Jenny Drnevich

University of Illinois, Urbana-Champaign, Urbana, Illinois, United States

Are you Jenny Drnevich?

Claim your profile

Publications (27)133.79 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is an important pest of corn. Annual crop rotation between corn and soybean disrupts the corn-dependent WCR lifecycle and is widely adopted to manage this pest. This strategy selected for rotation-resistant (RR) WCR with reduced ovipositional fidelity to corn. Previous studies revealed that RR-WCR adults exhibit greater tolerance of soybean diets, different gut physiology and host-microbe interactions compared to rotation-susceptible wild-types (WT). To identify genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses of RNA libraries from different WCR phenotypes fed with corn or soybean diets. Global gene expression profiles of WT- and RR-WCR were similar when feeding on corn diets, but different when feeding on soybean. Using network-based methods, we identified gene modules transcriptionally correlated with the RR phenotype. Gene Ontology enrichment analyses indicated that the functions of these modules were related to metabolic processes, immune responses, biological adhesion, and other functions/processes that appear to correlate to documented traits in RR populations. These results suggest that gut transcriptomic divergence correlated with brief soybean feeding and other physiological traits may exist between RR and WT-WCR adults.This article is protected by copyright. All rights reserved.
    Evolutionary Applications 05/2015; DOI:10.1111/eva.12278 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantification of genotype-to-phenotype associations is central to many scientific investigations, yet the ability to obtain consistent results may be thwarted without appropriate statistical analyses. Models for association can consider confounding effects in the materials and complex genetic interactions. Selecting optimal models enables accurate evaluation of associations between marker loci and numerous phenotypes including gene expression. Significant improvements in QTL discovery via association mapping and acceleration of breeding cycles through genomic selection are two successful applications of models using genome-wide markers. Given recent advances in genotyping and phenotyping technologies, further refinement of these approaches is needed to model genetic architecture more accurately and run analyses in a computationally efficient manner, all while accounting for false positives and maximizing statistical power. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Plant Biology 04/2015; 24:110-118. DOI:10.1016/j.pbi.2015.02.010 · 9.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cryptosporidium parvum oocysts have been known to cause adverse health effects worldwide, and processes that contribute to their inactivation have gained wide attention in recent years. Solar inactivation is an important process that can improve surface water quality. Solar disinfection (SODIS) can be used to disinfect water as a point-of-use alternative, and disinfect wastewater in waste stabilization ponds. However, a clear understanding of the oocyst solar inactivation mechanisms is lacking. This study systematically investigated the oocyst solar inactivation mechanisms in the presence of a wide range of environmental factors and also provided an insight on the metabolic response of oocysts using the microarray analysis. The result revealed that oocyst inactivation by solar UVA/visible light was dominated by UVA-induced internal radical damages and was sensitive to both the temperature and the oocyst source. External radical producing sensitizers did not enhance the UVA/visible light inactivation of oocysts due to the protection by the oocyst wall. In contrast, UVB was found to directly damage the oocyst genome, ensuring an effective inactivation that correlated only with UV fluence after being corrected for light screening regardless of the oocyst source, temperature, and the presence of external sensitizers. Further microarray analysis suggested that the effective UVB inactivation could be explained by the down-regulation of most of the genes responsible for cellular metabolic activities and the lack of expression of stress protection mechanisms in oocysts after 30 minutes of UVB exposure. These results facilitate the understanding and design of water and wastewater treatment processes that involve natural sunlight exposure.
    01/2015; 1(2). DOI:10.1039/C4EW00079J
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.
    Nanoscale 12/2014; 7(4). DOI:10.1039/c4nr05166a · 6.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fragile X mental retardation protein FMRP regulates translation of its bound mRNAs through incompletely defined mechanisms. FMRP has been linked to the microRNA pathway, and we show here that it associates with the RNA helicase MOV10, also associated with the microRNA pathway. FMRP associates with MOV10 directly and in an RNA-dependent manner and facilitates MOV10's association with RNAs in brain and cells, suggesting a cooperative interaction. We identified the RNAs recognized by MOV10 using RNA immunoprecipitation and iCLIP. Examination of the fate of MOV10 on RNAs revealed a dual function for MOV10 in regulating translation: it facilitates microRNA-mediated translation of some RNAs, but it also increases expression of other RNAs by preventing AGO2 function. The latter subset was also bound by FMRP in close proximity to the MOV10 binding site, suggesting that FMRP prevents MOV10-mediated microRNA suppression. We have identified a mechanism for FMRP-mediated translational regulation through its association with MOV10. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 11/2014; 9(5). DOI:10.1016/j.celrep.2014.10.054 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteopontin (OPN) is a multifunctional protein found in human milk at high concentration.
