination of the earliest developmental processes precisely timed after fertilization. The isolated egg and central cell, fertilized and cultured in vitro, are able to self-organize apart from each other and without mother tissue in the typically manner. Thus, this system is a powerful and unique model for studies of early zygotic embryogenesis and endosperm development. The underlying processes are now comparatively studied in detail by investigations of expression of genes and their corresponding proteins. The use of these techniques opens new avenues in fundamental and applied research in the areas of developmental and reproductive plant biology.
    Methods in molecular biology (Clifton, N.J.) 02/2008; 427:51-69. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phylogeny based on the homeodomain (HD) amino acid sequence of the WOX (WUSCHEL-related homeobox gene family) was established in the 3 major radiations of the Poaceae family: Pooideae (Brachypodium distachyon), Bambusoideae (Oryza sativa), and Panicoideae (Zea mays). The genomes of all 3 grasses contain an ancient duplication in the WOX3 branch, and the cellular expression patterns in maize and rice indicate subfunctionalization of paralogues during leaf development, which may relate to the architecture of the grass leaf and the encircling of the stem. The use of maize WOX gene family members as molecular markers in maize embryo development for the first time allowed us to visualize cellular decisions in the maize proembryo, including specification of the shoot/root axis at an oblique angle to the apical-basal polarity of the zygote. All molecular marker data are compatible with the conclusion that the embryonic shoot/root axis comprises a discrete domain from early proembryo stages onward. Novel cell fates of the shoot and the root are acquired within this distinct morphogenic axis domain, which elongates and thus separates the shoot apical meristem and root apical meristem (RAM) anlagen in the maize embryo.
    Molecular Biology and Evolution 12/2007; 24(11):2474-84. · 10.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant imprinted genes show parent-of-origin expression in seed endosperm, but little is known about the nature of parental imprints in gametes before fertilization. We show here that single differentially methylated regions (DMRs) correlate with allele-specific expression of two maternally expressed genes in the seed and that one DMR is differentially methylated between gametes. Thus, plants seem to have developed similar strategies as mammals to epigenetically mark imprinted genes.
    Nature Genetics 09/2006; 38(8):876-8. · 35.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transcript level and in turn protein density of the K(+)-uptake channel ZMK1 in maize (Zea mays) coleoptiles is controlled by the phytohormone auxin. ZMK1 is involved in auxin-regulated coleoptile elongation as well as gravi- and phototropism. To provide unequivocal evidence for the role of ZMK1 in these elementary processes we screened for maize plants containing a Mutator-tagged Zmk1 gene. In a site-selected approach, we were able to identify three independent alleles of Mutator-transposon insertions in Zmk1. zmk1-m1::Mu1 plants were characterised by a Mu1 transposon inside intron 1 of ZMK1. When we analysed the Zmk1-transcript abundance in growing coleoptiles of these homozygous mutants, however, we found the K(+)-channel allele overexpressed. In consequence, elevated levels of K(+)-channel transcripts resulted in a growth phenotype as expected from more efficient K(+)-uptake, representing a central factor for turgor formation. Following Zmk1 expression during maize embryogenesis, we found this K(+)-channel gene constitutively expressed throughout embryo development and upregulated in late stages. In line with a vital role in embryogenesis, the mutations of exon 2 and intron 2 of Zmk1-zmk1-m2::Mu8 and zmk1-m3::MuA2-caused a lethal, defective-kernel phenotype. Thus, these results demonstrate the central role of the auxin-regulated K(+)-channel gene Zmk1 in coleoptile growth and embryo development.
    Plant Molecular Biology 08/2006; 61(4-5):757-68. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The procedure of in vitro fertilisation with single isolated maize gametes is the well characterised model system to study fertilisation and early zygotic embryogenesis of higher plants. It allows individual development of zygotes and primary endosperm cells. Both in vitro produced zygotes and primary endosperm cells are able to develop into embryos, fertile plants and endosperm in culture. These zygotes and primary endosperm cells are able to self-organise independently from maternal tissue. Many developmental steps of both the in vitro-produced embryo and endosperm are comparable to the situation in planta. Application of molecular techniques to the in vitro fertilisation system can dissect specific expression patterns of known genes, for example, cell cycle regulators and to isolate unknown genes and their products. Expression of foreign genes is possible in gametes and zygotes. This allows to unravel the roles of genes during fertilisation and early development. The ability of gametes and zygotes to express transgenes enable us to follow the expression of GFP based reporter genes for the visualisation of subcellular components in these living cells.
