Alan J Waring

University of California, Irvine, Irvine, California, United States

Are you Alan J Waring?

Claim your profile

Publications (234)956.97 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously identified the NS5A/HSP70 binding site to be a hairpin moiety at C-terminus of NS5A domain I and showed a corresponding cyclized polyarginine-tagged synthetic peptide (HCV4) significantly blocks virus production. Here, sequence comparison confirmed five residues to be conserved. Based on NS5A domain I crystal structure, Phe171, Val173, and Tyr178 were predicted to form the binding interface. Substitution of Phe171 and Val173 with more hydrophobic unusual amino acids improved peptide antiviral activity and HSP70 binding, while similar substitutions at Tyr178 had a negative effect. Substitution of non-conserved residues with arginines maintained antiviral activity and HSP70 binding and dispensed with polyarginine tag for cellular entry. Peptide cyclization improved antiviral activity and HSP70 binding. The cyclic retro-inverso analog displayed the best antiviral properties. FTIR spectroscopy confirmed a secondary structure consisting of an N-terminal beta-sheet followed by a turn and a C-terminal beta-sheet. These peptides constitute a new class of anti-HCV compounds. Copyright © 2014 Elsevier Inc. All rights reserved.
    Virology 11/2014; 475C:46-55. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Staphylococcus aureus two-component regulatory system, GraRS, is involved in resistance to killing by distinct host defense cationic antimicrobial peptides (HD-CAPs). It is believed to regulate downstream target genes such as mprF and dltABCD to modify the S. aureus surface charge. However, the detailed mechanism(s) by which the histidine kinase, GraS, senses specific HD-CAPs is not well defined. Here, we studied a well-characterized clinical methicillin-resistant S. aureus (MRSA) strain, MW2; its isogenic graS-deletion mutant (ΔgraS); a nonameric extracellular loop mutant (ΔEL); and four residue-specific ΔEL mutants (D37A, P39A, P39S, D35G-D37G-D41G). The ΔgraS and ΔEL strains were unable to induce mprF and dltA expression and, in turn, demonstrated significantly increased susceptibilities to daptomycin, polymyxin B, and two prototypical HD CAPs (hNP-1 and RP-1). Further, P39A, P39S, and D35G-D37G-D41G ΔEL mutations correlated with moderate increases in HD-CAP susceptibility. Reductions of mprF and dltA induction by PMB were also found in the ΔEL mutants, suggesting these residues are pivotal to appropriate activation of the GraS sensor kinase. Importantly, a synthetic exogenous soluble EL-mimic of GraS protected the parental MW2 strain against hNP-1- and RP-1-mediated killing, suggesting a direct interaction of the EL with HD-CAPs in GraS activation. In vivo, the ΔgraS and ΔEL strains displayed dramatic reductions in achieved target tissue MRSA counts in an endocarditis model. Taken together, our results provide new insights into potential roles of GraS in S. aureus sensing of HD-CAPs to induce adaptive survival responses to these molecules.
    Infection and Immunity 10/2014; · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C) and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits. Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant), a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant), with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity), we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV. Results. Particle size distribution of the surfactant aerosols was within the 1-3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg), aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of ventilatory support (nCPAP or MV) used. Conclusions. Aerosol delivery of synthetic lung surfactant with a combination of highly active second generation SP-B and SP-C mimics was effective as a therapeutic approach towards relieving surfactant deficiency in spontaneously breathing rabbits supported with nCPAP. To obtain similar results with nCPAP as with intratracheal instillation, higher dosage of synthetic surfactant and reduction of its retention by the delivery circuit will be needed to increase the lung dose.
    PeerJ. 05/2014; 2:e403.