    Journal of Nutrition 10/2014; DOI:10.3945/jn.114.197558 · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined the transcriptional activity of Oct3/4 (Pou5f1) in mouse embryonic stem cells (mESCs) maintained under standard culture conditions to gain a better understanding of self-renewal in mESCs. First, we built an expression vector in which the Oct3/4 promoter drives the monocistronic transcription of Venus and a puromycin-resistant gene via the foot-and-mouth disease virus self-cleaving peptide T2A. Then, a genetically-engineered mESC line with the stable integration of this vector was isolated and cultured in the presence or absence of puromycin. The cultures were subsequently subjected to Illumina expression microarray analysis. We identified approximately 4,600 probes with statistically significant differential expression. The genes involved in nucleic acid synthesis were overrepresented in the probe set associated with mESCs maintained in the presence of puromycin. In contrast, the genes involved in cell differentiation were overrepresented in the probe set associated with mESCs maintained in the absence of puromycin. Therefore, it is suggested with these data that the transcriptional activity of Oct3/4 fluctuates in mESCs and that Oct3/4 plays an essential role in sustaining the basal transcriptional activities required for cell duplication in populations with equal differentiation potential. Heterogeneity in the transcriptional activity of Oct3/4 was dynamic. Interestingly, we found that genes involved in the hedgehog signaling pathway showed unique expression profiles in mESCs and validated this observation by RT-PCR analysis. The expression of Gli2, Ptch1 and Smo was consistently detected in other types of pluripotent stem cells examined in this study. Furthermore, the Gli2 protein was heterogeneously detected in mESC nuclei by immunofluorescence microscopy and this result correlated with the detection of the Oct3/4 protein. Finally, forced activation of Gli2 in mESCs increased their proliferation rate. Collectively, it is suggested with these results that Gli2 may play a novel role in the self-renewal of pluripotent stem cells.
    Genomics 10/2013; 102(5-6). DOI:10.1016/j.ygeno.2013.09.004 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phytoecdysteroids have been attributed with numerous pharmacological properties in animals, including increasing muscle mass, and 20-hydroxyecdysone (20E) is one of the most abundant phytoecdysteroids produced by plants. In this study, the physiological and gene expression effects of 20E were analyzed in C57BL/6 mice given a continuous infusion of saline or 20E (5 mg/kg/day) for 5 or 15 days using subcutaneously implanted Alzet® osmotic pumps. The masses of the total body, muscle groups and organs were determined. There was a significant increase ( p = 0.01) in the mass of triceps brachii in mice treated with 20E for 5 days (115 ± 8 mg) compared with mice treated with saline for 5 days (88 ± 3 mg), however, there were no differences in the other measured parameters. To determine potential mechanisms of 20E in skeletal muscle, Illumina's Mouse Whole Genome-6 v2.0 Expression BeadChips were used to evaluate changes in gene expression of the triceps brachii after 20E infusion. Ingenuity Pathways Analysis was used to identify genes with the most evidence for differential expression, of which, 16 genes involved in the skeletal and muscular system were identified. Overall, the data suggest that 20E does not have potent anabolic properties, however, a muscle-specific increase was observed and genes were identified to provide an explanation for the muscle accretion. Copyright © 2012 John Wiley & Sons, Ltd.
    Phytotherapy Research 01/2013; 27(1). DOI:10.1002/ptr.4679 · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT.
    Animal reproduction science 11/2012; 136(4). DOI:10.1016/j.anireprosci.2012.10.030 · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Production of contextually appropriate social behaviors involves integrated activity across many brain regions. Many songbird species produce complex vocalizations called ‘songs’ that serve to attract potential mates, defend territories, and/or maintain flock cohesion. There are a series of discrete interconnect brain regions that are essential for the successful production of song. The probability and intensity of singing behavior is influenced by the reproductive state. The objectives of this study were to examine the broad changes in gene expression in brain regions that control song production with a brain region that governs the reproductive state. Results We show using microarray cDNA analysis that two discrete brain systems that are both involved in governing singing behavior show