Avery L McIntosh

Texas A&M University, College Station, Texas, United States

Are you Avery L McIntosh?

Claim your profile

Publications (88)285.24 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: While high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x (double knock out, DKO) would impact hepatic lipid (cholesterol, cholesteryl ester), especially in high-cholesterol fed mice. DKO did not alter food consumption, body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so males. DKO induced steatosis in control-fed WT mice was associated with: i) loss of SCP-2; ii) upregulation of L-FABP; iii) increased mRNA and/or protein levels of SREBP1 and SREBP2 as well as increased expression of target genes of cholesterol synthesis (Hmgcs1, Hmgcr) and fatty acid synthesis (Acc1, Fas); iv) cholesteryl ester accumulation was also associated with increased ACAT2 in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, ApoB, MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to ER for SREBP regulation, making more available for cholesteryl ester synthesis, cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism. Copyright © 2014, American Journal of Physiology- Gastrointestinal and Liver Physiology.
    AJP Gastrointestinal and Liver Physiology 06/2015; DOI:10.1152/ajpgi.00460.2014 · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although expression of the human liver fatty acid binding protein (FABP1) T94A variant alters serum lipoprotein cholesterol levels in human subjects, nothing is known whereby the variant elicits these effects. This issue was addressed by in vitro cholesterol binding assays using purified recombinant wild-type (WT) FABP1 T94T and T94A variant proteins and in cultured primary human hepatocytes expressing the FABP1 T94T (genotyped as TT) or T94A (genotyped as CC) proteins. The human FABP1 T94A variant protein had 3-fold higher cholesterol-binding affinity than the WT FABP1 T94T as shown by NBD-cholesterol fluorescence binding assays and by cholesterol isothermal titration microcalorimetry (ITC) binding assays. CC variant hepatocytes also exhibited 30% higher total FABP1 protein. HDL- and LDL- mediated NBD-cholesterol uptake was faster in CC variant than TT WT human hepatocytes. VLDL- mediated uptake of NBD-cholesterol did not differ between CC and TT human hepatocytes. The increased HDL- and LDL- mediated NBD-cholesterol uptake was not associated with any significant change in mRNA levels of SCARB1, LDLR, CETP, and LCAT encoding the key proteins in lipoprotein cholesterol uptake. Thus, the increased HDL- and LDL- mediated NBD-cholesterol uptake by CC hepatocytes may be associated with higher affinity of T94A protein for cholesterol and/or increased total T94A protein level. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 02/2015; 1851(7). DOI:10.1016/j.bbalip.2015.02.015 · 4.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although Perilipin 2 (Plin2) has been shown to bind lipids with high affinity, the Plin2 lipid binding site has yet to be defined. This is of interest since Plin2's affinity for lipids has been suggested to be important for lipid droplet biogenesis and intracellular triacylglycerol accumulation. To define these regions, mouse Plin2 and several deletion mutants expressed as recombinant proteins and in mammalian cells were assessed by molecular modeling, fluorescence binding, circular dichroic, and FRET techniques to identify the structural and functional requirements for lipid binding. Major findings of this study indicate: 1) The N-terminal PAT domain does not bind cholesterol or stearic acid; 2) Plin2 residues 119-251, containing helix α4, the α-β domain, and part of helix α6 form a Plin3-like cleft found to be important for highest affinity lipid binding; 3) Both stearic acid and cholesterol interact favorably with the Plin2 cleft formed by conserved residues in helix α6 and adjacent strands, which is common to all the active lipid-binding constructs; and 4) Discrete targeting of the Plin2 mutants to lipid droplets supports Plin2 containing two independent, non-overlapping lipid droplet targeting domains in its central and C-terminal sequences. Thus, the current work reveals specific domains responsible for Plin2-lipid interactions that involves the protein's lipid binding and targeting functions.
