Chien-Fu Hung

Johns Hopkins University, Baltimore, Maryland, United States

Are you Chien-Fu Hung?

Claim your profile

Publications (186)715.85 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Predicting severity of pancreatitis is an important goal. Clinicians are still searching for novel and simple biomarkers that can better predict persistent organ failure (OF). Lipoproteins, especially high-density lipoprotein (HDL), and apolipoprotein A-I (APO A-I), have been shown to have anti-inflammation effects in various clinical settings. Severe acute pancreatitis (SAP) is associated with hypo-lipoproteinemia. We studied whether the concentrations of HDL and APO A-I can predict persistent OF in patients with predicted SAP admitted to the ICU. In 66 patients with predicted SAP, we prospectively evaluated the relationship between lipid levels, inflammatory cytokines and clinical outcomes, including persistent OF and hospital mortality. Blood samples were obtained within 24 hours of admission to the ICU. HDL and APO A-I levels were inversely correlated with various disease severity scores. Patients with persistent OF had lower levels of HDL and APO A-I, while those with transient OF had lower levels of interleukin-6, tumor necrosis factor-α and lower rates of hospital mortality. Meanwhile, hospital non-survivors had lower concentrations of HDL, and APO A-I compared to the survivors. By using the area under the receiver operating characteristic (AUROC) curve, both HDL and APO A-I demonstrated an excellent discriminative power for predicting persistent OF among all patients (AUROC 0.912 and 0.898 respectively) and among those with OF (AUROC 0.904 and 0.895 respectively). Pair-wise comparison of AUROC showed that both HDL and APO A-I had better discriminative power than C-reactive protein to predict persistent OF. Serum levels of HDL and APO A-I at admission to the ICU are inversely correlated with disease severity in patients with predicted SAP and can predict persistent OF in this clinical setting.
    Critical care (London, England) 12/2015; 19(1):832. DOI:10.1186/s13054-015-0832-x · 4.48 Impact Factor
  • Sung Yong Lee · Kyung Hoon Min · Gyu Young Hur · Je Hyeong Kim · Jae Jeong Shim · Kyung Ho Kang · Kye Young Lee · Chien-Fu Hung · TC Wu ·

    11/2015; 3(Suppl 2):P364. DOI:10.1186/2051-1426-3-S2-P364
  • Sung-Jong Lee · TC Wu · Chien-Fu Hung ·

    11/2015; 3(Suppl 2):P365. DOI:10.1186/2051-1426-3-S2-P365
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persistent papillomas developed in ~10% of out-bred immune-competent SKH-1 mice following MusPV1 challenge of their tail, and in a similar fraction the papillomas were transient, suggesting potential as a model. However, papillomas only occurred in BALB/c or C57BL/6 mice depleted of T cells with anti-CD3 antibody, and they completely regressed within 8 weeks after depletion was stopped. Neither CD4+ nor CD8+ T cell depletion alone in BALB/c or C57BL/6 mice was sufficient to permit visible papilloma formation. However, low levels of MusPV1 were sporadically detected by either genomic DNA-specific PCR analysis of local skin swabs or in situ hybridization of the challenge site with an E6/E7 probe. After switching to CD3+ T cell depletion, papillomas appeared upon 14/15 of mice that had been CD4+ T cell depleted throughout the challenge phase, 1/15 of CD8+ T cell depleted mice, and none in mice without any prior T cell depletion. Both control animals and those depleted with CD8-specific antibody generated MusPV1 L1 capsid-specific antibodies, but not those depleted with CD4-specific antibody prior to T cell depletion with CD3 antibody. Thus, normal BALB/c or C57BL/6 mice eliminate the challenge dose, whereas infection is suppressed but not completely cleared if their CD4 or CD8 T cells are depleted, and recrudescence of MusPV1 is much greater in the former following treatment with CD3 antibody, possibly reflecting their failure to generate capsid antibody. Systemic vaccination of C57BL/6 mice with DNA vectors expressing MusPV1 E6 or E7 fused to calreticulin elicits potent CD8 T cell responses and these immunodominant CD8 T cell epitopes were mapped. Adoptive transfer of a MusPV1 E6-specific CD8+ T cell line controlled established MusPV1 infection and papilloma in RAG1-knockout mice. These findings suggest the potential of immunotherapy for HPV-related disease and the importance of host immunogenetics in the outcome of infection.
    PLoS Pathogens 10/2015; 11(10):e1005243. DOI:10.1371/journal.ppat.1005243 · 7.56 Impact Factor
  • Chen-Chun Lin · Chien-Fu Hung · Wei-Ting Chen · Shi-Ming Lin ·

