Kunihiro Hongo

Tottori University, Tottori, Tottori-ken, Japan

Are you Kunihiro Hongo?

Claim your profile

Publications (27)89.95 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The co-chaperonin GroES (Hsp10) works with chaperonin GroEL (Hsp60) to facilitate the folding reactions of various substrate proteins. Upon forming a specific disordered state in guanidine hydrochloride, GroES is able to self-assemble into amyloid fibrils similar to those observed in various neurodegenerative diseases. GroES therefore is a suitable model system to understand the mechanism of the amyloid fibril formation. Here, we determined the cytotoxicity of intermediate GroES species formed during fibrillation. We found that neuronal cell death was provoked by soluble intermediate aggregates of GroES, rather than mature fibrils. The data suggest that amyloid fibril formation and its associated toxicity toward cell might be an inherent property of proteins irrespective of their correlation with specific diseases. Furthermore, in the presence of anthocyanins that are abundant in bilberry, we could inhibit both fibril formation and the toxicity of intermediates. Addition of bilberry anthocyanins dissolved the toxic intermediates and fibrils, and the toxicity of the intermediates was thus neutralized. Our results suggest that anthocyanins may display a general and potent inhibitory effect on the amyloid fibril formation of various conformational disease-causing proteins.
    Biochemistry 12/2013; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: α-Synuclein (140 amino acids), one of the causative proteins of Parkinson's disease, forms amyloid fibrils in brain neuronal cells. In order to further explore the contributions of the C-terminal region of α-synuclein in fibril formation and also to understand the overall mechanism of fibril formation, we reduced the number of negatively charged residues in the C-terminal region using mutagenesis. Mutants with negative charges deleted displayed accelerated fibril formation compared with wild-type α-synuclein, demonstrating that negative charges located in the C-terminal region of α-synuclein modulate fibril formation. Additionally, when tyrosine residues located at position 125, 133, and 136 in the C-terminal region were changed to alanine residue(s), we found that all mutants containing the Tyr136Ala mutation showed delays in fibril formation compared with wild type. Mutation of Tyr136 to various amino acids revealed that aromatic residues located at this position act favorably toward fibril formation. In mutants where charge neutralization and tyrosine substitution were combined, we found that these two factors influence fibril formation in complex fashion. These findings highlight the importance of negative charges and aromatic side chains in the C-terminal region of α-synuclein in fibril formation.
    Brain and behavior. 09/2012; 2(5):595-605.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prefoldin is a molecular chaperone found in the archaeal and eukaryotic cytosol. Prefoldin can stabilize tentatively nascent polypeptide chains or non-native forms of mainly cytoskeletal proteins, which are subsequently delivered to group II chaperonin to accomplish their precise folding. However, the detailed mechanism is not well known, especially with regard to endogenous substrate proteins. Here, we report the effects of Pyrococcus furiosus prefoldin (PfuPFD) on the refolding reactions of Pyrococcus furiosus citrate synthase (PfuCS) and Aequorea enhanced green fluorescence protein (GFPuv) in the presence or absence of Pyrococcus furiosus chaperonin (PfuCPN). We confirmed that both PfuPFD and PfuCPN interacted with PfuCS and GFPuv refolding intermediates. However, the interactions between chaperone and substrate were different for each case, as was the final effect on the refolding reaction. Effects on the refolding reaction varied from passive effects such as ATP-dependent binding and release (PfuCPN towards GFPuv) and binding which leads to folding arrest (PfuPFD towards GFPuv), to active effects such as net increase in thermal stability (PfuCPN towards PfuCS) to an active improvement in refolding yield (PfuPFD towards PfuCS). We postulate that differences in molecular interactions between substrate and chaperone lead to these differences in chaperoning effects.
