Anders M Fredenslund

Technical University of Denmark, Copenhagen, Capital Region, Denmark

Are you Anders M Fredenslund?

Claim your profile

Publications (11)25.63 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Landfills are significant sources of atmospheric methane (CH(4)) that contributes to climate change, and therefore there is a need to reduce CH(4) emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called "biocovers") to enhance biological oxidation of CH(4). A full scale biocover system to reduce CH(4) emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH(4) oxidation. Ten biowindows with a total area of 5000 m(2) were integrated into the existing cover at the 12 ha site. To increase CH(4) load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH(4) was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH(4) emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH(4) emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH(4) mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.
    Waste Management 02/2011; 31(5):1018-28. · 3.16 Impact Factor
  • C Scheutz, J Samuelsson, A M Fredenslund, P Kjeldsen
    [Show abstract] [Hide abstract]
    ABSTRACT: A double tracer technique was used successfully to quantify whole-site methane (CH(4)) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH(4) emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH(4) emissions from the old landfill section were quantified to be 32.6 ± 7.4 kg CH(4)h(-1), whereas the source at the new section was quantified to be 10.3 ± 5.3 kg CH(4)h(-1). The CH(4) emission from the compost area was 0.5 ± 0.25 kg CH(4)h(-1), whereas the carbon dioxide (CO(2)) and nitrous oxide (N(2)O) flux was quantified to be in the order of 332 ± 166 kg CO(2)h(-1) and 0.06 ± 0.03 kg N(2)Oh(-1), respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 ± 0.63 kg h(-1) CH(4), and 0.03 ± 0.01 kg h(-1) N(2)O.
    Waste Management 02/2011; 31(5):1009-17. · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AV Miljø is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH(4)) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed that the gas generated in the cell with mixed combustible waste consisted of mainly CH(4) (70%) and carbon dioxide (CO(2)) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH(4) (27%) and nitrogen (N(2)) (71%), containing no CO(2). The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH(4) mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH(4) generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH(4) emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH(4) emission from the disposal site was found to be 820 ± 202 kg CH(4)d(-1). The total emission rate through the leachate collection system at AV Miljø was found to be 211 kg CH(4)d(-1). This showed that approximately ¼ of the emitted gas was emitted through the leachate collections system making the leachate collection system an important source controlling the overall gas migration from the site. The emission pathway for the remaining part of the gas was more uncertain, but emission from open cells where waste is being disposed of or being excavated for incineration, or from horizontal leachate drainage pipes placed in permeable gravel layers in the bottom of empty cells was likely.
    Waste Management 12/2010; 31(5):946-55. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The shredder residues from automobiles, home appliances and other metal containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to determine the gas composition, attenuation, and emission of fluorocarbons in a monofill shredder residue landfill cell by field investigation. Landfill gas generated within the shredder waste primarily consisted of CH(4) (27%) and N(2) (71%), without CO(2), indicating that the gas composition was governed by chemical reactions in combination with anaerobic microbial reactions. The gas generated also contained different fluorocarbons (up to 27 μg L(-1)). The presence of HCFC-21 and HCFC-31 indicated that anaerobic degradation of CFC-11 occurred in the landfill cell, as neither of these compounds has been produced for industrial applications. This study demonstrates that a landfill cell containing shredder waste has a potential for attenuating CFC-11 released from polyurethane (PUR) insulation foam in the cell via aerobic and anaerobic biodegradation processes. In deeper, anaerobic zones of the cell, reductive dechlorination of CFCs to HCFCs was evident, while in the shallow, oxic zones, there was a high potential for biooxidation of both methane and lesser chlorinated fluorocarbons. These findings correlated well with both laboratory results (presented in a companion paper) and surface emission measurements that, with the exception from a few hot spots, indicated that surface emissions were negative or below detection.
    Waste Management 05/2010; 30(11):2163-9. · 3.16 Impact Factor
  • Anders M Fredenslund, Charlotte Scheutz, Peter Kjeldsen
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Miljø. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH(4)) emissions from leachate systems at Fakse landfill and AV Miljø to measurements of total CH(4) emissions, it was found that approximately 47% (351 kg CH(4) d(-1)) and 27% (211 kg CH(4) d(-1)), respectively, of the CH(4) emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76 kg CH(4) d(-1). A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH(4) was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure.
    Waste Management 04/2010; 30(11):2146-52. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR.