    10/2015; DOI:10.1159/000367737

  • 10/2015; 3(10 Supplement):B33-B33. DOI:10.1158/2326-6074.TUMIMM14-B33
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Experimental design: Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc). Results: We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Conclusions: Our results support future clinical translation using cervicovaginal TA-HPV vaccination.
    Clinical Cancer Research 09/2015; DOI:10.1158/1078-0432.CCR-15-0234 · 8.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperthermic intraperitoneal chemotherapy is effective in treating various intra-abdominal malignancies. However, this therapeutic modality can only be performed during surgical operations and cannot be used repeatedly. We propose repeatedly noninvasive hyperthermia mediated by pegylated silica-core gold nanoshells (pSGNs) in vivo with external near-infrared (NIR) laser irradiation. This study demonstrated that repeated photothermal treatment can effectively eliminate intraperitoneal tumors in mouse ovarian cancer models without damage of normal tissues. By conjugating pSGNs with anti-human CD47 monoclonal antibody, a significant photoablative effect can be achieved using lower amount of pSGNs and shorter NIR laser irradiation. Conjugated pSGNs specifically targeted and bound to cancer cells inside the peritoneal cavity. Our results indicate the possibility of a noninvasive method of repeated hyperthermia and photoablative therapies using nanoparticles. This has substantial clinical potential in treating ovarian and other intraperitoneal cancers.
    Oncotarget 08/2015; 6(29). DOI:10.18632/oncotarget.4766 · 6.36 Impact Factor
  • Emily Robitschek · Chih-Ping Mao · Shiwen Peng · Chien-Fu Hung · TC Wu ·

    Cancer Research 08/2015; 75(15 Supplement):448-448. DOI:10.1158/1538-7445.AM2015-448 · 9.33 Impact Factor
  • Chih-Ping Mao · Chien-Fu Hung · TC Wu ·