    Biochemistry 10/2014; DOI:10.1021/bi500918m · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although human liver fatty acid binding protein (FABP1) T94A variant has been associated with non-alcoholic fatty liver disease (NAFLD) and reduced ability of fenofibrate to lower serum triglycerides (TG) to target levels, molecular events leading to this phenotype are poorly understood. Cultured primary hepatocytes from female human subjects expressing the FABP1 T94A variant exhibited increased neutral lipid (TG, cholesteryl ester) accumulation associated with: 1) upregulation of total FABP1, a key protein stimulating GPAM the rate limiting enzyme in lipogenesis; 2) increased mRNA expression of key enzymes in lipogenesis (GPAM, LPIN2) in heterozygotes; 3) decreased mRNA expression of microsomal triglyceride transfer protein (MTTP); 4) increased secretion of ApoB100 but not TG; 5) decreased LCFA β-oxidation. TG accumulation was not due to any increase in long chain fatty acid (LCFA) uptake, de novo lipogenesis, or the alternate MOGAT pathway in lipogenesis. Despite increased expression of total FABP1 mRNA and protein, fenofibrate mediated FABP1 redistribution to nuclei and ligand-induced PPARα transcription of LCFA β-oxidative enzymes (CPT1A, CPT2, and ACOX1) were attenuated in FABP1 T94A hepatocytes. While the phenotype of FABP1 T94A variant human hepatocytes exhibits some similarities to that of FABP1 null or PPARα null hepatocytes and mice, expression of FABP1 T94A variant did not abolish or reduce ligand binding. Thus, the FABP1 T94A variant represents an altered/reduced function mutation resulting in TG accumulation.
    AJP Gastrointestinal and Liver Physiology 05/2014; 307(2). DOI:10.1152/ajpgi.00369.2013 · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human liver fatty acid binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride (TG) levels. How this amino acid substitution elicits these effects is not known. This issue was addressed with human recombinant wild-type (WT, T94T) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC, and CC). T94A substitution did not or only slightly alter L-FABP binding affinities for saturated, monounsaturated, or polyunsaturated long chain fatty acids (LCFA), nor did it change the affinity for intermediates in TG synthesis. Nevertheless, T94A substitution markedly altered the secondary structural response of L-FABP induced by binding LCFA or intermediates of TG synthesis. Finally, T94A substitution markedly diminished polyunsaturated fatty acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), induction of peroxisome proliferator-activated receptor alpha (PPARα) - regulated proteins such as L-FABP, fatty acid transport protein 5 (FATP5), and PPARα itself in cultured primary human hepatocytes. Thus, while T94A substitution did not alter the affinity of human L-FABP for LCFAs, it significantly altered human L-FABP structure and stability as well as conformational and functional response to these ligands.This article is protected by copyright. All rights reserved.
    FEBS Journal 03/2014; DOI:10.1111/febs.12780 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the human L-FABP T94A variant arises from the most commonly occurring SNP in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in complete loss of ligand binding ability and function analogous to L-FABP gene ablation. This possibility was addressed using recombinant human WT T94T and T94A variant L-FABP and cultured primary human hepatocytes. Non-conservative replacement of the medium sized, polar, uncharged T residue by a smaller, nonpolar, aliphatic A residue at position 94 of human L-FABP significantly increased L-FABP protein α-helical structure at the expense of β-sheet and concomitantly decreased thermal stability. T94A did not alter binding affinities for PPARα agonist ligands (phytanic acid, fenofibrate, fenofibric acid). While T94A did not alter the impact of phytanic acid and only slightly altered that of fenofibrate on human L-FABP secondary structure, the active metabolite fenofibric acid altered T94A secondary structure much more than that of WT T94T L-FABP. Finally, in cultured primary human hepatocytes the T94A variant exhibited significantly reduced fibrate-mediated induction of PPARα-regulated proteins such as L-FABP, FATP5, and PPARα itself. Thus, while T94A substitution did not alter the affinity of human L-FABP for PPARα agonist ligands, it significantly altered human L-FABP structure, stability, as well as conformational and functional response to fibrate.
