Fabiana L Motta

Universidade Federal de São Paulo, San Paulo, São Paulo, Brazil

Are you Fabiana L Motta?

Claim your profile

Publications (10)31.32 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract A role for the kinin B1 receptor in energy-homeostatic processes was implicated by previous works. Notably the studies where kinin B1 receptor knockout mice (B1-/-) are observed to have impaired adiposity, impaired leptin and insulin production, lower feed efficiency, protection from liver steatosis and diet induced obesity when fed a high fat diet (HFD). More particularly, in a model where the B1 receptor is expressed exclusively in the adipose tissue, it rescues the plasma insulin concentration and the weight gain seen in wild type mice. Taking into consideration that leptin participates in the formation of hypothalamic nuclei, which modulate energy expenditure, and feeding behavior, we hypothesized that these brain regions could also be altered in B1-/- mice. We observed for the first time a difference in the gene expression pattern of CART (cocaine-and-amphetamine related transcript) in the LHA (lateral hypothalamic area) resulting from the deletion of the kinin B1 receptor gene. The correlation between CART expression in the LHA and the thwarting of diet-induced obesity corroborates independent correlations between CART and obesity. Further it seems to indicate that the mechanism underlying the 'lean' phenotype of B1-/- mice is not solely stemming from changes in peripheral tissues but may also receive contributions from changes in the hypothalamic machinery involved in energy homeostasis processes.
    Biological Chemistry 03/2013; · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the alpha-galactosidase A (GLA) gene. Evaluating the enzymatic activity in male individuals usually performs the diagnosis of the disease, but in female carriers the diagnosis should be based on DNA sequencing (DS), since enzyme assays is often inconclusive due to inactivation of chromosome X. This work presents genotyping of GLA gene in 568 individuals from 102 families with suspect of FD. In addition, we developed a simple and noninvasive diagnosis by sequencing the messenger RNA (mRNA). In parallel, we correlated the expression of GLA gene by real time PCR. Furthermore, this protocol using RNA extracted from leukocytes avoids the use of biopsies, decreases the amount of fragments to be sequenced, and should open up new perspectives for a more accurate diagnosis and early treatment of Fabry disease.
    Molecular Genetics and Metabolism 02/2013; 108(2):S93. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B1 receptor knockout mice (B1−/−) are leaner and exhibit improved insulin sensitivity. Methodology/Principal Findings Here we show that kinin B1 receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B1 receptors. In these cells, treatment with the B1 receptor agonist des-Arg9-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B1−/− mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B1 receptor was limited to cells of the adipose tissue (aP2-B1/B1−/−). Similarly to B1−/− mice, aP2-B1/B1−/− mice were leaner than wild type controls. However, exclusive expression of the kinin B1 receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B1−/− mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B1 receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B1/B1−/− when compared to B1−/− mice. When subjected to high fat diet, aP2-B1/B1−/− mice gained more weight than B1−/− littermates, becoming as obese as the wild types. Conclusions/Significance Thus, kinin B1 receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity.
    PLoS ONE 09/2012; 7(9). · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the alpha-galactosidase A (GLA) gene. Evaluating the enzymatic activity in male individuals usually performs the diagnosis of the disease, but in female carriers the diagnosis based only on enzyme assays is often inconclusive. In this work, we analyzed 568 individuals from 102 families with suspect of FD. Overall, 51 families presented 38 alterations in the GLA gene, among which 19 were not previously reported in literature. The alterations included 17 missense mutations, 7 nonsense mutations, 7 deletions, 6 insertions and 1 in the splice site. Six alterations (R112C, R118C, R220X, R227X, R342Q and R356W) occurred at CpG dinucleotides. Five mutations not previously described in the literature (A156D, K237X, A292V, I317S, c.1177_1178insG) were correlated with low GLA enzyme activity and with prediction of molecular damages. From the 13 deletions and insertions, 7 occurred in exons 6 or 7 (54%) and 11 led to the formation of a stop codon. The present study highlights the detection of new genomic alterations in the GLA gene in the Brazilian population, facilitating the selection of patients for recombinant enzyme-replacement trials and offering the possibility to perform prenatal diagnosis.