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions. Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical) ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C) mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS. Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB), a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight), the clinical surfactant Infasurf(®), a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS) assays. Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary-alveolar protein leakage and surfactant dysfunction after HCl instillation than following lung lavage. At the end of the duration of the experiments, synthetic surfactants provided more clinical stability in ALI/ARDS than Infasurf, and the protein content of bronchoalveolar lavage fluid was lowest for the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA. Conclusion. Advanced synthetic surfactant with robust SP-B and SP-C mimics is better equipped to tackle surfactant inactivation in chemical ALI than synthetic surfactant with only a single surfactant peptide or animal-derived surfactant.
    PeerJ. 05/2014; 2:e393.
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: A small library of monovalent Smac mimics with general structure NMeAla-Tle-(4R)-4-Benzyl-Pro-Xaa-cysteamide, was synthesized (Xaa=hydrophobic residue). The library was screened in vitro against human breast cancer cell lines MCF-7 and MDA-MB-231, and two most active compounds oligomerized via S-alkylation giving bivalent and trivalent derivatives. The most active bivalent analogue SMAC17-2X was tested in vivo and in physiological conditions (mouse model) it exerted a potent anticancer effect resulting in ∼23.4days of tumor growth delay at 7.5mg/kg dose. Collectively, our findings suggest that bivalent Smac analogs obtained via S-alkylation protocol may be a suitable platform for the development of new anticancer therapeutics.
    Bioorganic & medicinal chemistry letters 02/2014; · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as 'helical adjuvants' to maintain activity by overriding the β-sheet propensities of the native sequences. Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges ("ion-locks") promote surface activity by mimicking the α-helix and membrane topography of native SP-C. Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines). Ion-lock SP-C molecules were prepared by incorporating single or double Glu(-)-Lys(+) into the parent SP-C's. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR) spectroscopy and PASTA, an algorithm that predicts β-sheet propensities based on the energies of the various β-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D) exchange FTIR, and also Membrane Protein Explorer (MPEx) hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency. Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel β-sheet aggregates, with FTIR spectroscopy confirming high parallel β-sheet with 'amyloid-like' properties. The enhanced β-sheet properties for SP-Css and SP-Cff are likely responsible for their low surfactant activities in the in vitro and in vivo assays. Although standard (12)C-FTIR study showed that the α-helicity of these SP-C sequences in lipids was uniformly increased with Glu(-)-Lys(+) insertions, elevated surfactant activity was only selectively observed. Additional results from oriented and H/D exchange FTIR experiments indicated that the high surfactant activities depend on the SP-C ion-locks recapitulating both the α-helicity and the membrane topography of native SP-C. SP-Css ion-lock 1, an SP-Css with a salt-bridge for a Glu(-)-Lys(+) ion-pair predicted from MPEx hydropathy calculations, demonstrated enhanced surfactant activity and a transmembrane helix simulating those of native SP-C. Conclusion. Highly active SP-C mimics were developed that replace the palmitoyls of SP-C with intrapeptide salt-bridges and represent a new class of synthetic surfactants with therapeutic interest.
    PeerJ. 01/2014; 2:e485.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angioinvasion is a hallmark of mucormycosis. Previously, we identified endothelial cell glucose-regulated protein 78 (GRP78) as a receptor for Mucorales that mediates host cell invasion. Here we determined that spore coat protein homologs (CotH) of Mucorales act as fungal ligands for GRP78. CotH proteins were widely present in Mucorales and absent from noninvasive pathogens. Heterologous expression of CotH3 and CotH2 in Saccharomyces cerevisiae conferred the ability to invade host cells via binding to GRP78. Homology modeling and computational docking studies indicated structurally compatible interactions between GRP78 and both CotH3 and CotH2. A mutant of Rhizopus oryzae, the most common cause of mucormycosis, with reduced CotH expression was impaired for invading and damaging endothelial cells and CHO cells overexpressing GRP78. This strain also exhibited reduced virulence in a diabetic ketoacidotic (DKA) mouse model of mucormycosis. Treatment with anti-CotH Abs abolished the ability of R. oryzae to invade host cells and protected DKA mice from mucormycosis. The presence of CotH in Mucorales explained the specific susceptibility of DKA patients, who have increased GRP78 levels, to mucormycosis. Together, these data indicate that CotH3 and CotH2 function as invasins that interact with host cell GRP78 to mediate pathogenic host-cell interactions and identify CotH as a promising therapeutic target for mucormycosis.