markedly different gene expression profiles. We found that cortical and basal ganglia-like brain regions that control the socio-motor production of song in birds exhibit a categorical switch in gene expression that was dependent on their reproductive state. This pattern is in stark contrast to the pattern of expression observed in a hypothalamic brain region that governs the neuroendocrine control of reproduction. Subsequent gene ontology analysis revealed marked variation in the functional categories of active genes dependent on reproductive state and anatomical localization. HVC, one cortical-like structure, displayed significant gene expression changes associated with microtubule and neurofilament cytoskeleton organization, MAP kinase activity, and steroid hormone receptor complex activity. The transitions observed in the preoptic area, a nucleus that governs the motivation to engage in singing, exhibited variation in functional categories that included thyroid hormone receptor activity, epigenetic and angiogenetic processes. Conclusions These findings highlight the importance of considering the temporal patterns of gene expression across several brain regions when engaging in social behaviors.
    BMC Neuroscience 10/2012; 13(1):126. DOI:10.1186/1471-2202-13-126 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Songbirds provide rich natural models for studying the relationships between brain anatomy, behavior, environmental signals, and gene expression. Under the Songbird Neurogenomics Initiative, investigators from 11 laboratories collected brain samples from six species of songbird under a range of experimental conditions, and 488 of these samples were analyzed systematically for gene expression by microarray. ANOVA was used to test 32 planned contrasts in the data, revealing the relative impact of different factors. The brain region from which tissue was taken had the greatest influence on gene expression profile, affecting the majority of signals measured by 18,848 cDNA spots on the microarray. Social and environmental manipulations had a highly variable impact, interpreted here as a manifestation of paradoxical “constitutive plasticity” (fewer inducible genes) during periods of enhanced behavioral responsiveness. Several specific genes were identified that may be important in the evolution of linkages between environmental signals and behavior. The data were also analyzed using weighted gene coexpression network analysis, followed by gene ontology analysis. This revealed modules of coexpressed genes that are also enriched for specific functional annotations, such as “ribosome” (expressed more highly in juvenile brain) and “dopamine metabolic process” (expressed more highly in striatal song control nucleus area X). These results underscore the complexity of influences on neural gene expression and provide a resource for studying how these influences are integrated during natural experience.
    Proceedings of the National Academy of Sciences 10/2012; 109(Supplement 2):17245-17252. DOI:10.1073/pnas.1200655109 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunosenescence, the age-related decline in immune system function, is a general hallmark of aging. While much is known about the cellular and physiological changes that accompany immunosenescence, we know little about the genetic influences on this phenomenon. In this study we combined age-specific measurements of bacterial clearance ability following infection with whole-genome measurements of the transcriptional response to infection and wounding to identify genes that contribute to the natural variation in immunosenescence, using Drosophila melanogaster as a model system. Twenty inbred lines derived from nature were measured for their ability to clear an Escherichia coli infection at 1 and 4 weeks of age. We used microarrays to simultaneously determine genome-wide expression profiles in infected and wounded flies at each age for 12 of these lines. Lines exhibited significant genetically based variation in bacterial clearance at both ages; however, the genetic basis of this variation changed dramatically with age. Variation in gene expression was significantly correlated with bacterial clearance ability only in the older age group. At 4 weeks of age variation in the expression of 247 genes following infection was associated with genetic variation in bacterial clearance. Functional annotation analyses implicate genes involved in energy metabolism including those in the insulin signaling/TOR pathway as having significant associations with bacterial clearance in older individuals. Given the evolutionary conservation of the genes involved in energy metabolism, our results could have important implications for understanding immunosenescence in other organisms, including humans.
    Genetics 05/2012; 191(3):989-1002. DOI:10.1534/genetics.112.140640 · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.
    Antonie van Leeuwenhoek 04/2012; 102(2):247-55. DOI:10.1007/s10482-012-9733-z · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity.
    PLoS ONE 04/2012; 7(4):e35119. DOI:10.1371/journal.pone.0035119 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.
