Mark I McCarthy

University of Oxford, Oxford, England, United Kingdom

Are you Mark I McCarthy?

Claim your profile

Publications (328)4377.15 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.
    Diabetes 08/2011; 60(10):2624-34. DOI:10.2337/db11-0415 · 8.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic association analyses of complex traits demand statistical tools that are capable of detecting small effects of common and rare variants and modeling complex interaction effects and yet are computationally feasible. In this work, we introduce a similarity-based regression method for assessing the main genetic and interaction effects of a group of markers on quantitative traits. The method uses genetic similarity to aggregate information from multiple polymorphic sites and integrates adaptive weights that depend on allele frequencies to accomodate common and uncommon variants. Collapsing information at the similarity level instead of the genotype level avoids canceling signals that have the opposite etiological effects and is applicable to any class of genetic variants without the need for dichotomizing the allele types. To assess gene-trait associations, we regress trait similarities for pairs of unrelated individuals on their genetic similarities and assess association by using a score test whose limiting distribution is derived in this work. The proposed regression framework allows for covariates, has the capacity to model both main and interaction effects, can be applied to a mixture of different polymorphism types, and is computationally efficient. These features make it an ideal tool for evaluating associations between phenotype and marker sets defined by linkage disequilibrium (LD) blocks, genes, or pathways in whole-genome analysis.
    The American Journal of Human Genetics 08/2011; 89(2):277-88. DOI:10.1016/j.ajhg.2011.07.007 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: -0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: -0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels.
    Diabetes 08/2011; 60(9):2407-16. DOI:10.2337/db11-0176 · 8.47 Impact Factor
  • Source
    Mary E Travers, Mark I McCarthy
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes (T2D) and obesity represent major challenges for global public health. They are at the forefront of international efforts to identify the genetic variation contributing to complex disease susceptibility, and recent years have seen considerable success in identifying common risk-variants. Given the clinical impact of molecular diagnostics in rarer monogenic forms of these diseases, expectations have been high that genetic discoveries will transform the prospects for risk stratification, development of novel therapeutics and personalised medicine. However, so far, clinical translation has been limited. Difficulties in defining the alleles and transcripts mediating association effects have frustrated efforts to gain early biological insights, whilst the fact that variants identified account for only a modest proportion of observed familiarity has limited their value in guiding treatment of individual patients. Ongoing efforts to track causal variants through fine-mapping and to illuminate the biological mechanisms through which they act, as well as sequence-based discovery of lower-frequency alleles (of potentially larger effect), should provide welcome acceleration in the capacity for clinical translation. This review will summarise recent advances in identifying risk alleles for T2D and obesity, and existing contributions to understanding disease pathology. It will consider the progress made in translating genetic knowledge into clinical utility, the challenges remaining, and the realistic potential for further progress.
    Human Genetics 06/2011; 130(1):41-58. DOI:10.1007/s00439-011-1023-8 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate whether associations of common genetic variants recently identified for fasting glucose or insulin levels in nondiabetic adults are detectable in healthy children and adolescents. A total of 16 single nucleotide polymorphisms (SNPs) associated with fasting glucose were genotyped in six studies of children and adolescents of European origin, including over 6,000 boys and girls aged 9-16 years. We performed meta-analyses to test associations of individual SNPs and a weighted risk score of the 16 loci with fasting glucose. Nine loci were associated with glucose levels in healthy children and adolescents, with four of these associations reported in previous studies and five reported here for the first time (GLIS3, PROX1, SLC2A2, ADCY5, and CRY2). Effect sizes were similar to those in adults, suggesting age-independent effects of these fasting glucose loci. Children and adolescents carrying glucose-raising alleles of G6PC2, MTNR1B, GCK, and GLIS3 also showed reduced β-cell function, as indicated by homeostasis model assessment of β-cell function. Analysis using a weighted risk score showed an increase [β (95% CI)] in fasting glucose level of 0.026 mmol/L (0.021-0.031) for each unit increase in the score. Novel fasting glucose loci identified in genome-wide association studies of adults are associated with altered fasting glucose levels in healthy children and adolescents with effect sizes comparable to adults. In nondiabetic adults, fasting glucose changes little over time, and our results suggest that age-independent effects of fasting glucose loci contribute to long-term interindividual differences in glucose levels from childhood onwards.