    Journal of Biochemistry 12/2011; 151(4):383-90. · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Co-chaperonin GroES from Escherichia coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i.e. the completely disordered state in guanidine hydrochloride, this molecular chaperone forms amyloid fibrils similar to those observed in various neurodegenerative diseases. Thus, this is a good model system to understand the amyloid fibril formation mechanism of intrinsically disordered proteins. Here, we identified a critical intermediate of GroES in the early stages of this fibril formation using NMR and mass spectroscopy measurements. A covalent rearrangement of the polypeptide bond at Asn(45)-Gly(46) and/or Asn(51)-Gly(52) that eventually yield β-aspartic acids via deamidation of asparagine was observed to precede fibril formation. Mutation of these asparagines to alanines resulted in delayed nucleus formation. Our results indicate that peptide bond rearrangement at Asn-Gly enhances the formation of GroES amyloid fibrils. The finding provides a novel insight into the structural process of amyloid fibril formation from a disordered state, which may be applicable to intrinsically disordered proteins in general.
    Journal of Biological Chemistry 06/2011; 286(24):21796-805. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Co-chaperonin GroES from Escherichia coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i.e. the completely disordered state in guanidine hydrochloride, this molecular chaperone forms amyloid fibrils similar to those observed in various neurodegenerative diseases. Thus, this is a good model system to understand the amyloid fibril formation mechanism of intrinsically disordered proteins. Here, we identified a critical intermediate of GroES in the early stages of this fibril formation using NMR and mass spectroscopy measurements. A covalent rearrangement of the polypeptide bond at Asn45-Gly46 and/or Asn51-Gly52 that eventually yield β-aspartic acids via deamidation of asparagine was observed to precede fibril formation. Mutation of these asparagines to alanines resulted in delayed nucleus formation. Our results indicate that peptide bond rearrangement at Asn-Gly enhances the formation of GroES amyloid fibrils. The finding provides a novel insight into the structural process of amyloid fibril formation from a disordered state, which may be applicable to intrinsically disordered proteins in general.
    Journal of Biological Chemistry 06/2011; 286(24):21796-21805. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Escherichia coli chaperonin GroEL subunit consists of three domains linked via two hinge regions, and each domain is responsible for a specific role in the functional mechanism. Here, we have used circular permutation to study the structural and functional characteristics of the GroEL subunit. Three soluble, partially active mutants with polypeptide ends relocated into various positions of the apical domain of GroEL were isolated and studied. The basic functional hallmarks of GroEL (ATPase and chaperoning activities) were retained in all three mutants. Certain functional characteristics, such as basal ATPase activity and ATPase inhibition by the cochaperonin GroES, differed in the mutants while at the same time, the ability to facilitate the refolding of rhodanese was roughly equal. Stopped-flow fluorescence experiments using a fluorescent variant of the circularly permuted GroEL CP376 revealed that a specific kinetic transition that reflects movements of the apical domain was missing in this mutant. This mutant also displayed several characteristics that suggested that the apical domains were behaving in an uncoordinated fashion. The loss of apical domain coordination and a concomitant decrease in functional ability highlights the importance of certain conformational signals that are relayed through domain interlinks in GroEL. We propose that circular permutation is a very versatile tool to probe chaperonin structure and function.
    PLoS ONE 01/2011; 6(10):e26462. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: alpha-Synuclein is one of the causative proteins of the neurodegenerative disorder, Parkinson's disease. Deposits of alpha-synuclein called Lewy bodies are a hallmark of this disorder, which is implicated in its progression. In order to understand the mechanism of amyloid fibril formation of alpha-synuclein in more detail, in this study we have isolated a specific, ~20 residue peptide region of the alpha-synuclein fibril core, using a combination of Edman degradation and mass-spectroscopy analyses of protease-resistant samples. Starting from this core peptide sequence, we then synthesized a series of peptides that undergo aggregation and fibril formation under similar conditions. Interestingly, in a derivative peptide where a crucial phenylalanine residue was changed to a glycine, the ability to initiate spontaneous fibril formation was abolished, while the ability to extend from preexisting fibril seeds was conserved. This fibril extension occurred irrespective of the source of the initial fibril seed, as demonstrated in experiments using fibril seeds of insulin, lysozyme, and GroES. This interesting ability suggests that this peptide might form the basis for a possible diagnostic tool useful in detecting the presence of various fibrillogenic factors.