    Biochemistry 12/2013; 52(51). DOI:10.1021/bi401014k · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (∼80Å) to HNF4α, binding with high affinity Kd ∼250-300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction altered protein secondary structure. Finally, L-FABP potentiated transactivation of HNF4α in COS7 cells. Taken together, these data suggest that L-FABP provides a signaling path to HNF4α activation in the nucleus. L-FABPbindstoHNF4 alphabyfluorescent resonance energy transfer(View interaction) L-FABPbindstoHNF4 alphabycircular dichroism(View interaction) L-FABPphysically interactswithHNF4 alphabyfluorescent resonance energy transfer(View interaction).
    FEBS letters 10/2013; 587(23). DOI:10.1016/j.febslet.2013.09.043 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although a link between excess lipid storage and aberrant glucose metabolism has been recognized for many years, little is known what role lipid storage droplets and associated proteins such as Plin2 play in managing cellular glucose levels. To address this issue, the influence of Plin2 on glucose uptake was examined using 2-NBD-Glucose and [(3)H]-2-deoxyglucose to show that insulin-mediated glucose uptake was decreased 1.7- and 1.8-fold, respectively in L cell fibroblasts overexpressing Plin2. Conversely, suppression of Plin2 levels by RNAi-mediated knockdown increased 2-NBD-Glucose uptake several fold in transfected L cells and differentiated 3T3-L1 cells. The effect of Plin2 expression on proteins involved in glucose uptake and transport was also examined. Expression of the SNARE protein SNAP23 was increased 1.6-fold while levels of syntaxin-5 were decreased 1.7-fold in Plin2 overexpression cells with no significant changes observed in lipid droplet associated proteins Plin1 or FSP27 or with the insulin receptor, GLUT1, or VAMP4. FRET experiments revealed a close proximity of Plin2 to SNAP23 on lipid droplets to within an intramolecular distance of 51 Å. The extent of targeting of SNAP23 to lipid droplets was determined by co-localization and co-immunoprecipitation experiments to show increased partitioning of SNAP23 to lipid droplets when Plin2 was overexpressed. Taken together, these results suggest that Plin2 inhibits glucose uptake by interacting with, and regulating cellular targeting of SNAP23 to lipid droplets. In summary, the current study for the first time provides direct evidence for the role of Plin2 in mediating cellular glucose uptake.
    PLoS ONE 09/2013; 8(9):e73696. DOI:10.1371/journal.pone.0073696 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although liver fatty acid binding protein (L-FABP) binds fibrates and PPARα in vitro and enhances fibrate induction of PPARα in transformed cells, the functional significance of these findings is unclear, especially in normal hepatocytes. Studies with cultured primary mouse hepatocytes show that: 1) At physiological (6 mM) glucose, fibrates (bezafibrate, fenofibrate) only weakly activated PPARα transcription of genes in LCFA β-oxidation; 2) High (11-20 mM) glucose, but not maltose (osmotic control), significantly potentiated fibrate-induction of mRNA of these and other PPARα target genes to increase LCFA β-oxidation. These effects were associated with fibrate-mediated redistribution of L-FABP into nuclei-an effect prolonged by high glucose-but not with increased de novo fatty acid synthesis from glucose; 3) Potentiation of bezafibrate action by high glucose required an intact L-FABP/PPARα signaling pathway as shown with L-FABP null, PPARα null, PPARα inhibitor-treated WT, or PPARα-specific fenofibrate-treated WT hepatocytes. High glucose alone in the absence of fibrate was ineffective. Thus, high glucose potentiation of PPARα occurred through FABP/PPARα rather than indirectly through other PPARs or glucose induced signaling pathways. These data indicated L-FABP's importance in fibrate-induction of hepatic PPARα LCFA β-oxidative genes, especially in the context of high glucose levels.
