Chien-Fu Hung

Johns Hopkins University, Baltimore, Maryland, United States

Are you Chien-Fu Hung?

Claim your profile

Publications (162)634.12 Total impact

  • Chih-Ping Mao · Chien-Fu Hung · TC Wu
    Cancer Research 08/2015; 75(15 Supplement):1342-1342. DOI:10.1158/1538-7445.AM2015-1342 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA vaccines have emerged as attractive candidates for the control of human papillomavirus (HPV)-associated malignancies. However, DNA vaccines suffer from limited immunogenicity and thus strategies to enhance DNA vaccine potency are needed. We have previously demonstrated that for DNA vaccines encoding HPV-16 E7 antigen (CRT/E7) linkage with calreticulin (CRT) linked enhances both the E7-specific CD8(+) T cell immune responses and antitumor effects against E7-expressing tumors. In the current study, we aim to introduce an approach to elicit potent CD4(+) T cell help for the enhancement of antigen-specific CD8(+) T cell immune responses generated by CRT/E7 DNA vaccination by using co-administration of a DNA vector expressing papillomavirus major and minor capsid antigens, L1 and L2. We showed that co-administration of vectors containing codon-optimized bovine papillomavirus type 1 (BPV-1) L1 and L2 in combination with DNA vaccines could elicit enhanced antigen-specific CD8(+) in both CRT/E7 and ovalbumin (OVA) antigenic systems. We also demonstrated that co-administration of vectors expressing BPV-1 L1 and/or L2 DNA with CRT/E7 DNA led to the generation of L1/L2-specific CD4(+) T cell immune responses and L1-specific neutralizing antibodies. Furthermore, we showed that co-administration with DNA encoding BPV1 L1 significantly enhances the therapeutic antitumor effects generated by CRT/E7 DNA vaccination. In addition, the observed enhancement of CD8(+) T cell immune responses by DNA encoding L1 and L2 was also found to extend to HPV-16 L1/L2 system. Our strategy elicits both potent neutralizing antibody and therapeutic responses and may potentially be extended to other antigenic systems beyond papillomavirus for the control of infection and/or cancer.
    06/2015; 5(1):35. DOI:10.1186/s13578-015-0025-y
  • Journal of Biomedical Optics 05/2015; 20(5):51008. DOI:10.1117/1.JBO.20.5.051008 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunotherapy has emerged as a promising treatment strategy for the control of HPV-associated malignancies. Various therapeutic HPV vaccines have elicited potent antigen-specific CD8+ T cell mediated antitumor immune responses in preclinical models and are currently being tested in several clinical trials. Recent evidence indicates the importance of local immune activation, and higher number of immune cells in the site of lesion correlates with positive prognosis. Granulocyte macrophage colony-stimulating factor (GMCSF) has been reported to posses the ability to induce migration of antigen presentation cells and CD8+ T cells. Therefore, in the current study, we employ a combination of systemic therapeutic HPV DNA vaccination with local GMCSF application in the TC-1 tumor model. We show that intramuscular vaccination with CRT/E7 DNA followed by GMCSF intravaginal administration effectively controls cervicovaginal TC-1 tumors in mice. Furthermore, we observe an increase in the accumulation of E7-specific CD8+ T cells and dendritic cells in vaginal tumors following the combination treatment. In addition, we show that GMCSF induces activation and maturation in dendritic cells and promotes antigen cross-presentation. Our results support the clinical translation of the combination treatment of systemic therapeutic vaccination followed by local GMCSF administration as an effective strategy for tumor treatment. Copyright © 2015. Published by Elsevier Ltd.
    Vaccine 02/2015; 33(13). DOI:10.1016/j.vaccine.2015.02.019 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Bortezomib, a proteasome inhibitor and suberoylanilide hydroxamic acid (SAHA, also known as Vorinostat), a histone deacetylase inhibitor, have been recognized as potent chemotherapeutic drugs. Bortezomib and SAHA are FDA-approved for the treatment of cutaneous T cell lymphoma and multiple myeloma/mantle cell lymphoma, respectively. Furthermore, the combination of the bortezomib and SAHA has been tested in a variety of preclinical models and in clinical trials and may be ideal for the treatment of cancer. However, it remains unclear how this treatment strategy affects the host immune response against tumors.ResultsHere, we used a well-defined E6/E7-expressing tumor model to examine how the immune system can be motivated to act against tumor cells expressing tumor antigens. We demonstrate that the combination of bortezomib and SAHA elicits potent antitumor effects in TC-1 tumor-bearing mice. Additionally, we are the first to show that treatment with bortezomib and SAHA leads to tumor-specific immunity by rendering tumor cells more susceptible to killing by antigen-specific CD8+ T cells than treatment with either drug alone.Conclusions The current study serves an important foundation for the future clinical application of both drugs for the treatment of cervical cancer.