    Cancer Research 08/2015; 75(15 Supplement):1342-1342. DOI:10.1158/1538-7445.AM2015-1342 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA vaccines have emerged as attractive candidates for the control of human papillomavirus (HPV)-associated malignancies. However, DNA vaccines suffer from limited immunogenicity and thus strategies to enhance DNA vaccine potency are needed. We have previously demonstrated that for DNA vaccines encoding HPV-16 E7 antigen (CRT/E7) linkage with calreticulin (CRT) linked enhances both the E7-specific CD8(+) T cell immune responses and antitumor effects against E7-expressing tumors. In the current study, we aim to introduce an approach to elicit potent CD4(+) T cell help for the enhancement of antigen-specific CD8(+) T cell immune responses generated by CRT/E7 DNA vaccination by using co-administration of a DNA vector expressing papillomavirus major and minor capsid antigens, L1 and L2. We showed that co-administration of vectors containing codon-optimized bovine papillomavirus type 1 (BPV-1) L1 and L2 in combination with DNA vaccines could elicit enhanced antigen-specific CD8(+) in both CRT/E7 and ovalbumin (OVA) antigenic systems. We also demonstrated that co-administration of vectors expressing BPV-1 L1 and/or L2 DNA with CRT/E7 DNA led to the generation of L1/L2-specific CD4(+) T cell immune responses and L1-specific neutralizing antibodies. Furthermore, we showed that co-administration with DNA encoding BPV1 L1 significantly enhances the therapeutic antitumor effects generated by CRT/E7 DNA vaccination. In addition, the observed enhancement of CD8(+) T cell immune responses by DNA encoding L1 and L2 was also found to extend to HPV-16 L1/L2 system. Our strategy elicits both potent neutralizing antibody and therapeutic responses and may potentially be extended to other antigenic systems beyond papillomavirus for the control of infection and/or cancer.
    Cell and Bioscience 06/2015; 5(1):35. DOI:10.1186/s13578-015-0025-y · 3.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is an urgent need for rapid methods to develop vaccines in response to emerging viral pathogens. Whole inactivated virus (WIV) vaccines represent an ideal strategy for this purpose; however, a universal method for producing safe and immunogenic inactivated vaccines is lacking. Conventional pathogen inactivation methods such as formalin, heat, ultraviolet light, and gamma rays cause structural alterations in vaccines that lead to reduced neutralizing antibody specificity, and in some cases, disastrous T helper type 2-mediated immune pathology. We have evaluated the potential of a visible ultrashort pulsed (USP) laser method to generate safe and immunogenic WIV vaccines without adjuvants. Specifically, we demonstrate that vaccination of mice with laser-inactivated H1N1 influenza virus at about a 10-fold lower dose than that required using conventional formalin-inactivated influenza vaccines results in protection against lethal H1N1 challenge in mice. The virus, inactivated by the USP laser irradiation, has been shown to retain its surface protein structure through hemagglutination assay. Unlike conventional inactivation methods, laser treatment did not generate carbonyl groups in protein, thereby reducing the risk of adverse vaccine-elicited T helper type 2 responses. Therefore, USP laser treatment is an attractive potential strategy to generate WIV vaccines with greater potency and safety than vaccines produced by current inactivation techniques.
    Journal of Biomedical Optics 05/2015; 20(5):51008. DOI:10.1117/1.JBO.20.5.051008 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunotherapy has emerged as a promising treatment strategy for the control of HPV-associated malignancies. Various therapeutic HPV vaccines have elicited potent antigen-specific CD8+ T cell mediated antitumor immune responses in preclinical models and are currently being tested in several clinical trials. Recent evidence indicates the importance of local immune activation, and higher number of immune cells in the site of lesion correlates with positive prognosis. Granulocyte macrophage colony-stimulating factor (GMCSF) has been reported to posses the ability to induce migration of antigen presentation cells and CD8+ T cells. Therefore, in the current study, we employ a combination of systemic therapeutic HPV DNA vaccination with local GMCSF application in the TC-1 tumor model. We show that intramuscular vaccination with CRT/E7 DNA followed by GMCSF intravaginal administration effectively controls cervicovaginal TC-1 tumors in mice. Furthermore, we observe an increase in the accumulation of E7-specific CD8+ T cells and dendritic cells in vaginal tumors following the combination treatment. In addition, we show that GMCSF induces activation and maturation in dendritic cells and promotes antigen cross-presentation. Our results support the clinical translation of the combination treatment of systemic therapeutic vaccination followed by local GMCSF administration as an effective strategy for tumor treatment. Copyright © 2015. Published by Elsevier Ltd.