    Diabetes 06/2011; 60(6):1805-12. DOI:10.2337/db10-1575 · 8.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have identified many genetic variants associated with complex traits. However, at only a minority of loci have the molecular mechanisms mediating these associations been characterized. In parallel, whereas cis regulatory patterns of gene expression have been extensively explored, the identification of trans regulatory effects in humans has attracted less attention. Here we show that the type 2 diabetes and high-density lipoprotein cholesterol-associated cis-acting expression quantitative trait locus (eQTL) of the maternally expressed transcription factor KLF14 acts as a master trans regulator of adipose gene expression. Expression levels of genes regulated by this trans-eQTL are highly correlated with concurrently measured metabolic traits, and a subset of the trans-regulated genes harbor variants directly associated with metabolic phenotypes. This trans-eQTL network provides a mechanistic understanding of the effect of the KLF14 locus on metabolic disease risk and offers a potential model for other complex traits.
    Nature Genetics 06/2011; 43(6):561-4. DOI:10.1038/ng.833 · 29.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic ovary syndrome (PCOS) is associated with dyslipidaemia and obesity. It is not clear whether the dyslipidaemia of PCOS is attributable to PCOS itself, obesity, or a combination of both. Our objective was to assess the importance of familial dyslipidaemia in PCOS by comparing fasting lipids between probands and their (affected and nonaffected) sisters. Retrospective data set analyses. Family study; 157 probands, 214 sisters and 76 control women (normal ovaries and regular cycles). All probands had PCOS, defined by symptoms of anovulation and/or hyperandrogenism with polycystic ovaries on ultrasound. Affected or unaffected status of sisters was defined by ovarian morphology. Serum concentrations of triglycerides, total cholesterol, high-density lipoprotein (HDL)-cholesterol and low-density lipoprotein (LDL)-cholesterol. Triglyceride levels and body mass index (BMI) were higher and HDL cholesterol levels were lower in the probands than affected sisters, unaffected sisters and controls. These differences in lipid profiles between the groups disappeared after adjustment for BMI. No differences in lipids were seen between affected and unaffected sisters. These data are consistent with heritability of lipid levels in sisters but strongly suggest that the predominant influence on the manifestation of dyslipidaemia in PCOS is body weight.
    Clinical Endocrinology 06/2011; 74(6):714-9. DOI:10.1111/j.1365-2265.2011.03983.x · 3.35 Impact Factor
  • Source
    Mark I McCarthy
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome wide association analyses have revealed large numbers of common variants influencing predisposition to type 2 diabetes and related phenotypes. These studies have predominantly featured European populations, but are now being extended to samples from a wider range of ethnic groups. The transethnic analysis of association data is already providing insights into the genetic, molecular and biological causes of diabetes, and the relevance of such studies will increase as human discovery genetics increasingly moves towards sequencing-based approaches and a focus on low frequency and rare variants.
    Diabetes & metabolism journal 04/2011; 35(2):91-100. DOI:10.4093/dmj.2011.35.2.91
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of ∼2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 × 10(-8) to P = 4 × 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
    Proceedings of the National Academy of Sciences 04/2011; 108(17):7119-24. DOI:10.1073/pnas.1017288108 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The accurate quantification of cellular and tissue mRNA and microRNA content is reliant upon the selection of stable endogenous control transcripts for normalizing quantitative real-time-PCR (qRT-PCR) data. Using the combination of unbiased and informed approaches and a wide range of human adipose tissues and cells, we sought to identify invariant control transcripts for mRNA and microRNA. A total of 26 mRNA transcript candidates were selected from the literature. MicroRNA candidates were selected from a microRNA-microarray (Agilent, n = 22 tissues), and together with candidates from the literature resulted in 14 different microRNAs. The variability of these mRNA and microRNA transcripts were then tested in a large (n = 180) collection of a variety of human adipose tissues and cell samples. Phosphoglycerate kinase-1 (PGK1) and peptidylprolyl isomerase A (PPIA) were identified as the most stable mRNAs across all tissues and panels. MiR-103 was overall the most stable microRNA transcript across all biological backgrounds. Several proposed and commonly used normalization transcripts were found to be highly variable. We then tested the effect on expression of two established adipocyte-related transcripts (fatty acid binding protein 4 (FABP4) and microRNA-145 (miR-145)), either normalized to the optimal or a commonly used controls transcript. This test clearly indicated that spurious results could arise from using less stable control transcripts for mRNA and microRNA qRT-PCR.