    Waste Management 04/2010; 30(11):2153-62. · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) have been used as blowing agents (BAs) for foam insulation in home appliances and building materials, which after the end of their useful life are disposed of in landfills. The objective of this project was to evaluate the potential for degradation of BAs in landfills, and to develop a landfill model, which could simulate the fate of BAs in landfills. The investigation was performed by use of anaerobic microcosm studies using different types of organic waste and anaerobic digested sludge as inoculum. The BAs studied were CFC-11, CFC-12, HCFC-141b, HFC-134a, and HFC-245fa. Experiments considering the fate of some of the expected degradations products of CFC-11 and CFC-12 were included like HCFC-21, HCFC-22, HCFC-31, HCFC-32, and HFC-41. Degradation of all studied CFCs and HCFCs was observed regardless the type of waste used. In general, the degradation followed first-order kinetics. CFC-11 was rapidly degraded from 590 microg L(-1) to less than 5 microg L(-1) within 15-20 days. The degradation pattern indicated a sequential production of HCFC-21, HCFC-31, and HFC-41. However, the production of degradation products did not correlate with a stoichiometric removal of CFC-11 indicating that other degradation products were produced. HCFC-21 and HCFC-31 were further degraded whereas no further degradation of HFC-41 was observed. The degradation rate coefficient was directly correlated with the number of chlorine atoms attached to the carbon. The highest degradation rate coefficient was obtained for CFC-11, whereas lower rates were seen for HCFC-21 and HCFC-31. Equivalent results were obtained for CFC-12. HCFC-141b was also degraded with rates comparable to HCFC-21 and CFC-12. Anaerobic degradation of the studied HFCs was not observed in any of the experiments within a run time of up to 200 days. The obtained degradation rate coefficients were used as input for an extended version of an existing landfill fate model incorporating a time dependent BA release from co-disposed foam insulation waste. Predictions with the model indicate that the emission of foam released BAs may be strongly attenuated by microbial degradation reactions. Sensitivity analysis suggests that there is a need for determination of degradation rates under more field realistic scenarios.
    Environmental Science and Technology 12/2007; 41(22):7714-22. · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is a current practice that refrigerators and freezers in many countries are shredded after the end of useful lives. The shredder residue is deposited in landfills. During the shredding process a significant fraction of blowing agent (BA) in the insulation foam may be released into the atmosphere. The objective of this study is to determine the fraction of BA released from foam during shredding, by comparing the BA content in insulation foam of refrigerator units before shredding with the BA content of shredded foam. All foam samples analyzed were manufactured with trichlorofluoromethane [CFC-11 (CCl3F)] as BA. The average content of BA in the insulation foam from eight U.S. refrigerator units manufactured before 1993 was found to be 14.9% +/- 3.3% w/w. Several refrigerator units also identified as being manufactured before 1993 were stockpiled and shredded at three shredder facilities, of which one was operated in both wet and dry modes. The selected shredder facilities represent typical American facilities for shredding automobiles, refrigerators, freezers, and other iron containing waste products. Shredded material was collected and separated on location into four particle size categories: more than 32 mm, 16-32 mm, 8-16 mm, and 0-8 mm. Adjusting for sample purity, it was found that the majority (>81%) of the foam mass was shredded into particles larger than 16 mm. The smallest size fraction of foam (0-8 mm) was found to contain significantly less BA than the larger size categories, showing that up to 68% +/- 4% of the BA is released from these fine particles during the shredding process. Because only a minor fraction of the foam is shredded into particles smaller than 8 mm, this has a minor impact on the end result when calculating the total BA release from the shredding process. Comparing BA content in shredded samples from the three shredder facilities with the measured average BA content of the eight refrigerator units, it was found that on average 24.2% +/- 7.5% of the initial BA content is released during the shredding process.
    Journal of the Air & Waste Management Association (1995) 12/2007; 57(12):1452-60. · 1.20 Impact Factor
  • P Kjeldsen, C Scheutz, A M Fredenslund, H Poulsen
    [Show abstract] [Hide abstract]
    ABSTRACT: : Several halocarbons having very high global warming and ozone depleting potentials have been used as blowing agent for insulation foam in refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in the laboratory on insulation foam blown with CFC-11 and HCFC-141b revealed that most of the blowing agent is not released to the atmosphere during a six-week period following the shredding process. The fraction which is released in the six-week period is highly dependent on how fine the foam is shredded. The residual blowing agent remaining after the six-week period may be very slowly released if the integrity of the foam particles with respect to diffusional properties is kept after disposal of the foam waste in landfills. Laboratory experiments simulating attenuation processes in the landfilled waste and the landfill soil cover showed a substantial degradation of CFC-11 and to a lesser extent of HCFC-141b which may lead to significant emission reduction of the blowing agents.
  • Source
    A. M. FREDENSLUND, G. LEMMING, C. SCHEUTZ, P. KJELDSEN
    [Show abstract] [Hide abstract]
    ABSTRACT: Fakse landfill is a test site, where a full scale biocover system is to be relalized to demonstrate reduction of greenhouse gas emissions from landfills by facilitating biological methane oxidation. The site is covered with low permeable soil with high clay content. This was believed to lead to a highly heterogenous emission through the existing soil cover. The leachate collection system was also believed to be an important pathway for gas emission at the site. Using four gas production models and records on waste amounts and waste types deposited, the landfill gas production was calculated to be in the range from 0.6 - 1.3 million m 3 LFG/yr (555 to 1165 kg CH4 d -1 ). Methane emission through "hot spots" in the soil cover, which were identified using near surface methane concentration screening, was measured to be 182 kg CH4 d -1 . Methane emission through the leachate collection system was measured using a tracer method to be 351 kg CH4 d -1 .
  • Source
    A M Fredenslund, P Kjeldsen, C Scheutz, G Lemming
    [Show abstract] [Hide abstract]
    ABSTRACT: Emission of methane from landfills due to anaerobic decomposition of organic material is one of the most important environmental concerns with regards to solid waste management. This is due to the amount of methane released from landfills globally and the relatively high global warming potential of methane. An approach to reduce emissions is to improve conditions for biological oxidation of methane in the top cover using engineered biocovers.