    The Journal of clinical investigation 12/2013; · 15.39 Impact Factor
  • Source
  • Source
  • Byungsu Kwon, Alan J Waring, Mei Hong
    [Show abstract] [Hide abstract]
    ABSTRACT: Domain formation in bacteria-mimetic membranes due to cationic peptide binding was recently proposed based on calorimetric data. We now use (2)H solid-state NMR to critically examine the presence and absence of domains in bacterial membranes containing zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) lipids. Chain-perdeuterated POPE and POPG are used in single-component membranes, binary POPE/POPG (3:1) membranes, and membranes containing one of four cationic peptides: two antimicrobial peptides (AMPs) of the β-hairpin family of protegrin-1 (PG-1), and two cell-penetrating peptides (CPPs), HIV TAT and penetratin. (2)H quadrupolar couplings were measured to determine the motional amplitudes of POPE and POPG acyl chains as a function of temperature. Homogeneously mixed POPE/POPG membranes should give the same quadrupolar couplings for the two lipids, whereas the presence of membrane domains enriched in one of the two lipids should cause distinct (2)H quadrupolar couplings that reflect different chain disorder. At physiological temperature (308 K), we observed no or only small coupling differences between POPE and POPG in the presence of any of the cationic peptides. However, around ambient temperature (293 K), at which gel- and liquid-crystalline phases coexist in the peptide-free POPE/POPG membrane, the peptides caused distinct quadrupolar couplings for the two lipids, indicating domain formation. The broad-spectrum antimicrobial peptide PG-1 ordered ∼40% of the POPE lipids while disordering POPG. The Gram-negative selective PG-1 mutant, IB549, caused even larger differences in the POPE and POPG disorder: ∼80% of POPE partitioned into the ordered phase, whereas all of the POPG remained in the disordered phase. In comparison, TAT rigidified POPE and POPG similarly in the binary membrane at ambient temperature, indicating that TAT does not cause dynamic heterogeneity but interacts with the membrane with a different mechanism. Penetratin maintained the POPE order but disordered POPG, suggesting moderate domain separation. These results provide insight into the extent of domain formation in bacterial membranes and the possible peptide structural requirements for this phenomenon.
    Biophysical Journal 11/2013; 105(10):2333-2342. · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breathing is enabled by lung surfactant, a mixture of proteins and lipids that forms a surface-active layer and reduces surface tension at the air-water interface in lungs. Surfactant protein B (SP-B) is an essential component of lung surfactant. In this study we probe the mechanism underlying the important functional contributions made by the N-terminal 7 residues of SP-B, a region sometimes called the "insertion sequence". These studies employed a construct of SP-B, SP-B (1-25,63-78), also called Super Mini-B, which is a 41-residue peptide with internal disulfide bonds comprising the N-terminal 7-residue insertion sequence and the N- and C-terminal helices of SP-B. Circular dichroism, solution NMR, and solid state (2)H NMR were used to study the structure of SP-B (1-25,63-78) and its interactions with phospholipid bilayers. Comparison of results for SP-B (8-25,63-78) and SP-B (1-25,63-78) demonstrates that the presence of the 7-residue insertion sequence induces substantial disorder near the centre of the lipid bilayer, but without a major disruption of the overall mechanical orientation of the bilayers. This observation suggests the insertion sequence is unlikely to penetrate deeply into the bilayer. The 7-residue insertion sequence substantially increases the solution NMR linewidths, most likely due to an increase in global dynamics.
    PLoS ONE 09/2013; 8(9):e72821. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations.