    Proceedings of the National Academy of Sciences 06/2011; 108(26):10756-61. DOI:10.1073/pnas.1104713108 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs) may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192) and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p). We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan) to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.
    BMC Genomics 05/2011; 12(1):277. DOI:10.1186/1471-2164-12-277 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.
    BMC Genomics 11/2010; 11:674. DOI:10.1186/1471-2164-11-674 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian target of rapamycin (mTOR) has emerged as a key regulator of skeletal muscle development by governing distinct stages of myogenesis, but the molecular pathways downstream of mTOR are not fully understood. In this study, we report that expression of the muscle-specific micro-RNA (miRNA) miR-1 is regulated by mTOR both in differentiating myoblasts and in mouse regenerating skeletal muscle. We have found that mTOR controls MyoD-dependent transcription of miR-1 through its upstream enhancer, most likely by regulating MyoD protein stability. Moreover, a functional pathway downstream of mTOR and miR-1 is delineated, in which miR-1 suppression of histone deacetylase 4 (HDAC4) results in production of follistatin and subsequent myocyte fusion. Collective evidence strongly suggests that follistatin is the long-sought mTOR-regulated fusion factor. In summary, our findings unravel for the first time a link between mTOR and miRNA biogenesis and identify an mTOR-miR-1-HDAC4-follistatin pathway that regulates myocyte fusion during myoblast differentiation in vitro and skeletal muscle regeneration in vivo.
    The Journal of Cell Biology 06/2010; 189(7):1157-69. DOI:10.1083/jcb.200912093 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Male song sparrows (Melospiza melodia) are territorial year-round; however, neuroendocrine responses to simulated territorial intrusion (STI) differ between breeding (spring) and non-breeding seasons (autumn). In spring, exposure to STI leads to increases in luteinizing hormone and testosterone, but not in autumn. These observations suggest that there are fundamental differences in the mechanisms driving neuroendocrine responses to STI between seasons. Microarrays, spotted with EST cDNA clones of zebra finch, were used to explore gene expression profiles in the hypothalamus after territorial aggression in two different seasons. Free-living territorial male song sparrows were exposed to either conspecific or heterospecific (control) males in an STI in spring and autumn. Behavioral data were recorded, whole hypothalami were collected, and microarray hybridizations were performed. Quantitative PCR was performed for validation. Our results show 262 cDNAs were differentially expressed between spring and autumn in the control birds. There were 173 cDNAs significantly affected by STI in autumn; however, only 67 were significantly affected by STI in spring. There were 88 cDNAs that showed significant interactions in both season and STI. Results suggest that STI drives differential genomic responses in the hypothalamus in the spring vs. autumn. The number of cDNAs differentially expressed in relation to season was greater than in relation to social interactions, suggesting major underlying seasonal effects in the hypothalamus which may determine the differential response upon social interaction. Functional pathway analyses implicated genes that regulate thyroid hormone action and neuroplasticity as targets of this neuroendocrine regulation.
    PLoS ONE 12/2009; 4(12):e8182. DOI:10.1371/journal.pone.0008182 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nodulation is the result of a mutualistic interaction between legumes and symbiotic soil bacteria (e.g. soybean [Glycine max] and Bradyrhizobium japonicum) initiated by the infection of plant root hair cells by the symbiont. Fewer than 20 plant genes involved in the nodulation process have been functionally characterized. Considering the complexity of the symbiosis, significantly more genes are likely involved. To identify genes involved in root hair cell infection, we performed a large-scale transcriptome analysis of B. japonicum-inoculated and mock-inoculated soybean root hairs using three different technologies: microarray hybridization, Illumina sequencing, and quantitative real-time reverse transcription-polymerase chain reaction. Together, a total of 1,973 soybean genes were differentially expressed with high significance during root hair infection, including orthologs of previously characterized root hair infection-related genes such as NFR5 and NIN. The regulation of 60 genes was confirmed by quantitative real-time reverse transcription-polymerase chain reaction. Our analysis also highlighted changes in the expression pattern of some homeologous and tandemly duplicated soybean genes, supporting their rapid specialization.
    Plant physiology 11/2009; 152(2):541-52. DOI:10.1104/pp.109.148379 · 7.39 Impact Factor

Publication Stats

654 Citations
133.79 Total Impact Points

Institutions

  • 2002–2015
    • University of Illinois, Urbana-Champaign
      • • Department of Crop Sciences
      • • Roy J. Carver Biotechnology Center
      • • Department of Cell and Developmental Biology
      • • School of Integrative Biology
      Urbana, Illinois, United States
  • 2012
    • Maui High-Performance Computing Center
      Carver, Massachusetts, United States