    Obesity 04/2011; 19(4):888-92. DOI:10.1038/oby.2010.257 · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have identified 11 common variants convincingly associated with coronary artery disease (CAD), a modest number considering the apparent heritability of CAD. All of these variants have been discovered in European populations. We report a meta-analysis of four large genome-wide association studies of CAD, with ∼575,000 genotyped SNPs in a discovery dataset comprising 15,420 individuals with CAD (cases) (8,424 Europeans and 6,996 South Asians) and 15,062 controls. There was little evidence for ancestry-specific associations, supporting the use of combined analyses. Replication in an independent sample of 21,408 cases and 19,185 controls identified five loci newly associated with CAD (P < 5 × 10(-8) in the combined discovery and replication analysis): LIPA on 10q23, PDGFD on 11q22, ADAMTS7-MORF4L1 on 15q25, a gene rich locus on 7q22 and KIAA1462 on 10p11. The CAD-associated SNP in the PDGFD locus showed tissue-specific cis expression quantitative trait locus effects. These findings implicate new pathways for CAD susceptibility.
    Nature Genetics 03/2011; DOI:10.1038/ng.782 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE The metabolic syndrome (MetS) is defined as concomitant disorders of lipid and glucose metabolism, central obesity, and high blood pressure, with an increased risk of type 2 diabetes and cardiovascular disease. This study tests whether common genetic variants with pleiotropic effects account for some of the correlated architecture among five metabolic phenotypes that define MetS. RESEARCH DESIGN AND METHODS Seven studies of the STAMPEED consortium, comprising 22,161 participants of European ancestry, underwent genome-wide association analyses of metabolic traits using a panel of ∼2.5 million imputed single nucleotide polymorphisms (SNPs). Phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS in pairwise combinations. Individuals exceeding the NCEP thresholds for both traits of a pair were considered affected. RESULTS Twenty-nine common variants were associated with MetS or a pair of traits. Variants in the genes LPL, CETP, APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and LOC100129150 were further tested for their association with individual qualitative and quantitative traits. None of the 16 top SNPs (one per gene) associated simultaneously with more than two individual traits. Of them 11 variants showed nominal associations with MetS per se. The effects of 16 top SNPs on the quantitative traits were relatively small, together explaining from ∼9% of the variance in triglycerides, 5.8% of high-density lipoprotein cholesterol, 3.6% of fasting glucose, and 1.4% of systolic blood pressure. CONCLUSIONS Qualitative and quantitative pleiotropic tests on pairs of traits indicate that a small portion of the covariation in these traits can be explained by the reported common genetic variants.
    Diabetes 03/2011; 60(4):1329-39. DOI:10.2337/db10-1011 · 8.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Population structure, including population stratification and cryptic relatedness, can cause spurious associations in genome-wide association studies (GWAS). Usually, the scaled median or mean test statistic for association calculated from multiple single-nucleotide-polymorphisms across the genome is used to assess such effects, and 'genomic control' can be applied subsequently to adjust test statistics at individual loci by a genomic inflation factor. Published GWAS have clearly shown that there are many loci underlying genetic variation for a wide range of complex diseases and traits, implying that a substantial proportion of the genome should show inflation of the test statistic. Here, we show by theory, simulation and analysis of data that in the absence of population structure and other technical artefacts, but in the presence of polygenic inheritance, substantial genomic inflation is expected. Its magnitude depends on sample size, heritability, linkage disequilibrium structure and the number of causal variants. Our predictions are consistent with empirical observations on height in independent samples of ~4000 and ~133,000 individuals.
    European journal of human genetics: EJHG 03/2011; 19(7):807-12. DOI:10.1038/ejhg.2011.39 · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The causal nature of associations between circulating triglycerides, insulin resistance, and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes and raise normal fasting glucose levels and hepatic insulin resistance. We tested 10 common genetic variants robustly associated with circulating triglyceride levels against the type 2 diabetes status in 5,637 case and 6,860 control subjects and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8,271 nondiabetic individuals from four studies. Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (SD 0.59 [95% CI 0.52-0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that the carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio [OR] 0.99 [95% CI 0.97-1.01]; P = 0.26). In nondiabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (SD 0.00 per weighted allele [95% CI -0.01 to 0.02]; P = 0.72) or increased fasting glucose levels (0.00 [-0.01 to 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose, or fasting insulin and, for diabetes, showed a trend toward a protective association (OR per 1-SD increase in log(10) triglycerides: 0.61 [95% CI 0.45-0.83]; P = 0.002). Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes or raise fasting glucose or fasting insulin levels in nondiabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