    PLoS ONE 02/2013; 8(2):e55478. · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hydrophobic lung surfactant protein, SP-B, is essential for survival. Cycling of lung volume during respiration requires a surface-active lipid-protein layer at the alveolar air-water interface. SP-B may contribute to surfactant layer maintenance and renewal by facilitating contact and transfer between the surface layer and bilayer reservoirs of surfactant material. However, only small effects of SP-B on phospholipid orientational order in model systems have been reported. In this study, N-terminal (SP-B(8-25)) and C-terminal (SP-B(63-78)) helices of SP-B, either linked as Mini-B or unlinked but present in equal amounts, were incorporated into either model phospholipid mixtures or into bovine lipid extract surfactant in the form of vesicle dispersions or mechanically oriented bilayer samples. Deuterium and phosphorus nuclear magnetic resonance (NMR) were used to characterize effects of these peptides on phospholipid chain orientational order, headgroup orientation, and the response of lipid-peptide mixtures to mechanical orientation by mica plates. Only small effects on chain orientational order or headgroup orientation, in either vesicle or mechanically oriented samples, were seen. In mechanically constrained samples, however, Mini-B and its component helices did have specific effects on the propensity of lipid-peptide mixtures to form unoriented bilayer populations which do not exchange with the oriented fraction on the timescale of the NMR experiment. Modification of local bilayer orientation, even in the presence of mechanical constraint, may be relevant to the transfer of material from bilayer reservoirs to a flat surface-active layer, a process that likely requires contact facilitated by the formation of highly curved protrusions.
    Biophysics of Structure and Mechanism 08/2012; 41(9):755-67. · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated a model of acute respiratory distress syndrome in which the serum protein albumin adsorbs to an air-liquid interface and prevents the thermodynamically preferable adsorption of the clinical lung surfactant Survanta by inducing steric and electrostatic energy barriers analogous to those that prevent colloidal aggregation. Chitosan and polyethylene glycol (PEG), two polymers that traditionally have been used to aggregate colloids, both allow Survanta to quantitatively displace albumin from the interface, but through two distinct mechanisms. Direct visualization with confocal microscopy shows that the polycation chitosan coadsorbs to interfacial layers of both Survanta and albumin, and also colocalizes with the anionic domains of Survanta at the air-liquid interface, consistent with it eliminating the electrostatic repulsion by neutralizing the surface charges on albumin and Survanta. In contrast, the PEG distribution does not change during the displacement of albumin by Survanta, consistent with PEG inducing a depletion attraction sufficient to overcome the repulsive energy barrier toward adsorption.
    Biophysical Journal 02/2012; 102(4):777-86. · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SP-B(CTERM) is a cationic amphipathic helical peptide and functional fragment composed of residues 63 to 78 of surfactant protein B (SP-B). Static oriented and magic angle spinning solid state NMR, along with molecular dynamics simulation was used to investigate its structure, orientation, and depth in lipid bilayers of several compositions, namely POPC, DPPC, DPPC/POPC/POPG, and bovine lung surfactant extract (BLES). In all lipid environments the peptide was oriented parallel to the membrane surface. While maintaining this approximately planar orientation, SP-B(CTERM) exhibited a flexible topology controlled by subtle variations in lipid composition. SP-B(CTERM)-induced lipid realignment and/or conformational changes at the level of the head group were observed using (31)P solid-state NMR spectroscopy. Measurements of the depth of SP-B(CTERM) indicated the peptide center positions ~8Å more deeply than the phosphate headgroups, a topology that may allow the peptide to promote functional lipid structures without causing micellization upon compression.
    Biochimica et Biophysica Acta 01/2012; 1818(5):1165-72. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The size distribution of domains in phase-separated lung surfactant monolayers influences monolayer viscoelasticity and compressibility which, in turn, influence monolayer collapse and set the compression at which the minimum surface tension is reached. The surfactant-specific protein SP-B decreases the mean domain size and polydispersity as shown by fluorescence microscopy. From the images, the line tension and dipole density difference are determined by comparing the measured size distributions with a theory derived by minimizing the free energy associated with the domain energy and mixing entropy. We find that SP-B increases the line tension, dipole density difference, and the compressibility modulus at surface pressures up to the squeeze-out pressure. The increase in line tension due to SP-B indicates the protein avoids domain boundaries due to its solubility in the more fluid regions of the film.