    Journal of Biomedical Science 01/2015; 22(1):7. DOI:10.1186/s12929-014-0111-1 · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical studies suggest that responses to HPV16 E6E7L2 fusion protein (TA-CIN) vaccination alone are modest, and GPI-0100 is a well-tolerated, potent adjuvant. Here we sought to optimize both the immunogenicity of TA-CIN via formulation with GPI-0100 and treatment of HPV16+ cancer by vaccination after cisplatin chemotherapy. HPV16 neutralizing serum antibody titers, CD4+ T cell proliferative and E6/E7-specific CD8+ T cell responses were significantly enhanced when mice were vaccinated subcutaneously (s.c.) or intramuscularly (i.m.) with TA-CIN formulated with GPI-0100. Vaccination was tested for therapy of mice bearing syngeneic HPV16 E6/E7+ tumors (TC-1) either in the lung or subcutaneously. Mice treated with TA-CIN/GPI-0100 vaccination exhibited robust E7-specific CD8+ T cell responses, which were associated with reduced tumor burden in the lung, whereas mice receiving either component alone were similar to controls. Since vaccination alone was not sufficient for cure, mice bearing s.c. TC-1 tumor were first treated with two doses of cisplatin and then vaccinated. Vaccination with TA-CIN/GPI-0100 i.m. substantially retarded tumor growth and extended survival after cisplatin therapy. Injection of TA-CIN alone, but not GPI-0100, into the tumor (i.t.) was similarly efficacious after cisplatin therapy, but the mice eventually succumbed. However, tumor regression and extended remission was observed in 80% of the mice treated with cisplatin and then intra-tumoral TA-CIN/GPI-0100 vaccination. These mice also exhibited robust E7-specific CD8+ T cell and HPV16 neutralizing antibody responses. Thus formulation of TA-CIN with GPI-0100 and intra-tumoral delivery after cisplatin treatment elicits potent therapeutic responses in a murine model of HPV16+ cancer.
    PLoS ONE 01/2015; 10(1):e116389. DOI:10.1371/journal.pone.0116389 · 3.23 Impact Factor
  • Source
    Liwen Song · Ming-Chieh Yang · Jayne Knoff · T-C Wu · Chien-Fu Hung
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemotherapy and/or radiation therapy are widely used as cancer treatments, but the antitumor effects they produce can be enhanced when combined with immunotherapies. Chemotherapy kills tumor cells, but it also releases tumor antigen and allows the cross-presentation of the tumor antigen to trigger antigen-specific cell-mediated immune responses. Promoting CD4+ T helper cell immune responses can be used to enhance the cross-presentation of the tumor antigen following chemotherapy. The pan HLA-DR binding epitope (PADRE peptide) is capable of generating antigen-specific CD4+ T cells that bind various MHC class II molecules with high affinity and has been widely used in conjunction with vaccines to improve their potency by enhancing CD4+ T cell responses. Here, we investigated whether intratumoral injection of PADRE and the adjuvant CpG into HPV16 E7-expressing TC-1 tumors following cisplatin chemotherapy could lead to potent antitumor effects and antigen-specific cell-mediated immune responses. We observed that treatment with all three agents produced the most potent antitumor effects compared to pairwise combinations. Moreover, treatment with cisplatin, CpG and PADRE was able to control tumors at a distant site, indicating that our approach is able to induce cross-presentation of the tumor antigen. Treatment with cisplatin, CpG and PADRE also enhanced the generation of PADRE-specific CD4+ T cells and E7-specific CD8+ T cells and decreased the number of MDSCs in tumor loci. The treatment regimen presented here represents a universal approach to cancer control.