    Diabetes 02/2011; 60(3):1008-18. DOI:10.2337/db10-1317 · 8.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We report a genome-wide association study for glycemic response to metformin in 1,024 Scottish individuals with type 2 diabetes with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. In a combined meta-analysis, we identified a SNP, rs11212617, associated with treatment success (n = 3,920, P = 2.9 × 10(-9), odds ratio = 1.35, 95% CI 1.22-1.49) at a locus containing ATM, the ataxia telangiectasia mutated gene. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMP-activated protein kinase in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene alters glycemic response to metformin.
    Nature Genetics 02/2011; 43(2):117-20. DOI:10.1038/ng.735 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY: The Sample avAILability system-SAIL-is a web based application for searching, browsing and annotating biological sample collections or biobank entries. By providing individual-level information on the availability of specific data types (phenotypes, genetic or genomic data) and samples within a collection, rather than the actual measurement data, resource integration can be facilitated. A flexible data structure enables the collection owners to provide descriptive information on their samples using existing or custom vocabularies. Users can query for the available samples by various parameters combining them via logical expressions. The system can be scaled to hold data from millions of samples with thousands of variables. AVAILABILITY: SAIL is available under Aferro-GPL open source license: https://github.com/sail.
    Bioinformatics 02/2011; 27(4):589-91. DOI:10.1093/bioinformatics/btq693 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An age-dependent association between variation at the FTO locus and BMI in children has been suggested. We meta-analyzed associations between the FTO locus (rs9939609) and BMI in samples, aged from early infancy to 13 years, from 8 cohorts of European ancestry. We found a positive association between additional minor (A) alleles and BMI from 5.5 years onwards, but an inverse association below age 2.5 years. Modelling median BMI curves for each genotype using the LMS method, we found that carriers of minor alleles showed lower BMI in infancy, earlier adiposity rebound (AR), and higher BMI later in childhood. Differences by allele were consistent with two independent processes: earlier AR equivalent to accelerating developmental age by 2.37% (95% CI 1.87, 2.87, p = 10(-20)) per A allele and a positive age by genotype interaction such that BMI increased faster with age (p = 10(-23)). We also fitted a linear mixed effects model to relate genotype to the BMI curve inflection points adiposity peak (AP) in infancy and AR. Carriage of two minor alleles at rs9939609 was associated with lower BMI at AP (-0.40% (95% CI: -0.74, -0.06), p = 0.02), higher BMI at AR (0.93% (95% CI: 0.22, 1.64), p = 0.01), and earlier AR (-4.72% (-5.81, -3.63), p = 10(-17)), supporting cross-sectional results. Overall, we confirm the expected association between variation at rs9939609 and BMI in childhood, but only after an inverse association between the same variant and BMI in infancy. Patterns are consistent with a shift on the developmental scale, which is reflected in association with the timing of AR rather than just a global increase in BMI. Results provide important information about longitudinal gene effects and about the role of FTO in adiposity. The associated shifts in developmental timing have clinical importance with respect to known relationships between AR and both later-life BMI and metabolic disease risk.
    PLoS Genetics 02/2011; 7(2):e1001307. DOI:10.1371/journal.pgen.1001307 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed a genome-wide association study (GWAS) in 1705 Parkinson's disease (PD) UK patients and 5175 UK controls, the largest sample size so far for a PD GWAS. Replication was attempted in an additional cohort of 1039 French PD cases and 1984 controls for the 27 regions showing the strongest evidence of association (P< 10(-4)). We replicated published associations in the 4q22/SNCA and 17q21/MAPT chromosome regions (P< 10(-10)) and found evidence for an additional independent association in 4q22/SNCA. A detailed analysis of the haplotype structure at 17q21 showed that there are three separate risk groups within this region. We found weak but consistent evidence of association for common variants located in three previously published associated regions (4p15/BST1, 4p16/GAK and 1q32/PARK16). We found no support for the previously reported SNP association in 12q12/LRRK2. We also found an association of the two SNPs in 4q22/SNCA with the age of onset of the disease.
    Human Molecular Genetics 01/2011; 20(2):345-53. DOI:10.1093/hmg/ddq469 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis--MCTA) permits immediate replication of eQTLs using co-twins (93%-98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%-20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.
    PLoS Genetics 01/2011; 7(2):e1002003. DOI:10.1371/journal.pgen.1002003 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10(-8) in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10(-6) overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.
    Nature Genetics 01/2011; 43(8):761-7. DOI:10.1038/ng.873 · 29.65 Impact Factor