    01/2006: pages 31-42;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The analysis of cell type-specific gene expression is an essential step in understanding certain biological processes during plant development, such as differentiation. Although methods for isolating specific cell types have been established, the application of cDNA subtraction to small populations of isolated cell types for direct identification of specific or differentially expressed transcripts has not yet been reported. As a first step in the identification of genes expressed differentially between maize egg cells and central cells, we have manually isolated these types of cell, and applied a suppression-subtractive hybridization (SSH) strategy. After microarray screening of 1030 cDNAs obtained from the subtracted libraries, we identified 340 differentially expressed clones. Of these, 142 were sequenced, which resulted in the identification of 62 individual cDNAs. The expression patterns of 20 cDNAs were validated by quantitative RT-PCR, through which we identified five transcripts with cell type-specific expression. The specific localization of some of these transcripts was also confirmed by in situ hybridization on embryo sac sections. Taken together, our data demonstrate the effectiveness of our approach in identifying differentially expressed and cell type-specific transcripts of relatively low abundance. This was also confirmed by the identification of previously reported egg cell- and central cell-specific genes in our screen. Importantly, from our analysis we identified a significant number of novel sequences not present in other embryo sac or, indeed, in other plant expressed sequence tag (EST) databases. Thus, in combination with standard EST sequencing and microarray hybridization strategies, our approach of differentially screening subtracted cDNAs will add substantially to the expression information in spatially highly resolved transcriptome analyses.
    The Plant Journal 11/2005; 44(1):167-78. · 6.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sulphated pentapeptide phytosulphokine (PSK) was identified as a substance that promotes cell division in low-density suspension cultures and has been implicated in various aspects of tissue differentiation in plants. The peptide is derived from PSK precursor proteins that are encoded by small gene families. The physiological roles of PSK are still not clearly defined and little is known about expression of members of the PSK precursor gene family in any plant species. In this study, highly regulated tissue and cell type-specific expression are described for four PSK genes from maize (Zea mays L.) in female and male gametophytes, and during seed development. ZmPSK1 and ZmPSK3 were specifically and differentially expressed in cells of female and male gametophytes and in female and male gametes. In anthers ZmPSK1 or ZmPSK3 transcripts were found, for example, at high levels in secretory tapetal cells which support developing microspores. ZmPSK1 mRNA was abundant in mature pollen including sperm cells. ZmPSK1 and ZmPSK3 transcripts were also detected in egg and central cells of the female gametophyte and ZmPSK1 mRNA was present in synergids, indicating that the PSK peptide probably plays a role during gametogenesis, pollen germination, and fertilization. In developing maize kernels all four ZmPSK genes were expressed, albeit with striking differences in their expression patterns. It is proposed here that PSK is required for numerous but defined processes during gametophyte and early sporophyte development. In general, PSK availability appears to be controlled through transcriptional regulation in a tissue and cell type-specific and development-dependent manner.
    Journal of Experimental Botany 08/2005; 56(417):1805-19. · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In higher plants, a zygote generally divides asymmetrically into a two-celled embryo. As in planta, maize zygotes produced by in vitro fertilization of an egg cell with a sperm cell also develop into an asymmetrical two-celled embryo that consists of a small plasma-rich apical cell and a large vacuolized basal cell. Subsequently, via zygotic embryogenesis, a proembryo and a transition phase embryo are formed from the two-celled embryo. In the present study, we focused on identifying genes that were up- or down-regulated only in the apical or basal cell of two-celled maize embryos after fertilization. First, a procedure for isolating the apical and basal cells from two-celled embryos was established, and subsequently cDNAs were synthesized from apical cells, basal cells, egg cells, two-celled embryos and multicellular embryos. These cDNAs were used as templates for polymerase chain reaction (PCR) with randomly amplified polymorphic DNA (RAPD) primers. Genes with specific expression patterns were identified, and these expression patterns were categorized into six groups: (1) up-regulated only in the apical cell after gamete fusion; (2) up-regulated only in the basal cell after gamete fusion; (3) up-regulated in both the apical and basal cells after gamete fusion; (4) down-regulated only in the apical cell after gamete fusion; (5) down-regulated only in the basal cell after gamete fusion; and (6) constitutively expressed in the egg cell and embryos. In addition, it was revealed that the genes up-regulated in the apical or basal cell (genes in groups 1 and 2) were already expressed in the early zygote, providing the possibility that the transcripts from these genes are localized to the putative apical or basal region of the zygote, or that the transcripts are rapidly degraded in one of the daughter cells after zygotic cell division.