    Biochimica et Biophysica Acta 06/2013; DOI:10.1016/j.bbalip.2013.05.008 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of liver fatty acid binding protein (L-FABP) decreases long chain fatty acid uptake and oxidation in primary hepatocytes and in vivo. On this basis, L-FABP gene ablation would potentiate high-fat diet-induced weight gain and weight gain/energy intake. While this was indeed the case when L-FABP null (-/-) mice on the C57BL/6NCr background were pair-fed a high-fat diet, whether this would also be observed under high-fat diet fed ad libitum was not known. Therefore, this possibility was examined in female L-FABP (-/-) mice on the same background. L-FABP (-/-) mice consumed equal amounts of defined high-fat or isocaloric control diets fed ad libitum. However, on the ad libitum-fed high-fat diet the L-FABP (-/-) mice exhibited: (1) decreased hepatic long chain fatty acid (LCFA) β-oxidation as indicated by lower serum β-hydroxybutyrate level; (2) decreased hepatic protein levels of key enzymes mitochondrial (rate limiting carnitine palmitoyl acyltransferase A1, CPT1A; HMG-CoA synthase) and peroxisomal (acyl CoA oxidase 1, ACOX1) LCFA β-oxidation; (3) increased fat tissue mass (FTM) and FTM/energy intake to the greatest extent; and (4) exacerbated body weight gain, weight gain/energy intake, liver weight, and liver weight/body weight to the greatest extent. Taken together, these findings showed that L-FABP gene-ablation exacerbated diet-induced weight gain and fat tissue mass gain in mice fed high-fat diet ad libitum-consistent with the known biochemistry and cell biology of L-FABP.
    Lipids 03/2013; 48(5). DOI:10.1007/s11745-013-3777-3 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor-α (PPARα) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPARα transcription of the fatty acid β-oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPARα in the context of high glucose at levels similar to those in uncontrolled diabetes.
    PPAR Research 02/2013; 2013:865604. DOI:10.1155/2013/865604 · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very long chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated PPARα transcription of proteins involved in long chain fatty acid (LCFA) β-oxidation. This issue was addressed in cultured primary hepatocytes from WT, L-FABP null, and PPARα null mice with these major findings: 1) PUFA-mediated increase in the expression of PPARα regulated LCFA β-oxidative enzymes, LCFA/LCFA-CoA binding proteins (L-FABP, ACBP), and PPARα itself was L-FABP dependent; 2) PPARα transcription, robustly potentiated by high glucose but not maltose-a sugar not taken up, correlated with higher protein levels of these LCFA β-oxidative enzymes and with increased LCFA β-oxidation; and 3) high glucose altered the potency of n-3 relative to n-6 PUFA. This was not due to a direct effect of glucose on PPARα transcriptional activity nor indirectly through de novo fatty acid synthesis from glucose. Synergism was also not due to glucose impacting other signaling pathways, since it was observed only in hepatocytes expressing both L-FABP and PPARα. Ablation of L-FABP or PPARα as well as treatment with MK886 (PPARα inhibitor) abolished/reduced PUFA-mediated PPARα transcription of these genes-especially at high glucose. Finally, the PUFA enhanced L-FABP distribution into nuclei with high glucose augmentation of the L-FABP/PPARα interaction reveals not only the importance of L-FABP for PUFA induction of PPARα target genes in fatty acid β-oxidation but also the significance of a high glucose enhancement effect in diabetes.
    AJP Gastrointestinal and Liver Physiology 12/2012; 304(3). DOI:10.1152/ajpgi.00334.2012 · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting.