Publication Stats

36k Citations
4,377.15 Total Impact Points

Top Journals

Institutions

  • 2003–2015
    • University of Oxford
      • • Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)
      • • Wellcome Trust Centre for Human Genetics
      Oxford, England, United Kingdom
  • 2013
    • University of Leicester
      • Department of Cardiovascular Sciences
      Leiscester, England, United Kingdom
    • National Cancer Institute (USA)
      • Division of Cancer Epidemiology and Genetics
      Maryland, United States
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 2002–2013
    • University of Exeter
      • Peninsula College of Medicine and Dentistry
      Exeter, England, United Kingdom
    • St. Mary’s Hospital for Children
      New York City, New York, United States
  • 2012
    • University of Queensland
      Brisbane, Queensland, Australia
    • Queensland Institute of Medical Research
      • Genetic Epidemiology Laboratory
      Brisbane, Queensland, Australia
    • McGill University
      • Department of Epidemiology, Biostatistics and Occupational Health
      Montréal, Quebec, Canada
    • Medical Research Council (UK)
      Londinium, England, United Kingdom
    • Wellcome Trust Sanger Institute
      Cambridge, England, United Kingdom
  • 2011
    • University Hospital of Lausanne
      Lausanne, Vaud, Switzerland
    • University of Bristol
      • School of Social and Community Medicine
      Bristol, ENG, United Kingdom
  • 2010
    • University Hospital Regensburg
      Ratisbon, Bavaria, Germany
  • 2001–2010
    • Imperial College London
      • • Department of Epidemiology and Biostatistics
      • • Faculty of Medicine
      London, ENG, United Kingdom
    • MRC Clinical Sciences Centre
      London Borough of Harrow, England, United Kingdom
  • 2009
    • IDIBAPS August Pi i Sunyer Biomedical Research Institute
      Barcino, Catalonia, Spain
    • Erasmus Universiteit Rotterdam
      • Department of Epidemiology
      Rotterdam, South Holland, Netherlands
    • NIHR Oxford Biomedical Research
      Oxford, England, United Kingdom
  • 2007
    • University of Helsinki
      Helsinki, Uusimaa, Finland
  • 2006
    • University of London
      Londinium, England, United Kingdom
    • Shanghai Jiao Tong University
      Shanghai, Shanghai Shi, China
  • 2005–2006
    • Newcastle University
      Newcastle-on-Tyne, England, United Kingdom
    • University of Oulu
      Uleoborg, Northern Ostrobothnia, Finland
  • 2004
    • Wellcome Trust
      Londinium, England, United Kingdom
  • 2001–2003
    • Imperial Valley College
      IPL, California, United States