Marianela Nelson

University of Illinois at Chicago, Chicago, IL, United States

Are you Marianela Nelson?

Claim your profile

Publications (7)20.26 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intersectin 1 (ITSN1) is a human chromosome 21 (HSA21) gene product encoding a multidomain scaffold protein that functions in endocytosis, signal transduction, and is implicated in Down's syndrome, Alzheimer's Disease, and potentially other neurodegenerative diseases through activation of c-Jun N-terminal kinase. We report for the first time that ITSN1 proteins are elevated in individuals with Down's syndrome of varying ages. However, ITSN1 levels decreased in aged cases with Down's syndrome with Alzheimer's disease-like neuropathology. Analysis of a novel ITSN1 transgenic mouse reveals that ITSN1 overexpression results in a sex-dependent decrease in locomotor activity. This study reveals a link between overexpression of specific ITSN1 isoforms and behavioral phenotypes and has implications for human neurodegenerative diseases such as Down's syndrome and Alzheimer's disease.
    Neuroreport 08/2011; 22(15):767-72. · 1.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pharmacological action of selective serotonin reuptake inhibitor antidepressants may include a normalization of the decreased brain levels of the brain-derived neurotrophic factor (BDNF) and of neurosteroids such as the progesterone metabolite allopregnanolone, which are decreased in patients with depression and posttraumatic stress disorders (PTSD). The allopregnanolone and BDNF level decrease in PTSD and depressed patients is associated with behavioral symptom severity. Antidepressant treatment upregulates both allopregnanolone levels and the expression of BDNF in a manner that significantly correlates with improved symptomatology, which suggests that neurosteroid biosynthesis and BDNF expression may be interrelated. Preclinical studies using the socially isolated mouse as an animal model of behavioral deficits, which resemble some of the symptoms observed in PTSD patients, have shown that fluoxetine and derivatives improve anxiety-like behavior, fear responses and aggressive behavior by elevating the corticolimbic levels of allopregnanolone and BDNF mRNA expression. These actions appeared to be independent and more selective than the action of these drugs on serotonin reuptake inhibition. Hence, this review addresses the hypothesis that in PTSD or depressed patients, brain allopregnanolone levels, and BDNF expression upregulation may be mechanisms at least partially involved in the beneficial actions of antidepressants or other selective brain steroidogenic stimulant molecules.
    Frontiers in Endocrinology 01/2011; 2:73.
  • Source
    Marianela Nelson, Graziano Pinna
    [Show abstract] [Hide abstract]
    ABSTRACT: A decrease of brain allopregnanolone biosynthesis may play a role in emotion, impulsive behavior, and anxiety spectrum disorders by decreasing GABAergic neurotransmission. In male mice, four weeks of social isolation induces behavioral dysfunctions such as aggression, fear, and anxiety-like behavior associated with a decrease in allopregnanolone biosynthesis in selected corticolimbic structures comprising the basolateral amygdala (BLA), olfactory bulb, hippocampus, and medial prefrontal cortex. Importantly, no decrease in allopregnanolone biosynthesis has been found in the striatum and cerebellum. Given the importance of the amygdaloid complex in emotional behavior, we hypothesized that this brain area may play a pivotal role in decreasing social isolation-induced aggression. Thus, socially isolated mice were directly infused with S-norfluoxetine (S-NFLX) or pregnanolone (an analog of allopregnanolone) into the BLA and striatum. When S-NFLX (2.5, 3.75, and 5 nmol/0.2 μl) or pregnanolone (1.25, 2.5, 3.75, and 5.0 nmol/0.2 μl) is directly infused into the BLA, these agents dose-dependently reduced aggression (S-NFLX up to 93% and pregnanolone up to 96%) of a socially isolated mouse to a same-sex intruder. However, S-NFLX (3.75 and 5 nmol) infused directly into the striatum failed to alter aggression. Allopregnanolone content in the BLA after S-NFLX (3.75 nmol) infusion was increased by 3-fold and in the hippocampus, by 80%. Allopregnanolone levels did not change in the olfactory bulb or in the frontal cortex of the same mice. S-NFLX (3.75 nmol) infused into the striatum failed to increase the levels of allopregnanolone. These results suggest that S-NFLX, acting as a selective brain steroidogenic stimulant (SBSS), increases corticolimbic allopregnanolone levels and regulates aggression, which underscores the pivotal role of the BLA and hippocampus in the regulation of aggressiveness in socially isolated mice. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
    Neuropharmacology 10/2010; 60(7-8):1154-9. · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Corticolimbic neurons express neurosteroid biosynthesis, which is altered during anabolic androgenic steroid (AAS) treatment. The brain circuits and neurons that underlie the behavioral deficits found after AAS treatment remain undefined. We studied the effects of testosterone propionate (testosterone) on fear conditioning responses and in primary output corticolimbic neurons on 5alpha-reductase-type-I and 3alpha-hydroxysteroid-dehydrogenase expression. Testosterone fails to change cued fear responses although it induces excessive contextual fear associated with corticolimbic 5alpha-reductase-type-I mRNA expression downregulation in the prefrontal cortex, hippocampus, and basolateral amygdala glutamatergic neurons. Increased fear responses are abolished by normalizing corticolimbic allopregnanolone levels with allopregnanolone treatment (8 micromol/kg) or selective brain steroidogenic stimulants, including S-norfluoxetine (1.8 micromol/kg). Agents that increase corticolimbic allopregnanolone levels may be beneficial in treating AAS users.