    AJP Gastrointestinal and Liver Physiology 08/2012; 303(7):G837-50. DOI:10.1152/ajpgi.00489.2011 · 3.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite increasing awareness of the health risks associated with excess lipid storage in cells and tissues, knowledge of events governing lipid exchange at the surface of lipid droplets remains unclear. To address this issue, fluorescence resonance energy transfer (FRET) was performed to examine live cell interactions of Plin2 with lipids involved in maintaining lipid droplet structure and function. FRET efficiencies (E) between CFP-labeled Plin2 and fluorescently labeled phosphatidylcholine, sphingomyelin, stearic acid, and cholesterol were quantitated on a pixel-by-pixel basis to generate FRET image maps that specified areas with high E (>60%) in lipid droplets. The mean E and the distance R between the probes indicated a high yield of energy transfer and demonstrated molecular distances on the order of 44-57 Å, in keeping with direct molecular contact. In contrast, FRET between CFP-Plin2 and Nile red was not detected, indicating that the CFP-Plin2/Nile red interaction was beyond FRET proximity (>100 Å). An examination of the effect of Plin2 on cellular metabolism revealed that triacylglycerol, fatty acid, and cholesteryl ester content increased while diacylglycerol remained constant in CFP-Plin2-overexpressing cells. Total phospholipids also increased, reflecting increased phosphatidylcholine and sphingomyelin. Consistent with these results, expression levels of enzymes involved in triacylglycerol, cholesteryl ester, and phospholipid synthesis were significantly upregulated in CFP-Plin2-expressing cells while those associated with lipolysis either decreased or were unaffected. Taken together, these data show for the first time that Plin2 interacts directly with lipids on the surface of lipid droplets and influences levels of key enzymes and lipids involved in maintaining lipid droplet structure and function.
    AJP Cell Physiology 06/2012; 303(7):C728-42. DOI:10.1152/ajpcell.00448.2011 · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although lipid-rich microdomains of hepatocyte plasma membranes serve as the major scaffolding regions for cholesterol transport proteins important in cholesterol disposition, little is known regarding intracellular factors regulating cholesterol distribution therein. On the basis of its ability to bind cholesterol and alter hepatic cholesterol accumulation, the cytosolic liver type FA binding protein (L-FABP) was hypothesized to be a candidate protein regulating these microdomains. Compared with wild-type hepatocyte plasma membranes, L-FABP gene ablation significantly increased the proportion of cholesterol-rich microdomains. Lack of L-FABP selectively increased cholesterol, phospholipid (especially phosphatidylcholine), and branched-chain FA accumulation in the cholesterol-rich microdomains. These cholesterol-rich microdomains are important, owing to enrichment therein of significant amounts of key transport proteins involved in uptake of cholesterol [SR-B1, ABCA-1, P-glycoprotein (P-gp), sterol carrier binding protein (SCP-2)], FA transport protein (FATP), and glucose transporters 1 and 2 (GLUT1, GLUT2) insulin receptor. L-FABP gene ablation enhanced the concentration of SCP-2, SR-B1, FATP4, and GLUT1 in the cholesterol-poor microdomains, with functional implications in HDL-mediated uptake and efflux of cholesterol. Thus L-FABP gene ablation significantly impacted the proportion of cholesterol-rich versus -poor microdomains in the hepatocyte plasma membrane and altered the distribution of lipids and proteins involved in cholesterol uptake therein.
    The Journal of Lipid Research 03/2012; 53(3):467-80. DOI:10.1194/jlr.M019919 · 4.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes.
    AJP Gastrointestinal and Liver Physiology 01/2012; 302(8):G824-39. DOI:10.1152/ajpgi.00195.2011 · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The significance of lipid droplets (LD) in lipid metabolism, cell signaling, and membrane trafficking is increasingly recognized, yet the role of the LD phospholipid monolayer in LD protein targeting and function remains unknown. To begin to address this issue, two populations of LD were isolated by ConA sepharose affinity chromatography: 1) functionally active LD enriched in perilipin, caveolin-1, and several lipolytic proteins, including ATGL and HSL; and 2) LD enriched in ADRP and TIP47 that contained little to no lipase activity. Coimmunoprecipitation experiments confirmed the close association of caveolin and perilipin and lack of interaction between caveolin and ADRP, in keeping with the separation observed with the ConA procedure. The phospholipid monolayer structure was evaluated to reveal that the perilipin-enriched LD exhibited increased rigidity (less fluidity), as shown by increased cholesterol/phospholipid, Sat/Unsat, and Sat/MUFA ratios. These results were confirmed by DPH-TMA, NBD-cholesterol, and NBD-sphingomyelin fluorescence polarization studies. By structure and organization, the perilipin-enriched LD most closely resembled the adipocyte PM. In contrast, the ADRP/TIP47-enriched LD contained a more fluid monolayer membrane, reflecting decreased polarizations and lipid order based on phospholipid fatty acid analysis. Taken together, results indicate that perilipin and associated lipolytic enzymes target areas in the phospholipid monolayer that are highly organized and rigid, similar in structure to localized areas of the PM where cholesterol and fatty acid uptake and efflux occur.