    Biochimica et Biophysica Acta 10/2010; 1804(10):2077-87. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Compared to the group I chaperonins such as Escherichia coli GroEL, which facilitate protein folding, many aspects of the functional mechanism of archaeal group II chaperonins are still unclear. Here, we show that monomeric forms of archaeal group II chaperonin alpha and beta from Thermoplasma acidophilum may be purified stably and that these monomers display a strong AMPase activity in the presence of divalent ions, especially Co(2+) ion, in addition to ATPase and ADPase activities. Furthermore, other nucleoside phosphates (guanosine, cytidine, uridine, and inosine phosphates) in addition to adenine nucleotides were hydrolyzed. From analyses of the products of hydrolysis using HPLC, it was revealed that the monomeric chaperonin successively hydrolyzed the phosphoanhydride and phosphoester bonds of ATP in the order of gamma to alpha. This activity was strongly suppressed by point mutation of specific essential aspartic acid residues. Although these archaeal monomeric chaperonins did not alter the refolding of MDH, their novel versatile nucleotide hydrolysis activity might fulfill a new function. Western blot experiments demonstrated that the monomeric chaperonin subunits were also present in lysed cell extracts of T. acidophilum, and partially purified native monomer displayed Co(2+)-dependent AMPase activity.
    Biochemistry 10/2009; 48(40):9405-15. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is difficult to determine the structural stability of the individual subunits or protomers of many proteins in the cell that exist in an oligomeric or complexed state. In this study, we used single-molecule force spectroscopy on seven subunits of covalently linked cochaperonin GroES (ESC7) to evaluate the structural stability of the subunit. A modified form of ESC7 was immobilized on a mica surface. The force-extension profile obtained from the mechanical unfolding of this ESC7 showed a distinctive sawtooth pattern that is typical for multimodular proteins. When analyzed according to the worm-like chain model, the contour lengths calculated from the peaks in the profile suggested that linked-GroES subunits unfold in distinct steps after the oligomeric ring structure of ESC7 is disrupted. The evidence that structured subunits of ESC7 withstand external force to some extent even after the perturbation of the oligomeric ring structure suggests that a stable monomeric intermediate is an important component of the equilibrium unfolding reaction of GroES.
    Protein Science 02/2009; 18(1):252-7. · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The subunit structure of chaperonin GroEL is divided into three domains; the apical domain, the intermediate domain, and the equatorial domain. Each domain has a specific role in the chaperonin mechanism. The ‘hinge 2’ site of GroEL contains three glycine residues, Gly192, Gly374, and Gly375, connecting the apical domain and the intermediate domain. In this study, to understand the importance of the hinge 2 amino acid residues in chaperonin function, we substituted each of these three glycine residues to tryptophan. The GroEL mutants G374W and G375W were functionally similar to wild-type GroEL. However, GroEL G192W showed a significant decrease in the ability to assist the refolding of stringent substrate proteins. Interestingly, from biochemical assays and characterization using surface plasmon resonance analysis, we found that GroEL G192W was capable of binding GroES even in the absence of ATP to form a very stable GroEL–GroES complex, which could not be dissociated even upon addition of ATP. Electron micrographs showed that GroEL G192W intrinsically formed an asymmetric double ring structure with one ring locked in the ‘open’ conformation, and it is postulated that GroES binds to this open ring in the absence of ATP. Trans-binding of both substrate protein and GroES was observed for this binary complex, but simultaneous binding of both substrate and GroES (a mechanism that ensures substrate encapsulation) was impaired. We postulate that alteration of Gly192 severely compromises an essential movement that allows efficient encapsulation of unfolded protein intermediates.
    Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics. 01/2009;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The functional characteristics of group II chaperonins, especially those from archaea, have not been elucidated extensively. Here, we performed a detailed functional characterization of recombinant chaperonin alpha subunits (16-mer) (Ta-cpn alpha) from the thermophilic archaea Thermoplasma acidophilum as a model protein of archaeal group II chaperonins. Recombinant Ta-cpn alpha formed an oligomeric ring structure similar to that of native protein, and displayed an ATP hydrolysis activity (optimal temperature: 60 degrees C) in the presence of either magnesium, manganese or cobalt ions. Ta-cpn alpha was able to bind refolding intermediates of Thermus MDH and GFP in the absence of ATP, and to promote the refolding of Thermus MDH at 50 degrees C in the presence of Mg2+-, Mn2+-, or Co2+-ATP. Ta-cpn alpha also prevented thermal aggregation of rhodanese and luciferase at 50 degrees C. Interestingly, Ta-cpn alpha in the presence of Mn2+ ion showed an increased hydrophobicity, which correlated with an increased efficiency in substrate protein binding. Our finding that Ta-cpn alpha chaperonin system displays folding assistance ability with ATP-dependent substrate release may provide a detailed look at the potential functional capabilities of archaeal chaperonins.
    Journal of Biochemistry 05/2008; 143(4):505-15. · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock protein 10 (hsp10) is a member of the molecular chaperones and works with hsp60 in mediating various protein folding reactions. GroES is a representative protein of hsp10 from Escherichia coli. Recently, we found that GroES formed a typical amyloid fibril from a guanidine hydrochloride (Gdn-HCl) unfolded state at neutral pH. Here, we report that other hsp10 homologues, such as human hsp10 (Hhsp10), rat mitochondrial hsp10 (Rhsp10), Gp31 from T4 phage, and hsp10 from the hyperthermophilic bacteria Thermotoga maritima, also form amyloid fibrils from an unfolded state. Interestingly, whereas GroES formed fibrils from either the Gdn-HCl unfolded state (at neutral pH) or the acidic unfolded state (at pH 2.0-3.0), Hhsp10, Rhsp10, and Gp31 formed fibrils from only the acidic unfolded state. Core peptide regions of these protein fibrils were determined by proteolysis treatment followed by a combination of Edman degradation and mass spectroscopy analyses of the protease-resistant peptides. The core peptides of GroES fibrils were identical for fibrils formed from the Gdn-HCl unfolded state and those formed from the acidic unfolded state. However, a peptide with a different sequence was isolated from fibrils of Hhsp10 and Rhsp10. With the use of synthesized peptides of the determined core regions, it was also confirmed that the identified regions were capable of fibril formation. These findings suggested that GroES homologues formed typical amyloid fibrils under acidic unfolding conditions but that the fibril core structures were different, perhaps owing to differences in local amino acid sequences.
    Journal of Molecular Biology 05/2008; 377(5):1593-606. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The final 23 residues in the C-terminal region of Escherichia coli GroEL are invisible in crystallographic analyses due to high flexibility. To probe the functional role of these residues in the chaperonin mechanism, we generated and characterized C-terminal truncated, double ring, and single ring mutants of GroEL. The ability to assist the refolding of substrate proteins rhodanese and malate dehydrogenase decreased suddenly when 23 amino acids were truncated, indicating that a sudden change in the environment within the central cavity had occurred. From further experiments and analyses of the hydropathy of the C-terminal region, we focused on the hydrophilicity of the sequence region (26 KNDAAD 531 and generated two GroEL mutants where these residues were changed to a neutral hydropathy sequence (526 GGGAAG 531) and a hydrophobic sequence (526 IGIAAI 531), respectively. Very interestingly, the two mutants were found to be defective in function both in vitro and in vivo. Deterioration of function was not observed in mutants where this region was replaced by a scrambled (526 NKADDA 531) or homologous (526 RQEGGE 531) sequence, indicating that the hydrophilicity of this sequence was important. These results highlight the importance of the hydrophilic nature of 526 KNDAAD 531 residues in the flexible C-terminal region for proper protein folding within the central cavity of GroEL.