    Biophysical Journal 01/2012; 102(1):56-65. · 3.83 Impact Factor
  • Biophysical Journal 01/2012; 102(3):89-. · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effects of KL₄, a 21-residue amphipathic peptide approximating the overall ratio of positively charged to hydrophobic amino acids in surfactant protein B (SP-B), on the structure and collapse of dipalmitoylphosphatidylcholine and palmitoyl-oleoyl-phosphatidylglycerol monolayers. As reported in prior work on model lung surfactant phospholipid films containing SP-B and SP-B peptides, our experiments show that KL₄ improves surfactant film reversibility during repetitive interfacial cycling in association with the formation of reversible collapse structures on multiple length scales. Emphasis is on exploring a general mechanistic connection between peptide-induced nano- and microscale reversible collapse structures (silos and folds).
    Biophysical Journal 12/2011; 101(12):2957-65. · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peptides of the innate immune system provide intriguing templates for designing novel antiviral molecules. θ-defensins are nonhuman primate peptides with broad-spectrum antiviral activities. The activity of these compounds is mediated through interference with viral fusion, and this activity is based upon key structural features. However, two major limitations to their clinical use hampered their development as potential antivirals, namely difficult multi-step synthesis for their production with low final yield of desired product (~5%), and unfavorable pharmacokinetics (rapid enzymatic degradation and/or renal clearance). Recently we designed and screened two sub-libraries of new peptide-based entry inhibitors mimicking the structure of humanized θ-defensins, designated as Hapivirins (HpVs) and Diprovirins (DpVs). Although the new peptides are smaller (13-residues) and structurally more simple than retrocyclins, several retained their ability to protect cells from infection by HIV-1 and HSV-2. The most active compound, DpV16, was chosen for a second round of modifications based on (1) its potent antiviral activity (2) its ease of synthesis, and (3) the low cost of production. Subsequently, we created a library of a second generation DpV-analogues with enhanced properties. Collectively, our findings to date suggest that simplified θ-defensins are suitable candidates for further modifications to obtain analogues with clinically favorable pharmacokinetics that may be produced in large quantities using a standard chemical approach. Considering their small size, they could be used either topically (topical microbicides) and/or for systemic applications (entry inhibitors).
    International Journal of Peptide Research and Therapeutics 12/2011; 17(4):325-336. · 0.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reports the chemical synthesis and purification of a novel phospholipase-resistant C16:0, C16:1 diether phosphonoglycerol with structural analogy to ester-linked anionic phosphatidylglycerol (PG) in endogenous pulmonary surfactant. This diether phosphonoglycerol (PG 1) is studied for phospholipase A(2) (PLA(2)) resistance and for surface activity in synthetic exogenous surfactants combined with Super Mini-B (S-MB) peptide and DEPN-8, a previously-reported diether phosphonolipid analog of dipalmitoyl phosphatidylcholine (DPPC, the major zwitterionic phospholipid in native lung surfactant). Activity experiments measured both adsorption and dynamic surface tension lowering due to the known importance of these surface behaviors in lung surfactant function in vivo. Synthetic surfactants containing 9 : 1 DEPN-8:PG 1 + 3% S-MB were resistant to degradation by PLA(2) in chromatographic studies, while calf lung surfactant extract (CLSE, the substance of the bovine clinical surfactant Infasurf®) was significantly degraded by PLA(2). The 9 : 1 DEPN-8:PG 1 + 3% S-MB mixture also had small but consistent increases in both adsorption and dynamic surface tension lowering ability compared to DEPN-8 + 3% S-MB. Consistent with these surface activity increases, molecular dynamics simulations using Protein Modeller, GROMACS force-field, and PyMOL showed that bilayers containing DPPC and palmitoyl-oleoyl-PC (POPC) as surrogates of DEPN-8 and PG 1 were penetrated to a greater extent by S-MB peptide than bilayers of DPPC alone. These results suggest that PG 1 or related anionic phosphono-PG analogs may have functional utility in phospholipase-resistant synthetic surfactants targeting forms of acute pulmonary injury where endogenous surfactant becomes dysfunctional due to phospholipase activity in the innate inflammatory response.