    Plant and Cell Physiology 03/2005; 46(2):332-8. · 4.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In most flowering plants, the female gametophyte develops in an ovule deeply embedded in the ovary. Through double fertilization, the egg cell fuses with the sperm cell, resulting in a zygote, which develops into the embryo. In the present study, we analyzed egg cell lysates by polyacrylamide gel electrophoresis and subsequent mass spectrometry-based proteomics technology, and identified major protein components expressed in the egg cell. The identified proteins included three cytosolic enzymes of the glycolytic pathway, glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase and triosephosphate isomerase, two mitochondrial proteins, the ATP synthase beta-subunit and an adenine nucleotide transporter, and annexin p35. In addition, expression levels of these proteins in the egg cell were compared with those in the early embryo, the central cell and the suspension cell. Annexin p35 was highly expressed only in the egg cell, and glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase and the adenine nucleotide transporter were expressed at higher levels in egg cells than in central and cultured cells. These results indicate that annexin p35 in the egg cell and zygote is involved in the exocytosis of cell wall materials, which is induced by a fertilization-triggered increase in cytosolic Ca2+ levels, and that the egg cell is rich in an enzyme subset for the energy metabolism.
    Plant and Cell Physiology 11/2004; 45(10):1406-12. · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at specific methylation-sensitive restriction sites upon maternal transmission, whereas upon paternal transmission, the methylation levels were similar to those observed in embryo and leaf. Maternal hypomethylation was extensive and offers a likely explanation for the 13% reduction in methyl-cytosine content of the endosperm compared with leaf tissue. DMRs showed identity to expressed genic regions, were observed early after fertilization, and maintained at a later stage of endosperm development. The implications of extensive maternal hypomethylation with respect to endosperm development and epigenetic reprogramming will be discussed.
    The Plant Cell 03/2004; 16(2):510-22. · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: K+ channels control K+ homeostasis and the membrane potential in the sieve element/companion cell complexes. K+ channels from Arabidopsis phloem cells expressing green fluorescent protein (GFP) under the control of the AtSUC2 promoter were analysed using the patch-clamp technique and quantitative RT-PCR. Single green fluorescent protoplasts were selected after being isolated enzymatically from vascular strands of rosette leaves. Companion cell protoplasts, which could be recognized by their nucleus, vacuole and chloroplasts, and by their expression of the phloem-specific marker genes SUC2 and AHA3, formed the basis for a cell-specific cDNA library and expressed sequence tag (EST) collection. Although we used primers for all members of the Shaker K+ channel family, we identified only AKT2, KAT1 and KCO6 transcripts. In addition, we also detected transcripts for AtPP2CA, a protein phosphatase, that interacts with AKT2/3. In line with the presence of the K+ channel transcripts, patch-clamp experiments identified distinct K+ channel types. Time-dependent inward rectifying K+ currents were activated upon hyperpolarization and were characterized by a pronounced Ca2+-sensitivity and inhibition by protons. Whole-cell inward currents were carried by single K+-selective channels with a unitary conductance of approximately 4 pS. Outward rectifying K+ channels (approximately 19 pS), with sigmoidal activation kinetics, were elicited upon depolarization. These two dominant phloem K+ channel types provide a versatile mechanism to mediate K+ fluxes required for phloem action and potassium cycling.