    Journal of Human Genetics 05/2012; 57(6):347-51. · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell therapy for neurological disorders has advanced, and neural precursor cells (NPC) may become the ideal candidates for neural transplantation in a wide range of diseases. However, additional work has to be done to determine either the ideal culture environment for NPC expansion in vitro, without altering their plasticity, or the FGF-2 and EGF mechanisms of cell signaling in neurospheres growth, survival and differentiation. In this work we evaluated mouse neurospheres cultured with and without FGF-2 and EGF containing medium and showed that those growth factors are responsible for NPC proliferation. It is also demonstrated that endogenous production of growth factors shifts from FGF-2 to IGF-1/PDGFb upon EGF and FGF-2 withdrawal. Mouse NPC cultured in suspension showed different patterns of neuronal localization (core versus shell) for both EGF and FGF-2 withdrawal and control groups. Taken together, these results show that EGF and FGF-2 removal play an important role in NPC differentiation and may contribute to a better understanding of mechanisms of NPC differentiation. Our findings suggest that depriving NPC of growth factors prior to grafting might enhance their chance to effectively integrate into the host.
    Anais da Academia Brasileira de Ciências 10/2009; 81(3):443-52. · 0.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major effort of the scientific community has been to obtain complete pictures of the genomes of many organisms. This has been accomplished mainly by annotation of structural and functional elements in the genome sequence, a process that has been centred in the gene concept and, as a consequence, biased toward protein coding sequences. Recently, the explosion of transcriptome data generated and the discovery of many functional non-protein coding RNAs have painted a more detailed and complex scenario for the genome. Here we analyzed the mouse carboxypeptidase M locus in this broader perspective in order to define the mouse CPM gene structure and evaluate the existence of other transcripts from the same genomic region. Bioinformatic analysis of nucleotide sequences that map to the mouse CPM locus suggests that, in addition to the mouse CPM mRNA, it expresses at least 33 different transcripts, many of which seem to be non-coding RNAs. We randomly chose to evaluate experimentally four of these extra transcripts. They are expressed in a tissue specific manner, indicating that they are not artefacts or transcriptional noise. Furthermore, one of these four extra transcripts shows expression patterns that differed considerably from the other ones and from the mouse CPM gene, suggesting that there may be more than one transcriptional unit in this locus. In addition, we have confirmed the mouse CPM gene RefSeq sequence by rapid amplification of cDNA ends (RACE) and directional cloning. This study supports the recent view that the majority of the genome is transcribed and that many of the resulting transcripts seem to be non-coding RNAs from introns of genes or from independent transcriptional units. Although some of the information on the transcriptome of many organisms may actually be artefacts or transcriptional noise, we argue that it can be experimentally evaluated and used to find and define biological functional elements on the genome. Furthermore, the transcription of other functional RNAs besides the protein coding RNA from a specific genomic locus imposes extra care when designing and interpreting experiments involving genetic manipulations or expression detection and quantification.
    BMC Molecular Biology 03/2009; 10:7. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induction of adult rat bone marrow mesenchymal stem cells (MSC) by means of chemical compounds (beta-mercaptoethanol, dimethyl sulfoxide and butylated hydroxyanizole) has been proposed to lead to neuronal transdifferentiation, and this protocol has been broadly used by several laboratories worldwide. Only a few hours of MSC chemical induction using this protocol is sufficient for the acquisition of neuronal-like morphology and neuronal protein expression. However, given that cell death is abundant, we hypothesize that, rather than true neuronal differentiation, this particular protocol leads to cellular toxic effects. We confirm that the induced cells with neuronal-like morphology positively stained for NF-200, S100, beta-tubulin III, NSE and MAP-2 proteins. However, the morphological and molecular changes after chemical induction are also associated with an increase in the apoptosis of over 50% of the plated cells after 24 h. Moreover, increased intracellular cysteine after treatment indicates an impairment of redox circuitry during chemical induction, and in vitro electrophysiological recordings (patch-clamp) of the chemically induced MSC did not indicate neuronal properties as these cells do not exhibit Na(+) or K(+) currents and do not fire action potentials. Our findings suggest that a disruption of redox circuitry plays an important role in this specific chemical induction protocol, which might result in cytoskeletal alterations and loss of functional ion-gated channels followed by cell death. Despite the neuronal-like morphology and neural protein expression, induced rat bone marrow MSC do not have basic functional neuronal properties, although it is still plausible that other methods of induction and/or sources of MSC can achieve a successful neuronal differentiation in vitro.