    PLoS ONE 12/2014; 9(12):e115711. DOI:10.1371/journal.pone.0115711 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Persistent infection by one of fifteen high risk human papillomavirus (hrHPV) types is a necessary but not sufficient cause of 5% of all human cancers. This provides a remarkable opportunity for cancer prevention via immunization. Since Harald zur Hausen's pioneering identification of hrHPV types 16 and 18, found in ~50% and ~20% of cervical cancers respectively, two prophylactic HPV vaccines containing virus-like particles (VLP) of each genotype have been widely licensed. These vaccines are beginning to impact infection and HPV-associated neoplasia rates after immunization campaigns in adolescents. Here we review recent progress and opportunities to better prevent HPV-associated cancers, including: broadening immune-protection to cover all hrHPV types, reducing the cost of HPV vaccines especially for developing countries that have the highest rates of cervical cancer, and immune-based treatment of established HPV infections. Screening based upon George Papanicolaou's cervical cytology testing, and more recently detection of hrHPV DNA/RNA, followed by ablative treatment of high grade cervical intraepithelial neoplasia (CIN2/3) have substantially reduced cervical cancer rates, and we examine their interplay with immune-based modalities for the prevention and eventual elimination of cervical cancer and other HPV-related malignancies. Copyright © 2014, American Association for Cancer Research.
    Cancer Prevention Research 12/2014; 8(2). DOI:10.1158/1940-6207.CAPR-14-0311 · 5.27 Impact Factor
  • Benjamin Yang · Jessica Jeang · Andrew Yang · T C Wu · Chien-Fu Hung
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA vaccination has emerged as an attractive immunotherapeutic approach against cancer due to its simplicity, stability, and safety. Results from numerous clinical trials have demonstrated that DNA vaccines are well tolerated by patients and do not trigger major adverse effects. DNA vaccines are also very cost effective and can be administered repeatedly for long-term protection. Despite all the practical advantages, DNA vaccines face challenges in inducing potent antigen specific cellular immune responses as a result of immune tolerance against endogenous self-antigens in tumors. Strategies to enhance immunogenicity of DNA vaccines against self-antigens have been investigated including encoding of xenogeneic versions of antigens, fusion of antigens to molecules that activate T cells or trigger associative recognition, priming with DNA vectors followed by boosting with viral vector, and utilization of immunomodulatory molecules. This review will focus on discussing strategies that circumvent immune tolerance and provide updates on findings from recent clinical trials.
    Human Vaccines and Immunotherapeutics 11/2014; 10(11):3153-64. DOI:10.4161/21645515.2014.980686 · 3.64 Impact Factor
  • Liwen Song · Ming-Chieh Yang · Jayne Knoff · Zu-Yue Sun · T-C Wu · Chien-Fu Hung
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunotherapy has emerged as a promising approach that can be used in conjunction with conventional chemotherapy and radiotherapy to further improve the survival rate of patients with advanced cancer. We have recently shown in previous studies that chemotherapy and radiation therapy can alter the tumor microenvironment and allow intratumoral vaccination to prime the adaptive immune system leading to the generation of antigen-specific cell-mediated immune responses. Here, we investigated whether intratumoral injection of a foreign immunodominant peptide (GP33) and the adjuvant CpG into tumors following cisplatin chemotherapy could lead to potent antitumor effects and antigen-specific cell-mediated immune responses. We observed that treatment with all three agents produced the most potent antitumor effects compared to pairwise combinations. Moreover, treatment with cisplatin, CpG and GP33 was able to control tumors at a distant site, indicating that our approach is able to induce cross-presentation of the tumor antigen. Treatment with cisplatin, CpG and GP33 also enhanced the generation of GP33-specific and E7-specific CD8+ T cells and decreased the number of MDSCs in tumor loci, a process found to be mediated by the Fas-FasL apoptosis pathway. The treatment regimen presented here represents a universal approach to cancer control.