    The Plant Journal 01/2004; 36(6):931-45. · 6.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By using single cell micromanipulation techniques, we developed an immunocytochemical procedure to examine subcellular protein localization in isolated and cultured cells. Localization of microtubules was examined in isolated single egg cells and developing zygotes of maize with anti--tubulin antibodies. In egg cells, a few cortical microtubules were detected but well organized microtubules were rarely observed. In contrast, distinct cortical microtubules and strands of cytoplasmic microtubules radiating from the nucleus to the cell periphery were observed in developing zygotes. Solely cortical microtubules were observed in zygotes up to 7 h after in vitro fertilization. After this time, radiating microtubules additionally appeared, and persisted during zygote development. These results indicate early and pronounced fertilization-induced changes in microtubular organization in the fertilized egg cell of maize.
    Sexual Plant Reproduction 01/2004; · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The interaction between lectins and their specific binding sites is believed to play a critical role in fertilization in animals and some lower plants. However, for higher plants there is no information on lectins or their binding sites related to female gametes and fertilization. The present work was designed as a first attempt to reveal the general pattern of lectin binding site distribution on the surface of female cells, namely egg cells, central cells, and synergids of Torenia fournieri and, especially, to investigate the possible effects of cell isolation procedure on the distribution of lectin binding sites. Therefore, concanavalin A (Con A) and wheat germ agglutinin (WAG) binding sites on the surface of both in vitro and in situ living female cells were localized by using fluorescein isothiocyanate (FITC) conjugated Con A and WGA as probes. We demonstrated that enzymatic treatment and isolation procedures did not notably modify the surface character of the female cells and the distribution of Con A and WGA binding sites. It was also found that Con A binding sites were distributed differently on the surface of the female cells, with the strongest fluorescent signal on central cells and the weakest on egg cells. Calcium could greatly enhance the binding of Con A to the cell surface. A polar distribution pattern of Con A binding sites in embryo sacs was observed. The binding sites were obviously densest at the filiform apparatus of the synergids. The basic pattern of WGA binding site distribution was similar to that of Con A’s. However, the fluorescent signal of WGA was much weaker than that of Con A and fluorescent patches were usually found on the cell surface.
    Israel Journal of Plant Sciences - ISRAEL J PLANT SCI. 01/2003; 51(2):83-90.
  • Stefan Scholten, Horst Lörz, Erhard Kranz
    [Show abstract] [Hide abstract]
    ABSTRACT: Decondensation of the male genome after fertilization is a prerequisite for replication and transcription. Cytological analysis has revealed decondensation of the male chromatin to commence immediately after karyogamy and progress rapidly, pointing to an early start of transcription. To investigate early transcription from the paternal genome in maize zygotes, we generated transgenic plants containing green fluorescent protein (GFP) under control of the 35S promoter. Single transgenic sperm cells from these plants were used to fertilize isolated wild-type egg cells in vitro. These sperm cells did not contain gfp transcripts. Appearance of gfp mRNA, 4 h after fertilization, was coincident with decondensation of the male chromatin, and clearly demonstrates early accessibility to the transcriptional machinery of at least a part of the male genome. Translational activity in early zygotes was evident 6 h after fertilization, as demonstrated by measurable levels of GFP fluorescence signal. Using a similar strategy, we also demonstrated activity of the paternal genome early in endosperm development. These findings may exclude any global mechanism of silencing the entire paternal genome over this period, and make an almost immediate paternal contribution to zygote and early endosperm development conceivable. These data are also considered in the perspective of current views of genome activation in the zygotes and young embryos of animals.