    Vaccine 02/2015; 33(13). DOI:10.1016/j.vaccine.2015.02.019 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Bortezomib, a proteasome inhibitor and suberoylanilide hydroxamic acid (SAHA, also known as Vorinostat), a histone deacetylase inhibitor, have been recognized as potent chemotherapeutic drugs. Bortezomib and SAHA are FDA-approved for the treatment of cutaneous T cell lymphoma and multiple myeloma/mantle cell lymphoma, respectively. Furthermore, the combination of the bortezomib and SAHA has been tested in a variety of preclinical models and in clinical trials and may be ideal for the treatment of cancer. However, it remains unclear how this treatment strategy affects the host immune response against tumors.ResultsHere, we used a well-defined E6/E7-expressing tumor model to examine how the immune system can be motivated to act against tumor cells expressing tumor antigens. We demonstrate that the combination of bortezomib and SAHA elicits potent antitumor effects in TC-1 tumor-bearing mice. Additionally, we are the first to show that treatment with bortezomib and SAHA leads to tumor-specific immunity by rendering tumor cells more susceptible to killing by antigen-specific CD8+ T cells than treatment with either drug alone.Conclusions The current study serves an important foundation for the future clinical application of both drugs for the treatment of cervical cancer.
    Journal of Biomedical Science 01/2015; 22(1):7. DOI:10.1186/s12929-014-0111-1 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical studies suggest that responses to HPV16 E6E7L2 fusion protein (TA-CIN) vaccination alone are modest, and GPI-0100 is a well-tolerated, potent adjuvant. Here we sought to optimize both the immunogenicity of TA-CIN via formulation with GPI-0100 and treatment of HPV16+ cancer by vaccination after cisplatin chemotherapy. HPV16 neutralizing serum antibody titers, CD4+ T cell proliferative and E6/E7-specific CD8+ T cell responses were significantly enhanced when mice were vaccinated subcutaneously (s.c.) or intramuscularly (i.m.) with TA-CIN formulated with GPI-0100. Vaccination was tested for therapy of mice bearing syngeneic HPV16 E6/E7+ tumors (TC-1) either in the lung or subcutaneously. Mice treated with TA-CIN/GPI-0100 vaccination exhibited robust E7-specific CD8+ T cell responses, which were associated with reduced tumor burden in the lung, whereas mice receiving either component alone were similar to controls. Since vaccination alone was not sufficient for cure, mice bearing s.c. TC-1 tumor were first treated with two doses of cisplatin and then vaccinated. Vaccination with TA-CIN/GPI-0100 i.m. substantially retarded tumor growth and extended survival after cisplatin therapy. Injection of TA-CIN alone, but not GPI-0100, into the tumor (i.t.) was similarly efficacious after cisplatin therapy, but the mice eventually succumbed. However, tumor regression and extended remission was observed in 80% of the mice treated with cisplatin and then intra-tumoral TA-CIN/GPI-0100 vaccination. These mice also exhibited robust E7-specific CD8+ T cell and HPV16 neutralizing antibody responses. Thus formulation of TA-CIN with GPI-0100 and intra-tumoral delivery after cisplatin treatment elicits potent therapeutic responses in a murine model of HPV16+ cancer.
    PLoS ONE 01/2015; 10(1):e116389. DOI:10.1371/journal.pone.0116389 · 3.23 Impact Factor
  • Source
    Liwen Song · Ming-Chieh Yang · Jayne Knoff · T-C Wu · Chien-Fu Hung ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemotherapy and/or radiation therapy are widely used as cancer treatments, but the antitumor effects they produce can be enhanced when combined with immunotherapies. Chemotherapy kills tumor cells, but it also releases tumor antigen and allows the cross-presentation of the tumor antigen to trigger antigen-specific cell-mediated immune responses. Promoting CD4+ T helper cell immune responses can be used to enhance the cross-presentation of the tumor antigen following chemotherapy. The pan HLA-DR binding epitope (PADRE peptide) is capable of generating antigen-specific CD4+ T cells that bind various MHC class II molecules with high affinity and has been widely used in conjunction with vaccines to improve their potency by enhancing CD4+ T cell responses. Here, we investigated whether intratumoral injection of PADRE and the adjuvant CpG into HPV16 E7-expressing TC-1 tumors following cisplatin chemotherapy could lead to potent antitumor effects and antigen-specific cell-mediated immune responses. We observed that treatment with all three agents produced the most potent antitumor effects compared to pairwise combinations. Moreover, treatment with cisplatin, CpG and PADRE was able to control tumors at a distant site, indicating that our approach is able to induce cross-presentation of the tumor antigen. Treatment with cisplatin, CpG and PADRE also enhanced the generation of PADRE-specific CD4+ T cells and E7-specific CD8+ T cells and decreased the number of MDSCs in tumor loci. The treatment regimen presented here represents a universal approach to cancer control.
    PLoS ONE 12/2014; 9(12):e115711. DOI:10.1371/journal.pone.0115711 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Persistent infection by one of fifteen high risk human papillomavirus (hrHPV) types is a necessary but not sufficient cause of 5% of all human cancers. This provides a remarkable opportunity for cancer prevention via immunization. Since Harald zur Hausen's pioneering identification of hrHPV types 16 and 18, found in ~50% and ~20% of cervical cancers respectively, two prophylactic HPV vaccines containing virus-like particles (VLP) of each genotype have been widely licensed. These vaccines are beginning to impact infection and HPV-associated neoplasia rates after immunization campaigns in adolescents. Here we review recent progress and opportunities to better prevent HPV-associated cancers, including: broadening immune-protection to cover all hrHPV types, reducing the cost of HPV vaccines especially for developing countries that have the highest rates of cervical cancer, and immune-based treatment of established HPV infections. Screening based upon George Papanicolaou's cervical cytology testing, and more recently detection of hrHPV DNA/RNA, followed by ablative treatment of high grade cervical intraepithelial neoplasia (CIN2/3) have substantially reduced cervical cancer rates, and we examine their interplay with immune-based modalities for the prevention and eventual elimination of cervical cancer and other HPV-related malignancies. Copyright © 2014, American Association for Cancer Research.