    Vaccine 09/2014; 32(46). DOI:10.1016/j.vaccine.2014.09.021 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin E has been shown to have strong anticarcinogenic properties, including antioxidant characteristics, making it an ideal candidate for use in combination with immunotherapies that modify the tumor microenvironment. The tumor microenvironment contains immunosuppressive components, which can be diminished, and immunogenic components, which can be augmented by immunotherapies in order to generate a productive immune response. In the current study, we employ the α-tocopherol succinate isomer of vitamin E to reduce immunosuppression by myeloid derived suppressor cells (MDSCs) as well as adoptive transfer of antigen-specific CD8+ T cells to generate potent antitumor effects against the HPV16 E7-expressing TC-1 tumor model. We show that vitamin E alone induces necrosis of TC-1 cells and elicits antitumor effects in TC-1 tumor-bearing mice. We further demonstrate that vitamin E reverses the suppression of T cell activation by MDSCs and that this effect is mediated in part by a nitric oxide-dependent mechanism. Additionally, treatment with vitamin E reduces the percentage of MDSCs in tumor loci, and induces a higher percentage of T cells, following T cell adoptive transfer. Finally, we demonstrate that treatment with vitamin E followed by E7-specific T cell adoptive transfer experience elicits potent antitumor effects in tumor-bearing mice. Our data provide additional evidence that vitamin E has anticancer properties and that it has promise for use as an adjuvant in combination with a variety of cancer therapies.
    PLoS ONE 07/2014; 9(7):e103562. DOI:10.1371/journal.pone.0103562 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Local delivery of chemotherapeutics in the cervicovaginal tract using nanoparticles may reduce adverse side effects associated with systemic chemotherapy, while improving outcomes for early-stage cervical cancer. It is hypothesized here that drug-loaded nanoparticles that rapidly penetrate cervicovaginal mucus (CVM) lining the female reproductive tract will more effectively deliver their payload to underlying diseased tissues in a uniform and sustained manner compared with nanoparticles that do not efficiently penetrate CVM. Paclitaxel-loaded nanoparticles are developed, composed entirely of polymers used in FDA-approved products, which rapidly penetrate human CVM and provide sustained drug release with minimal burst effect. A mouse model is further employed with aggressive cervical tumors established in the cervicovaginal tract to compare paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (conventional particles, or CP) and similar particles coated with Pluronic F127 (mucus-penetrating particles, or MPP). CP are mucoadhesive and, thus, aggregated in mucus, while MPP achieve more uniform distribution and close proximity to cervical tumors. Paclitaxel-MPP suppress tumor growth more effectively and prolong median survival of mice compared with unencapsulated paclitaxel or paclitaxel-CP. Histopathological studies demonstrate minimal toxicity to the cervicovaginal epithelia, suggesting paclitaxel-MPP may be safe for intravaginal use. These results demonstrate the in vivo advantages of polymer-based MPP for treatment of tumors localized to a mucosal surface.
    Advanced Healthcare Materials 07/2014; 3(7). DOI:10.1002/adhm.201300519 · 4.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Imiquimod is a toll-like receptor 7 agonist utilized topically to manage genital warts and basal cell carcinoma. We examine the combination of topical imiquimod with intramuscular administration of CRT/E7, a therapeutic HPV vaccination that comprises a naked DNA vector expressing calreticulin fused to HPV16 E7. Experimental Design: Using an orthotopic HPV16 E6/E7+ syngeneic tumor, TC-1, as a model of high-grade cervical/vaginal/vulvar intraepithelial neoplasia, we show that combining CRT/E7 vaccination with cervicovaginal deposition of imiquimod results in synergistic immune-mediated tumor clearance. Results: Imiquimod induces cervicovaginal accumulation of activated E7-specific CD8+ T cells elicited by CRT/E7 vaccination. Recruitment was not dependent upon the specificity of the activated CD8+ T cells, but was significantly reduced in mice lacking the IFNγ receptor. Intravaginal imiquimod deposition induced upregulation of CXCL9 and CXCL10 mRNA expression in the genital tract. These chemokines are expressed upon IFNγ receptor activation and attract cells expressing their receptor, CXCR3. In this study, T cells attracted by imiquimod to the cervicovaginal tract expressed CXCR3 as well as the tissue resident memory T cell (Trm) marker CD49a, a mucosal homing integrin. Our results indicate that intramuscular CRT/E7 vaccination in conjunction with intravaginal imiquimod deposition recruits antigen-specific CXCR3+CD8+ T cells to the genital tract. Conclusions: Our study has potential clinical relevance because imiquimod is FDA approved for condyloma accuminata and basal cell carcinoma and intramuscular vaccination with pNGVL4a-CRT/E7(detox) is currently undergoing clinical testing, suggesting potential for their synergistic action to induce strong antigen-specific Trm-mediated immune responses and antitumor effects in genital mucosa.