    Neuroreport 04/2009; 20(6):617-21. · 1.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mice subjected to social isolation (3-4 weeks) exhibit enhanced contextual fear responses and impaired fear extinction. These responses are time-related to a decrease of 5alpha-reductase type I (5alpha-RI) mRNA expression and allopregnanolone (Allo) levels in selected neurons of the medial prefrontal cortex, hippocampus, and basolateral amygdala. Of note, the cued fear response was not different between group housed and socially isolated mice. In socially isolated mice, S-norfluoxetine, a selective brain steroidogenic stimulant (SBSS), in doses (0.45-1.8 mumol/kg) that increase brain Allo levels but fail to inhibit serotonin reuptake, greatly attenuates enhanced contextual fear response. SKF 105,111 (a potent 5alpha-RI inhibitor) decreases corticolimbic Allo levels and enhances the contextual fear response in group housed mice, which suggests that social isolation alters emotional responses by reducing the positive allosteric modulation of Allo at GABA(A) receptors in corticolimbic circuits. Thus, these procedures model emotional hyperreactivity, including enhanced contextual fear and impaired contextual fear extinction, which also is observed in posttraumatic stress disorder (PTSD) patients. A recent clinical study reported that cerebrospinal fluid Allo levels also are down-regulated in PTSD patients and correlate negatively with PTSD symptoms and negative mood. Thus, protracted social isolation of mice combined with tests of fear conditioning may be a suitable model to study emotional behavioral components associated with neurochemical alterations relating to PTSD. Importantly, drugs like SBSSs, which rapidly increase corticolimbic Allo levels, normalize the exaggerated contextual fear responses resulting from social isolation, suggesting that selective activation of neurosteroidogenesis may be useful in PTSD therapy.
    Proceedings of the National Academy of Sciences 05/2008; 105(14):5567-72. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neurosteroid allopregnanolone is a potent positive allosteric modulator of GABA action at GABAA receptors. Allopregnanolone is synthesized in the brain from progesterone by the sequential action of 5α-reductase type I (5α-RI) and 3α-hydroxysteroid dehydrogenase (3α-HSD). 5α-RI and 3α-HSD are co-expressed in cortical, hippocampal, and olfactory bulb glutamatergic neurons and in output neurons of the amygdala, thalamus, cerebellum, and striatum. Neither 5α-RI nor 3α-HSD mRNAs is expressed in glial cells or in cortical or hippocampal GABAergic interneurons. It is likely that allopregnanolone synthesized in principal output neurons locally modulates GABAA receptor function by reaching GABAA receptor intracellular sites through lateral membrane diffusion. This review will focus on the behavioral effects of allopregnanolone on mouse models that are related to a sexually dimorphic regulation of brain allopregnanolone biosynthesis. Animal models of psychiatric disorders, including socially isolated male mice or mice that receive a long-term treatment with anabolic androgenic steroids (AAS), show abnormal behaviors such as altered fear responses and aggression. In these animal models, the cortico-limbic mRNA expression of 5α-RI is regulated in a sexually dimorphic manner. Hence, in selected glutamatergic pyramidal neurons of the cortex, CA3, and basolateral amygdala and in granular cells of the dentate gyrus, mRNA expression of 5α-RI is decreased, which results in a downregulation of allopregnanolone content. In contrast, 5α-RI mRNA expression fails to change in the striatum medium spiny neurons and in the reticular thalamic nucleus neurons, which are GABAergic. By manipulating allopregnanolone levels in glutamatergic cortico-limbic neurons in opposite directions to improve [using the potent selective brain steroidogenic stimulant (SBSS) S-norfluoxetine] or induce (using the potent 5α-RI inhibitor SKF 105,111) behavioral deficits, respectively, we have established the fundamental role of cortico-limbic allopregnanolone levels in the sexually dimorphic regulation of aggression and fear. By selectively targeting allopregnanolone downregulation in glutamatergic cortico-limbic neurons, i.e., by improving the response of GABAA receptors to GABA, new therapeutics would offer appropriate and safe management of psychiatric conditions, including impulsive aggression, irritability, irrational fear, anxiety, posttraumatic stress disorders, and depression.
    Neurochemical Research 01/2008; 33(10):1990-2007. · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anabolic androgenic steroid abuse triggers impulsive aggression, anxiety, and depression, which suggests a dysfunction of GABAergic neurotransmission. Socially isolated female mice that have received testosterone propionate (1.45 micromol/kg) treatment for 3 weeks during social isolation express aggression, neurosteroid downregulation, and changes in the cortical mRNA expression of several gamma-aminobutyric acid type A receptor subunits (alpha1, alpha2, gamma2 are decreased by 30-40%, and alpha4 and alpha5 are increased by 50%). Administration of allopregnanolone or the potent selective brain steroidogenic stimulant S-norfluoxetine, in doses (1.8-3.6 micromol/kg) that fail to inhibit 5-hydroxytryptamine reuptake, normalizes olfactory bulb neurosteroid level downregulation and abolishes aggression. This work underscores the role of neurosteroids in the regulation of aggression elicited by testosterone propionate in socially isolated female mice.
    Neuroreport 11/2006; 17(14):1537-41. · 1.40 Impact Factor