    AJP Endocrinology and Metabolism 08/2011; 301(5):E991-E1003. DOI:10.1152/ajpendo.00109.2011 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types. Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab)2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls. Only full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells. The intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.
    Virology Journal 06/2011; 8:278. DOI:10.1186/1743-422X-8-278 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity and metabolic syndrome. Consequently, mammals evolved fatty acid-binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15-member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as in intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair fed a high-fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity.
    The Journal of nutritional biochemistry 11/2010; 21(11):1015-32. DOI:10.1016/j.jnutbio.2010.01.005 · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although HDL-mediated cholesterol transport to the liver is well studied, cholesterol efflux from hepatocytes back to HDL is less well understood. Real-time imaging of efflux of 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol), which is poorly esterified, and [(3)H]cholesterol, which is extensively esterified, from cultured primary hepatocytes of wild-type and sterol carrier protein-2 (SCP-2) gene-ablated mice showed that 1) NBD-cholesterol efflux was affected by the type of lipoprotein acceptor, i.e., HDL3 over HDL2; 2) NBD-cholesterol efflux was rapid (detected in 1-2 min) and resolved into fast [half time (t((1/2))) = 2.4 min, 6% of total] and slow (t((1/2)) = 26.5 min, 94% of total) pools, consistent with protein- and vesicle-mediated cholesterol transfer, respectively; 3) SCP-2 gene ablation increased efflux of NBD-cholesterol, as well as [(3)H]cholesterol, albeit less so due to competition by esterification of [(3)H]cholesterol, but not NBD-cholesterol; and 4) SCP-2 gene ablation increased initial rate (2.3-fold) and size (9.7-fold) of rapid effluxing sterol, suggesting an increased contribution of molecular cholesterol transfer. In addition, colocalization, double-immunolabeling fluorescence resonance energy transfer, and electron microscopy, as well as cross-linking coimmunoprecipitation, indicated that SCP-2 directly interacted with the HDL receptor, scavenger receptor class B type 1 (SRB1), in hepatocytes. Other membrane proteins in cholesterol efflux [SRB1 and ATP-binding cassettes (ABC) A-1, ABCG-1, ABCG-5, and ABCG-8] and several soluble/vesicle-associated proteins facilitating intracellular cholesterol trafficking (StARDs, NPCs, ORPs) were not upregulated. However, loss of SCP-2 elicited twofold upregulation of liver fatty acid-binding protein (L-FABP), a protein with lower affinity for cholesterol but higher cytosolic concentration than SCP-2. Ablation of SCP-2 and L-FABP decreased HDL-mediated NBD-cholesterol efflux. These results indicate that SCP-2 expression plays a significant role in HDL-mediated cholesterol efflux by regulating the size of rapid vs. slow cholesterol efflux pools and/or eliciting concomitant upregulation of L-FABP in cultured primary hepatocytes.
    AJP Gastrointestinal and Liver Physiology 07/2010; 299(1):G244-54. DOI:10.1152/ajpgi.00446.2009 · 3.74 Impact Factor

Publication Stats

2k Citations
285.24 Total Impact Points


  • 1994–2015
    • Texas A&M University
      • Department of Chemistry
      College Station, Texas, United States
  • 1997–2008
    • Alabama A & M University
      Huntsville, Alabama, United States
  • 2007
    • University of North Carolina at Chapel Hill
      North Carolina, United States
  • 2000
    • University of Chicago
      • Department of Medicine
      Chicago, IL, United States