    Clinical Cancer Research 06/2014; 20(21). DOI:10.1158/1078-0432.CCR-14-0344 · 8.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intraperitoneal (IP) chemotherapy is more effective than systemic chemotherapy for treating advanced ovarian cancer, but is typically associated with severe complications due to high dose, frequent administration schedule, and use of non-biocompatible excipients/delivery vehicles. Here, we developed paclitaxel (PTX)-loaded microspheres composed of di-block copolymers of poly(ethylene glycol) and poly(sebacic acid) (PEG-PSA) for safe and sustained IP chemotherapy. PEG-PSA microspheres provided efficient loading (~ 13% w/w) and prolonged release (~ 13 days) of PTX. In a murine ovarian cancer model, a single dose of IP PTX/PEG-PSA particles effectively suppressed tumor growth for more than 40 days and extended the median survival time to 75 days compared to treatments with Taxol(®) (47 days) or IP placebo particles (34 days). IP PTX/PEG-PSA was well tolerated, with only minimal to mild inflammation. Our findings support PTX/PEG-PSA microspheres as a promising drug delivery platform for IP therapy of ovarian cancer, and potentially other metastatic peritoneal cancers.
    04/2014; 4(2):203-209. DOI:10.1007/s13346-013-0190-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD40 and CD40 ligand (CD40L) are costimulatory molecules that play a pivotal role in the proinflammatory immune response. Primarily expressed by activated CD4+ T cells, CD40L binds to CD40 on antigen presenting cells (APCs), thereby inducing APC activation. APCs, in turn, prime cytotoxic T lymphocytes (CTLs). Here, two tumor-associated antigen (TAA) animal models, p53-based and GP100-based, were utilized to examine the ability of CD40-CD40L to improve antigen-specific CTL-mediated antitumor immune responses. Although p53 and GP100 are self-antigens that generate low affinity antigen-specific CD8+ T cells, studies have shown that their functional avidity can be improved with CD40L-expressing APCs. Therefore, in the current study, we immunized mice with a DNA construct encoding a TAA in conjunction with another construct encoding CD40L via intramuscular injection followed by electroporation. We observed a significant increase in the antigen-specific CTL-mediated immune responses as well as the potent antitumor effects in both models. Antibody depletion experiments demonstrated that CD8+ T cells play a crucial role in eliciting antitumor effects in vaccinated mice. Furthermore, we showed that in vitro stimulation with irradiated tumor cells expressing both TAA and CD40L improved the functional avidity of antigen-specific CD8+ T cells. Thus, our data show that vaccination with TAA/CD40L DNA can induce potent antitumor effects against TAA-expressing tumors through the generation of better functioning antigen-specific CD8+ T cells. Our study serves as an important foundation for future clinical translation.
    PLoS ONE 03/2014; 9(3):e93162. DOI:10.1371/journal.pone.0093162 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human papillomavirus (HPV) infections are particularly problematic for HIV + and solid organ transplant patients with compromised CD4+ T cell-dependent immunity as they produce more severe and progressive disease compared to healthy individuals. There are no specific treatments for chronic HPV infection, resulting in an urgent unmet need for a modality that is safe and effective for both immunocompromised and otherwise normal patients with recalcitrant disease. DNA vaccination is attractive because it avoids the risks of administration of live vectors to immunocompromised patients, and can induce potent HPV-specific cytotoxic T cell responses. We have developed a DNA vaccine (pNGVL4a-hCRTE6E7L2) encoding calreticulin (CRT) fused to E6, E7 and L2 proteins of HPV-16, the genotype associated with approximately 90% vaginal, vulvar, anal, penile and oropharyngeal HPV-associated cancers and the majority of cervical cancers. Administration of the DNA vaccine by intramuscular (IM) injection followed by electroporation induced significantly greater HPV-specific immune responses compared to IM injection alone or mixed with alum. Furthermore, pNGVL4a-hCRTE6E7L2 DNA vaccination via electroporation of mice carrying an intravaginal HPV-16 E6/E7-expressing syngeneic tumor demonstrated more potent therapeutic effects than IM vaccination alone. Of note, administration of the DNA vaccine by IM injection followed by electroporation elicited potent E6 and E7-specific CD8+ T cell responses and antitumor effects despite CD4+ T cell-depletion, although no antibody response was detected. While CD4+ T cell-depletion did reduce the E6 and E7-specific CD8+ T cell response, it remained sufficient to prevent subcutaneous tumor growth and to eliminate circulating tumor cells in a model of metastatic HPV-16+ cancer. Thus, the antibody response was CD4-dependent, whereas CD4+ T cell help enhanced the E6/E7-specific CD8+ T cell immunity, but was not required. Taken together, our data suggest that pNGVL4a-hCRTE6E7L2 DNA vaccination via electroporation warrants testing in otherwise healthy patients and those with compromised CD4+ T cell immunity to treat HPV-16-associated anogenital disease and cancer.