    Journal of Biological Chemistry 04/2008; 283(11):6886-96. · 4.65 Impact Factor
  • Source
    Journal of Proteomics & Bioinformatics 01/2008;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to understand how inter-subunit association stabilizes oligomeric proteins, a single polypeptide chain variant of heptameric co-chaperonin GroES (tandem GroES) was constructed from Escherichia coli heptameric GroES by linking consecutively the C-terminal of one subunit to the N-terminal of the adjacent subunit with a small linker peptide. The tandem GroES (ESC7) showed properties similar to wild-type GroES in structural aspects and co-chaperonin activity. In unfolding and refolding equilibrium experiments using guanidine hydrochloride (Gdn-HCl) as a denaturant at a low protein concentration (50 microg ml(-1)), ESC7 showed a two-state transition with a greater resistance toward Gdn-HCl denaturation (Cm=1.95 M) compared to wild-type GroES (Cm=1.1 M). ESC7 was found to be about 10 kcal mol(-1) more stable than the wild-type GroES heptamer at 50 microg ml(-1). Kinetic unfolding and refolding experiments of ESC7 revealed that the increased stability was mainly attributed to a slower unfolding rate. Also a transient intermediate was detected in the refolding reaction. Interestingly, at the physiological GroES concentration (>1 mg ml(-1)), the free energy of unfolding for GroES heptamer exceeded that for ESC7. These results showed that at low protein concentrations (<1 mg ml(-1)), the covalent linking of subunits contributes to the stability but also complicates the refolding kinetics. At physiological concentrations of GroES, however, the oligomeric state is energetically preferred and the advantages of covalent linkage are lost. This finding highlights a possible advantage in transitioning from multi-domain proteins to oligomeric proteins with small subunits in order to improve structural and kinetic stabilities.
    Journal of Molecular Biology 05/2007; 367(4):1171-85. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we attempted to determine the specific roles of the numerous conformational changes that are observed in the bacterial chaperonin GroEL, by performing stopped-flow experiments on GroEL R231W in the presence of a refolding substrate protein. The apparent rate of one kinetic phase was decreased by approximately 25% in the presence of prebound unfolded malate dehydrogenase while another phase was suppressed completely under the same conditions, reflecting different effects of the unfolded protein on multiple structural transitions within GroEL. The addition of cochaperonin GroES counteracts the effect of the bound substrate protein in the former case, but had no effect on the latter, more extensive suppression. Using a chemically modified form of GroEL R231W which is incapable of releasing substrate proteins at low temperatures, we identified a conformational transition that is implicated in the release of substrate proteins. Parts of the actual process of substrate protein release were also observed through fluorescence resonance energy transfer experiments involving GroEL and labeled substrate protein. Analysis of the energy transfer data revealed an interesting relationship between substrate protein displacement and a specific structural transition in the GroEL apical domain.
    Journal of Biochemistry 04/2006; 139(3):407-19. · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel ATPase activity that was strongly activated in the presence of either cobalt or manganese ion was discovered in the chaperonin from hyperthermophilic Pyrococcus furiosus (Pfu-cpn). Surprisingly, a significant ADPase activity was also detected under the same conditions. A more extensive search revealed similar nucleotide hydrolysis activities in other thermostable chaperonins. Chaperonin activity, i.e., thermal stabilization and refolding of malate dehydrogenase from the guanidine-hydrochloride unfolded state were also detected for Pfu-cpn under the same conditions. We propose that the novel cobalt/manganese-dependent ATP/ADPase activity may be a common trait of various thermostable chaperonins.