    Medicinal Chemistry Communication 12/2011; 2(12):1167-1173. · 2.63 Impact Factor

Publication Stats

9k Citations
956.97 Total Impact Points


  • 2006–2014
    • University of California, Irvine
      • Department of Physiology & Biophysics
      Irvine, California, United States
  • 1997–2014
    • Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
      • Department of Medicine
      Torrance, California, United States
  • 2007–2013
    • Memorial University of Newfoundland
      • • Department of Biochemistry
      • • Department of Physics and Physical Oceanography
      St. John's, Newfoundland and Labrador, Canada
    • University of Rochester
      • Department of Pediatrics
      Rochester, NY, United States
    • University of Wisconsin, Madison
      • Department of Ophthalmology and Visual Sciences
      Madison, MS, United States
  • 1991–2013
    • University of California, Los Angeles
      • • Department of Medicine
      • • Department of Materials Science and Engineering
      • • Division of Infectious Diseases
      • • Department of Pediatrics
      Los Angeles, California, United States
  • 2012
    • University of Strasbourg
      Strasburg, Alsace, France
  • 2000–2012
    • Children's Hospital Los Angeles
      • • Division of Hospital Medicine
      • • Division of Infectious Diseases
      Los Angeles, California, United States
    • Utrecht University
      Utrecht, Utrecht, Netherlands
  • 2011
    • University of Guelph
      • Department of Chemistry
      Guelph, Ontario, Canada
  • 2006–2011
    • University of Chicago
      • • Department of Physics
      • • Department of Chemistry
      • • James Franck Institute
      Chicago, IL, United States
  • 2004–2011
    • University of Central Florida
      • • Burnett School of Biomedical Sciences
      • • Graduate Program in Molecular Biology and Microbiology
      Orlando, Florida, United States
    • Centers for Disease Control and Prevention
      • National Center for Emerging and Zoonotic Infectious Diseases
      Atlanta, MI, United States
  • 2001–2011
    • Iowa State University
      • Department of Chemistry
      Ames, IA, United States
    • Saint Petersburg State University
      Sankt-Peterburg, St.-Petersburg, Russia
  • 2008
    • European Synchrotron Radiation Facility
      Grenoble, Rhône-Alpes, France
  • 2001–2007
    • California State Polytechnic University, Pomona
      • Department of Chemistry
      Pomona, CA, United States
  • 2005
    • University of Georgia
      • Department of Chemistry
      Athens, GA, United States
  • 1993–2005
    • University of California, Santa Barbara
      • Department of Chemical Engineering
      Santa Barbara, CA, United States
  • 1998–2004
    • Harbor-UCLA Medical Center
      • Department of Pediatrics
      Torrance, California, United States
  • 2003
    • University of California, San Diego
      San Diego, California, United States
    • Pacific Neuropsychiatric Institute
      Seattle, Washington, United States
    • University of California, Davis
      • Department of Chemical Engineering and Materials Science
      Davis, CA, United States
    • National University (California)
      San Diego, California, United States
  • 1999–2003
    • Rice University
      • Department of Physics and Astronomy
      Houston, TX, United States
  • 2002
    • Ruhr-Universität Bochum
      Bochum, North Rhine-Westphalia, Germany
    • Hoseo University
      Onyang, South Chungcheong, South Korea
  • 1997–2001
    • University of Southern California
      • Department of Pediatrics
      Los Angeles, California, United States
  • 1996–2000
    • Charles R. Drew University of Medicine and Science
      • Pediatrics
      Los Angeles, California, United States
    • Drew University
      Madison, New Jersey, United States