    PLoS ONE 02/2009; 4(4):e5222. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human neural precursor cells (hNPC) are candidates for neural transplantation in a wide range of neurological disorders. Recently, much work has been done to determine how the environment for NPC culture in vitro may alter their plasticity. Epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) are used to expand NPC; however, it is not clear if continuous exposure to mitogens may abrogate their subsequent differentiation. Here we evaluated if short-term removal of FGF-2 and EGF prior to plating may improve hNPC differentiation into neurons. We demonstrate that culture of neurospheres in suspension for 2 weeks without EGF-FGF-2 significantly increases neuronal differentiation and neurite extension when compared to cells cultured using standard protocols. In this condition, neurons were preferentially located in the core of the neurospheres instead of the shell. Moreover, after plating, neurons presented radial rather than randomly oriented and longer processes than controls, comprised mostly by neurons with short processes. These changes were followed by alterations in the expression of genes related to cell survival. These results show that EGF and FGF-2 removal affects NPC fate and plasticity. Taking into account that a three dimensional structure is essential for NPC differentiation, here we evaluated, for the first time, the effects of growth factors removal in whole neurospheres rather than in plated cell culture.
    PLoS ONE 02/2009; 4(2):e4642. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GCN2 is one of the four mammalian kinases that phosphorylate the alpha subunit of the translation initiation factor 2 (eIF2alpha) in a variety of stress situations, resulting in protein synthesis inhibition. GCN2 is involved in regulating metabolism, feeding behavior and memory in rodents. We show here that, relative to other cells, the beta isoform of the GCN2 transcript and the GCN2 protein are highly abundant in unfertilized mouse eggs. In addition, GCN2 in these cells is active, resulting in elevated levels of phosphorylated eIF2alpha. After fertilization, eIF2alpha phosphorylation decreases drastically. These results suggest that GCN2 mediated translational control may contribute to regulatory mechanisms operating during oocyte maturation.
    Biochemical and Biophysical Research Communications 12/2008; 378(1):41-4. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The relevance of kinin B(1) (B(1)R) and B(2) (B(2)R) receptors in the brachial plexus avulsion (BPA) model was evaluated in mice, by means of genetic and pharmacological tools. BPA-induced hypernociception was absent in B(1)R, but not in B(2)R, knock-out mice. Local or intraperitoneal administration of the B(2)R antagonist Hoe 140 failed to affect BPA-induced mechanical hypernociception. Interestingly, local or intraperitoneal treatment with B(1)R antagonists, R-715 or SSR240612, dosed at the time of surgery, significantly reduced BPA-evoked mechanical hypernociception. Intrathecal or intracerebroventricular administration of these antagonists, at the surgery moment, did not prevent the hypernociception. Both antagonists, dosed by intraperitoneal or intrathecal routes (but not intracerebroventricularly) 4 d after the surgery, significantly inhibited the mechanical hypernociception. At 30 d after the BPA, only the intracerebroventricular treatment effectively reduced the hypernociception. A marked increase in B(1)R mRNA was observed in the hypothalamus, hippocampus, thalamus, and cortex at 4 d after BPA and only in the hypothalamus and cortex at 30 d. In the spinal cord, a slight increase in B(1)R mRNA expression was observed as early as at 2 d. Finally, an enhancement of B(1)R protein expression was found in all the analyzed brain structures at 4 and 30 d after the BPA, whereas in the spinal cord, this parameter was augmented only at 4 d. The data provide new evidence on the role of peripheral and central kinin B(1)R in the BPA model of neuropathic pain. Selective B(1)R antagonists might well represent valuable tools for the management of neuropathic pain.
    Journal of Neuroscience 04/2008; 28(11):2856-63. · 6.91 Impact Factor