    Cancer Prevention Research 12/2014; 8(2). DOI:10.1158/1940-6207.CAPR-14-0311 · 4.44 Impact Factor
  • Benjamin Yang · Jessica Jeang · Andrew Yang · T C Wu · Chien-Fu Hung ·
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA vaccination has emerged as an attractive immunotherapeutic approach against cancer due to its simplicity, stability, and safety. Results from numerous clinical trials have demonstrated that DNA vaccines are well tolerated by patients and do not trigger major adverse effects. DNA vaccines are also very cost effective and can be administered repeatedly for long-term protection. Despite all the practical advantages, DNA vaccines face challenges in inducing potent antigen specific cellular immune responses as a result of immune tolerance against endogenous self-antigens in tumors. Strategies to enhance immunogenicity of DNA vaccines against self-antigens have been investigated including encoding of xenogeneic versions of antigens, fusion of antigens to molecules that activate T cells or trigger associative recognition, priming with DNA vectors followed by boosting with viral vector, and utilization of immunomodulatory molecules. This review will focus on discussing strategies that circumvent immune tolerance and provide updates on findings from recent clinical trials.
    Human Vaccines and Immunotherapeutics 11/2014; 10(11):3153-64. DOI:10.4161/21645515.2014.980686 · 2.37 Impact Factor
  • Liwen Song · Ming-Chieh Yang · Jayne Knoff · Zu-Yue Sun · T-C Wu · Chien-Fu Hung ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunotherapy has emerged as a promising approach that can be used in conjunction with conventional chemotherapy and radiotherapy to further improve the survival rate of patients with advanced cancer. We have recently shown in previous studies that chemotherapy and radiation therapy can alter the tumor microenvironment and allow intratumoral vaccination to prime the adaptive immune system leading to the generation of antigen-specific cell-mediated immune responses. Here, we investigated whether intratumoral injection of a foreign immunodominant peptide (GP33) and the adjuvant CpG into tumors following cisplatin chemotherapy could lead to potent antitumor effects and antigen-specific cell-mediated immune responses. We observed that treatment with all three agents produced the most potent antitumor effects compared to pairwise combinations. Moreover, treatment with cisplatin, CpG and GP33 was able to control tumors at a distant site, indicating that our approach is able to induce cross-presentation of the tumor antigen. Treatment with cisplatin, CpG and GP33 also enhanced the generation of GP33-specific and E7-specific CD8+ T cells and decreased the number of MDSCs in tumor loci, a process found to be mediated by the Fas-FasL apoptosis pathway. The treatment regimen presented here represents a universal approach to cancer control.
    Vaccine 09/2014; 32(46). DOI:10.1016/j.vaccine.2014.09.021 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin E has been shown to have strong anticarcinogenic properties, including antioxidant characteristics, making it an ideal candidate for use in combination with immunotherapies that modify the tumor microenvironment. The tumor microenvironment contains immunosuppressive components, which can be diminished, and immunogenic components, which can be augmented by immunotherapies in order to generate a productive immune response. In the current study, we employ the α-tocopherol succinate isomer of vitamin E to reduce immunosuppression by myeloid derived suppressor cells (MDSCs) as well as adoptive transfer of antigen-specific CD8+ T cells to generate potent antitumor effects against the HPV16 E7-expressing TC-1 tumor model. We show that vitamin E alone induces necrosis of TC-1 cells and elicits antitumor effects in TC-1 tumor-bearing mice. We further demonstrate that vitamin E reverses the suppression of T cell activation by MDSCs and that this effect is mediated in part by a nitric oxide-dependent mechanism. Additionally, treatment with vitamin E reduces the percentage of MDSCs in tumor loci, and induces a higher percentage of T cells, following T cell adoptive transfer. Finally, we demonstrate that treatment with vitamin E followed by E7-specific T cell adoptive transfer experience elicits potent antitumor effects in tumor-bearing mice. Our data provide additional evidence that vitamin E has anticancer properties and that it has promise for use as an adjuvant in combination with a variety of cancer therapies.
    PLoS ONE 07/2014; 9(7):e103562. DOI:10.1371/journal.pone.0103562 · 3.23 Impact Factor

Publication Stats

4k Citations
715.85 Total Impact Points


  • 2004-2015
    • Johns Hopkins University
      • • Department of Pathology
      • • Department of Gynecology & Obstetrics
      • • Department of Medicine
      Baltimore, Maryland, United States
  • 2002-2015
    • Chang Gung University
      • School of Medicine
      Hsin-chu-hsien, Taiwan, Taiwan
    • Johns Hopkins Medicine
      • • Department of Pathology
      • • Department of Gynecology & Obstetrics
      Baltimore, Maryland, United States
  • 1997-2014
    • Chang Gung Memorial Hospital
      • • Department of Diagnostic Radiology
      • • Department of Radiology
      • • Department of Pathology
      T’ai-pei, Taipei, Taiwan
  • 2008
    • Korea University
      • Graduate School of Medicine
      Sŏul, Seoul, South Korea