    03/2014; 4(1):11. DOI:10.1186/2045-3701-4-11
  • Jayne Knoff · Benjamin Yang · Chien-Fu Hung · T-C Wu
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that human papillomavirus (HPV) is the causative agent of cervical cancer. The integration of HPV genes into the host genome causes the upregulation of E6 and E7 oncogenes. E6 and E7 proteins inactivate and degrade tumor suppressors p53 and retinoblastoma, respectively, leading to malignant progression. HPV E6 and E7 antigens are ideal targets for the development of therapies for cervical cancer and precursor lesions because they are constitutively expressed in infected cells and malignant tumors but not in normal cells and they are essential for cell immortalization and transformation. Immunotherapies are being developed to target E6/E7 by eliciting antigen-specific immune responses. siRNA technologies target E6/E7 by modulating the expression of the oncoproteins. Proteasome inhibitors and histone deacetylase inhibitors are being developed to indirectly target E6/E7 by interfering with their oncogenic activities. The ultimate goal for HPV-targeted therapies is the progression through clinical trials to commercialization.
    03/2014; 3(1):18-32. DOI:10.1007/s13669-013-0068-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer has the highest mortality rate among gynecological malignancies due to high chemoresistance to the combination of platinum with taxane. Immunotherapy against ovarian cancer is a promising strategy to develop from animal-based cancer research. We investigated changes in the immunogenicity of paclitaxel-exposed ovarian cancer cells following exposure to other chemotherapeutic drugs. Murine ovarian surface epithelial cells (MOSECs) showed some resistance to paclitaxel, a first-line therapy for ovarian cancer. However, MOSECs pre-exposed to paclitaxel died through apoptosis after incubation with doxorubicin or cisplatin for 2 h. Injected into mice, the paclitaxel-exposed MOSECs post-treated with doxorubicin induced more MOSEC-specific CD4+ T cells and extended survival for a greater time than MOSECs treated with paclitaxel alone; and bone marrow-derived dendritic cells (BMDCs) expressed higher levels of co-stimulatory molecules and produced IL-12 after co-culture with paclitaxel-exposed MOSECs treated with doxorubicin. We also observed that in paclitaxel-exposed MOSECs treated with doxorubicin, but not cisplatin, the expression of MyD88 and related target proteins decreased compared to paclitaxel-exposed MOSECs only, while in BMDCs co-cultured with these MOSECs the expression of myeloid differentiation primary response gene 88 (MyD88) increased. These findings suggest that paclitaxel pre-exposed cancer cells treated with doxorubicin can induce significant apoptosis and a therapeutic antitumor immune response in advanced ovarian cancer.