    FEBS Letters 02/2006; 580(1):34-40. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-synuclein is one of the causative proteins of familial Parkinson disease, which is characterized by neuronal inclusions named Lewy bodies. Lewy bodies include not only alpha-synuclein but also aggregates of other proteins. This fact raises a question as to whether the formation of alpha-synuclein amyloid fibrils in Lewy bodies may occur via interaction with fibrils derived from different proteins. To probe this hypothesis, we investigated in vitro fibril formation of human alpha-synuclein in the presence of preformed fibril seeds of various different proteins. We used three proteins, Escherichia coli chaperonin GroES, hen lysozyme, and bovine insulin, all of which have been shown to form amyloid fibrils. Very surprisingly, the formation of alpha-synuclein amyloid fibril was accelerated markedly in the presence of preformed seeds of GroES, lysozyme, and insulin fibrils. The structural characteristics of the natively unfolded state of alpha-synuclein may allow binding to various protein particles, which in turn triggers the formation (extension) of alpha-synuclein amyloid fibrils. This finding is very important for understanding the molecular mechanism of Parkinson disease and also provides interesting implications into the mechanism of transmissible conformational diseases.
    Journal of Biological Chemistry 12/2005; 280(46):38609-16. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: α-Synuclein is one of the causative proteins of familial Parkinson disease, which is characterized by neuronal inclusions named Lewy bodies. Lewy bodies include not only α-synuclein but also aggregates of other proteins. This fact raises a question as to whether the formation of α-synuclein amyloid fibrils in Lewy bodies may occur via interaction with fibrils derived from different proteins. To probe this hypothesis, we investigated in vitro fibril formation of human α-synuclein in the presence of preformed fibril seeds of various different proteins. We used three proteins, Escherichia coli chaperonin GroES, hen lysozyme, and bovine insulin, all of which have been shown to form amyloid fibrils. Very surprisingly, the formation of α-synuclein amyloid fibril was accelerated markedly in the presence of preformed seeds of GroES, lysozyme, and insulin fibrils. The structural characteristics of the natively unfolded state of α-synuclein may allow binding to various protein particles, which in turn triggers the formation (extension) of α-synuclein amyloid fibrils. This finding is very important for understanding the molecular mechanism of Parkinson disease and also provides interesting implications into the mechanism of transmissible conformational diseases.
    Journal of Biological Chemistry 11/2005; 280(46):38609-38616. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chaperonin 10 (cpn10) is a well-conserved subgroup of the molecular chaperone family. GroES, the cpn10 from Escherichia coli, is composed of seven 10kDa subunits, which form a dome-like oligomeric ring structure. From our previous studies, it was found that GroES unfolded completely through a three-state unfolding mechanism involving a partly folded monomer and that this reaction was reversible. In order to study whether these unfolding-refolding characteristics were conserved in other cpn10 proteins, we have examined the structural stabilities of cpn10s from rat mitochondria (RatES) and from hyperthermophilic eubacteria Thermotoga maritima (TmaES), and compared the values to those of GroES. From size-exclusion chromatography experiments in the presence of various concentrations of Gdn-HCl at 25 degrees C, both cpn10s showed unfolding-refolding characteristics similar to those of GroES, i.e. two-stage unfolding reactions that include formation of a partially folded monomer. Although the partially folded monomer of TmaES was considerably more stable compared to GroES and RatES, it was found that the overall stabilities of all three cpn10s were achieved significantly by inter-subunit interactions. We studied this contribution of inter-subunit interactions to overall stability in the GroES heptamer by introducing a mutation that perturbed subunit association, specifically the interaction between the two anti-parallel beta-strands at the N and C termini of this protein. From analyses of the mutants' stabilities, it was revealed that the anti-parallel beta-strands at the subunit interface are crucial for subunit association and stabilization of the heptameric GroES protein.
    Journal of Molecular Biology 01/2005; 344(4):1123-33. · 3.91 Impact Factor

Publication Stats

194 Citations
89.95 Total Impact Points

Institutions

  • 1994–2012
    • Tottori University
      • • Department of Biomedical Sciences
      • • Faculty of Engineering
      • • Department of Chemistry and Biotechnology
      Tottori, Tottori-ken, Japan