    The Plant Journal 11/2002; 32(2):221-31. · 6.58 Impact Factor
  • Erhard Kranz, Petra Wiegen, Horst Lörz
    [Show abstract] [Hide abstract]
    ABSTRACT: Early events, such as formation of the cell wall, first nuclear division and first unequal division of the zygote, were examined following in vitro fusion of single egg and sperm protoplasts of maize (Zea mays L.). The time course of these events was determined. The formation of cell wall components was observed 30 sec following egg—sperm fusion and proceeded continuously thereafter. Within 15 h after fusion most of the organelles became more densely grouped around the nucleus of the zygote. In the in vitro produced zygote the location of the cell organelles and of the dividing nucleus showed polarity. Two nucleoli were first observed 18 h after gamete fusion. The zygotic nucleus remained undivided for about 40 h. The first cell division was observed 40–60 h, generally 42–46 h, after egg—sperm fusion. The non-fused egg cell could be triggered to sporophytic development in vitro by pulses of high amounts of 2,4-D. Without such a treatment, cultured egg cells of different maize lines did not divide. Although nuclear fusion seemed to occur, fusion products of two egg cells also did not divide. Cell wall formation was incomplete and non-uniform, showing a polarity of cultured egg cells and fusion products of two egg protoplasts. Cell division was also induced after fusion of maize egg with sperms of genetically remote species, such as Coix, Sorghum, Hordeum or Triticum. These gametic heterologous fusion products developed to microcalli. Moreover, cell division occurred in fusion products of an egg and a diploid somatic cell-suspension protoplast from maize.
    The Plant Journal 03/2002; 8(1):9 - 23. · 6.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Direct embryogenesis and plant regeneration were obtained by implantation of individual wheat (Triticum aestivum L.) zygotes into cultured ovules of wheat or barley. The zygotes were isolated mechanically from emasculated spikes, 3–9 h after hand-pollination. In 13 independent experiments, a total of 186 zygotes were implanted into excised ovules obtained from emasculated spikes which had been treated previously with 2,4-dichlorophenoxyacetic acid to induce parthenocarpic, embryoless ovary development. On average, 17.2% of the implanted zygotes gave rise to dorsiventrally differentiated embryos. The embryos resembled those growing in planta with no obvious deviation from the zygotic embryogenesis pathway. In contrast to previously described regeneration systems from individual zygotes of higher plants, this is the first study in which direct embryo formation is reproducibly obtained without intermediate tissue dedifferentiation. Most embryos germinated when transferred to regeneration medium, and later formed phenotypically normal, fully fertile plants. Regenerants were confirmed to be derived from the implanted zygotes by means of AFLP and/or morphological analyses. Although zygote implantation has long been established as a useful method in sexual animal reproduction, an equivalent technique for plants is described here for the first time. Since the zygotes enter the embryogenic pathway directly, the genome is presumably as stable as during embryogenesis in planta. With this new approach, isolated wheat zygotes are accessible to micromanipulation without affecting their subsequent embryonic development.
    The Plant Journal 03/2002; 12(6):1473 - 1479. · 6.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three fluorescein isothiocyanate (FITC)-conjugated lectins, Canavalia ensiformis agglutinin (Con A), Triticum vulgaris agglutinin (WGA) and Phaseolus vulgaris erythroagglutinin (PHA-E), were used as probes to localize sugar moieties of glycoconjugates on the cell surface of isolated maize sperm, egg, central, antipodal cells, synergids, and in vitro- and in vivo-fertilized zygotes. Fluorescence signals on the surface of the cells were due to specific binding. Calcium was necessary for WGA and PHA-E binding and enhanced Con A labeling. Differences in glycoconjugate composition of the membranes of gametes and other embryo sac component cells were found. FITC-Con A strongly labeled egg and central cells, but labeled sperm only weakly. FITC-WGA binding sites were detected on egg, but not sperm cells. Con A and WGA binding sites were equally distributed around egg and central cell protoplasts. FITC-PHA-E binding sites were not found on sperm and egg cells before fertilization. Binding sites of these lectins were located on synergids, especially on their filiform apparatus. Interestingly, WGA binding to egg cells was enhanced after fertilization, whereas PHA-E binding to egg cell membranes could only be detected after fertilization. These results suggest the occurrence of fertilization-induced changes in glycoconjugate composition of the maize egg cell membrane. An increase in the number of WGA and PHA-E binding sites was also observed on newly formed cell walls of cultured two-celled embryos derived from in vitro-produced zygotes.