    International Journal of Oncology 02/2014; 44(5). DOI:10.3892/ijo.2014.2308 · 3.03 Impact Factor
  • Nam Phuong Tran · Chien-Fu Hung · Richard Roden · T-C Wu
    [Show abstract] [Hide abstract]
    ABSTRACT: Human papillomavirus (HPV), the most common sexually transmitted virus, and its associated diseases continue to cause significant morbidity and mortality in over 600 million infected individuals. Major progress has been made with preventative vaccines, and clinical data have emerged regarding the efficacy and cross-reactivity of the two FDA approved L1 virus like particle (VLP)-based vaccines. However, the cost of the approved vaccines currently limits their widespread use in developing countries which carry the greatest burden of HPV-associated diseases. Furthermore, the licensed preventive HPV vaccines only contain two high-risk types of HPV (HPV-16 and HPV-18) which can protect only up to 75 % of all cervical cancers. Thus, second generation preventative vaccine candidates hope to address the issues of cost and broaden protection through the use of more multivalent L1-VLPs, vaccine formulations, or alternative antigens such as L1 capsomers, L2 capsid proteins, and chimeric VLPs. Preventative vaccines are crucial to controlling the transmission of HPV, but there are already hundreds of millions of infected individuals who have HPV-associated lesions that are silently progressing toward malignancy. This raises the need for therapeutic HPV vaccines that can trigger T cell killing of established HPV lesions, including HPV-transformed tumor cells. In order to stimulate such antitumor immune responses, therapeutic vaccine candidates deliver HPV antigens in vivo by employing various bacterial, viral, protein, peptide, dendritic cell, and DNA-based vectors. This book chapter will review the commercially available preventive vaccines, present second generation candidates, and discuss the progress of developing therapeutic HPV vaccines.
    Recent results in cancer research. Fortschritte der Krebsforschung. Progrès dans les recherches sur le cancer 01/2014; 193:149-71. DOI:10.1007/978-3-642-38965-8_9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is an urgent need to develop targeted therapies for the control of advanced stage ovarian cancer because it is the most deadly gynecologic cancer. Antigen-specific immunotherapy is a promising approach because of the potential of the immune system to specifically target tumors without the toxicity associated with traditional chemoradiation. However, one of the major limitations for antigen-specific cancer immunotherapy is the pre-existing immune tolerance against endogenous targeted tumor antigens that frequently evolves during carcinogenesis. Here, we described the creation of a therapeutic agent comprised of a tumor-homing module fused to a functional domain capable of selectively rendering tumor cells sensitive to foreign antigen-specific CD8+ T cell-mediated immune attack, thereby circumventing many aspects of immune tolerance. The tumor-homing module, NKG2D, specifically binds to NKG2D ligand that is commonly overexpressed in ovarian tumors. The functional domain is comprised of the Fc portion of IgG2a protein and foreign immunogenic CD8+ T cell epitope flanked by furin cleavage sites (R), which can be recognized and cleaved by furin that is highly expressed in the tumor microenvironment. We show that this therapeutic chimeric protein specifically loaded antigenic epitope onto the surface of NKG2D ligand-expressing ovarian tumor cells, rendering ovarian tumors susceptible to antigen-specific CTL-mediated killing in vitro. Furthermore, we show that intraperitoneal administration of our therapeutic chimeric protein followed by adoptive transfer of antigen-specific CD8+ T cells generates potent antitumor effects and significant accumulation of antigen-specific CD8+ T cells in the tumor loci. Our findings have promise for bypassing immune tolerance to enhance cancer immunotherapy.
    12/2013; 3(1):48. DOI:10.1186/2045-3701-3-48

Publication Stats

4k Citations
634.12 Total Impact Points

Institutions

  • 2002–2015
    • Johns Hopkins University
      • • Department of Pathology
      • • Department of Gynecology & Obstetrics
      • • Department of Medicine
      Baltimore, Maryland, United States
  • 2001–2015
    • Johns Hopkins Medicine
      • • Department of Pathology
      • • Department of Gynecology & Obstetrics
      • • Department of Molecular Microbiology and Immunology
      Baltimore, Maryland, United States
  • 2008–2012
    • Chang Gung University
      • Division of Hepato-Gastroenterology
      Hsin-chu-hsien, Taiwan, Taiwan
    • Korea University
      • Graduate School of Medicine
      Sŏul, Seoul, South Korea
  • 1997–2011
    • Chang Gung Memorial Hospital
      • • Department of Radiology
      • • Division of General Surgery
      • • Department of Pathology
      Taipei, Taipei, Taiwan
  • 2010
    • University of Maryland, Baltimore
      • Department of Pathology
      Baltimore, Maryland, United States
  • 2007–2009
    • Arizona State University
      • Department of Physics
      Mesa, AZ, United States