    Sexual Plant Reproduction 01/2002; 15(4):159-166. · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MADS box genes represent a large gene family of transcription factors with essential functions during flower development and organ differentiation processes in plants. Addressing the question of whether MADS box genes are involved in the regulation of the fertilization process and early embryo development, we have isolated two novel MADS box cDNAs, ZmMADS1 and ZmMADS3, from cDNA libraries of maize (Zea mays) pollen and egg cells, respectively. The latter gene is allelic to ZAP1. Transcripts of both genes are detectable in egg cells and in in vivo zygotes of maize. ZmMADS1 is additionally expressed in synergids and in central and antipodal cells. During early somatic embryogenesis, ZmMADS1 expression is restricted to cells with the capacity to form somatic embryos, and to globular embryos at later stages. ZmMADS3 is detectable only by more sensitive reverse transcriptase-PCR analyses, but is likewise expressed in embryogenic cultures. Both genes are not expressed in nonembryogenic suspension cultures and in isolated immature and mature zygotic embryos. During flower development, ZmMADS1 and ZmMADS3 are co-expressed in all ear spikelet organ primordia at intermediate stages. Among vegetative tissues, ZmMADS3 is expressed in stem nodes and displays a gradient with highest expression in the uppermost node. Transgenic maize plants ectopically expressing ZmMADS3 are reduced in height due to a reduced number of nodes. Reduction of seed set and male sterility were observed in the plants. The latter was due to absence of anthers. Putative functions of the genes during reproductive and vegetative developmental processes are discussed.
    Plant physiology 10/2001; 127(1):33-45. · 6.56 Impact Factor
  • Stefan Scholten, E. Kranz
    [Show abstract] [Hide abstract]
    ABSTRACT: The in vitro fertilization system of maize is the well characterized model system for the fertilization process and early zygotic embryogenesis of higher plants. Application of molecular methods to the in vitro fertilization system led to the isolation of new genes and uncovered specific expression patterns of cell cycle regulators. Recent studies showed that expression of transgenes is possible in gametes and zygotes, thus transgenic approaches might offer an opportunity to unravel the roles of genes during fertilization and early development. The competence of gametes and zygotes to express transgenes will also enable the expression of GFP based reporter genes for the visualization of subcellular components in these cells in vivo. This review focuses on the data concerning the expression of transgenes in gametes and zygotes and describes some examples of recent developments in transgenic technology illustrating theemerging possibilities in experimental design by combining this technology with in vitro fertilization.
    Sexual Plant Reproduction 08/2001; 14(1):35-40. · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All four members of a gene family, which are highly expressed in the cells of the female gametophyte (ZmES1--4: Zea mays embryo sac), were isolated from a cDNA library of maize egg cells. High expression of ZmES genes in the synergids around the micropylar region was detected in thin sections of maize ovaries. Single-cell RT--PCR analyses with the various cells of the female gametophyte confirmed the expression in synergids and also showed expression in the egg cell and central cell, and low expression in the antipodals. The expression of the whole gene family is suppressed after fertilization of the embryo sac, and expression in two-cell or later embryo stages or other tissues of maize could not be detected. In order to investigate ZmES mRNA gradients in the highly polarized and vacuolized cells of the maize embryo sac, a whole-mount in situ protocol with isolated single cells was developed: as for total RNA, ZmES transcripts are uniformly distributed in the cytoplasm of egg cell, synergids and central cell. ZmES genes encode small, cysteine-rich proteins with an N-terminal signal peptide, probably for translocation into the embryo sac cell wall. The four ZmES proteins display high sequence identity with each other, and the proposed tertiary structure of the mature peptides is similar to that of plant and animal defensins. The function of ZmES1-4 during the fertilization process is discussed.
    The Plant Journal 02/2001; 25(1):103-14. · 6.58 Impact Factor

Publication Stats

2k Citations
216.76 Total Impact Points

Institutions

  • 1990–2008
    • University of Hamburg
      • Biocenter Klein Flottbek and Botanical Garden (BioZ Flottbek)
      Hamburg, Hamburg, Germany
  • 2004
    • Tokyo Metropolitan University
      • Department of Biological Sciences
      Edo, Tōkyō, Japan
  • 1997
    • Japan Tobacco Inc.
      Edo, Tōkyō, Japan
  • 1995
    • Hungarian Academy of Sciences
      • Plant Cell Biology Department
      Budapeŝto, Budapest, Hungary