Andrey Zharkikh

Myriad Genetics, Salt Lake City, Utah, United States

Are you Andrey Zharkikh?

Claim your profile

Publications (23)163.07 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionHomologous recombination (HR) DNA repair is of clinical relevance in breast cancer. Three DNA-based homologous recombination deficiency (HRD) scores (HRD-loss of heterozygosity score (LOH), HRD-telomeric allelic imbalance score (TAI), and HRD-large-scale state transition score (LST)) have been developed that are highly correlated with defects in BRCA1/2, and are associated with response to platinum therapy in triple negative breast and ovarian cancer. This study examines the frequency of BRCA1/2 defects among different breast cancer subtypes, and the ability of the HRD scores to identify breast tumors with defects in the homologous recombination DNA repair pathway.Methods215 breast tumors representing all ER/HER2 subtypes were obtained from commercial vendors. Next-generation sequencing based assays were used to generate genome wide SNP profiles, BRCA1/2 mutation screening, and BRCA1 promoter methylation data.Results BRCA1/2 deleterious mutations were observed in all breast cancer subtypes. BRCA1 promoter methylation was observed almost exclusively in triple negative breast cancer. BRCA1/2 deficient tumors were identified with BRCA1/2 mutations, or BRCA1 promoter methylation, and loss of the second allele of the affected gene. All three HRD scores were highly associated with BRCA1/2 deficiency (HRD-LOH: P =1.3¿×¿10¿17; HRD-TAI: P =1.5¿×¿10¿19; HRD-LST: P =3.5¿×¿10¿18). A combined score (HRD-mean) was calculated using the arithmetic mean of the three scores. In multivariable analyses the HRD-mean score captured significant BRCA1/2 deficiency information not captured by the three individual scores, or by clinical variables (P values for HRD-Mean adjusted for HRD-LOH: P =1.4¿×¿10¿8; HRD-TAI: P =2.9¿×¿10¿7; HRD-LST: P =2.8¿×¿10¿8; clinical variables: P =1.2¿×¿10¿16).Conclusions The HRD scores showed strong correlation with BRCA1/2 deficiency regardless of breast cancer subtype. The frequency of elevated scores suggests that a significant proportion of all breast tumor subtypes may carry defects in the homologous recombination DNA repair pathway. The HRD scores can be combined to produce a more robust predictor of HRD. The combination of a robust score, and the FFPE compatible assay described in this study, may facilitate use of agents targeting homologous recombination DNA repair in the clinical setting.
    Breast cancer research: BCR 12/2014; 16(6):475. DOI:10.1186/s13058-014-0475-x · 5.88 Impact Factor
  • Cancer Research 03/2014; 73(24 Supplement):P6-05-10-P6-05-10. DOI:10.1158/0008-5472.SABCS13-P6-05-10 · 9.28 Impact Factor
  • Cancer Research 08/2013; 73(8 Supplement):1763-1763. DOI:10.1158/1538-7445.AM2013-1763 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge about the sequence-based genetic diversity of a crop species is important in order to develop highly informative genotyping assays, which will eventually positively impact breeding practice. Diversity data were obtained from two pools of 185 and 75 accessions each, representing most of the species belonging to the genus Malus, by re-sequencing 27 gene-specific amplicons and by screening 237 Malus × domestica SNPs using the multiplex genotyping technology SNPlex™. Nucleotide diversity and insertion/deletion rates in M. × domestica were estimated as π = 0.0037 and 1/333bp, respectively. The SNP frequency was estimated as 0.0194 (1 SNP/52bp) while within a single apple cultivar an average of one SNP in every 455bp was found. We also investigated transferability (T SNP) of the heterozygous state of SNPs across the species M. × domestica and the genus Malus. Raw re-sequencing showed that 12–15% of M. × domestica SNPs are transferable to a second M. × domestica cultivar, however T SNP rose to ∼41% with SNPs selected for high minor allele frequency. T SNP of chosen SNPs averaged ∼27% in the two M. × domestica-related species, Malus sieversii and Malus sylvestris, but was much lower in more distantly related species. On the basis of T SNP, simulations, and empirical results, we calculated that a close-design, multiplexed genotyping array with at least 2,000 SNPs is required for building a highly saturated linkage maps within any M. × domestica cross. The same array would gradually lose informativeness in increasingly phylogenetically distant Malus species. KeywordsApple–High-throughput genotyping–SNP
    Tree Genetics & Genomes 08/2011; 7(4):857-868. DOI:10.1007/s11295-011-0380-8 · 2.44 Impact Factor
  • Tree Genetics & Genomes 01/2011; · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.
    Nature Genetics 10/2010; 390(10):833-9. DOI:10.1038/ng.654 · 29.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors 3, 7, and 8 (TLR3, TLR7, and TLR8) were studied in the genomes of the domestic horse and several other mammals. The messenger RNA sequences and exon/intron structures of these TLR genes were determined. An equine bacterial artificial chromosome clone containing the TLR3 gene was assigned by fluorescent in situ hybridization to the horse chromosomal location ECA27q16-q17 and this map location was confirmed using an equine radiation hybrid panel. Direct sequencing revealed 13 single-nucleotide polymorphisms in the coding regions of the equine TLR 3, 7, and 8 genes. Of these polymorphisms, 12 were not previously reported. The allelic frequency was estimated for each single-nucleotide polymorphism from genotyping data obtained for 154 animals from five horse breeds. Some of these frequencies varied significantly among different horse breeds. Domain architecture predictions for the three equine TLR protein sequences revealed several conserved regions within the variable leucine-rich repeats between the corresponding horse and cattle TLR proteins. A phylogenetic analysis did not indicate that any significant exchanges had occurred between paralogous TLR7 and TLR8 genes in 20 vertebrate species analyzed.
    Immunogenetics 08/2009; 61(7):529-39. DOI:10.1007/s00251-009-0381-z · 2.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemokine receptors (CCRs) play an essential role in the initiation of an innate immune host response. Several of these receptors have been shown to modulate the outcome of viral infections. The recent availability of complete genome sequences from a number of species provides a unique opportunity to analyze the evolution of the CCR genes. A phylogenetic analysis revealed that the CCR2 gene evolved in concert with the paralogous CCR5 gene, but not with another paralogous gene, CCR3, in the opossum, platypus, rabbit, guinea pig, cat, and rodent lineages. In addition, evidence of concerted evolution of the CCR2 and CCR5 genes was observed in chicken and lizard genomes. A unique CCR5/2 gene that originated by unequal crossing over between the CCR2 and CCR5 genes was detected in the domestic horse. The CCR2, CCR5, and CCR5/2 genes were mapped to ECA16q21 using fluorescent in situ hybridization (FISH). Single-nucleotide polymorphisms identified in the equine CCR5 gene and characterized within 5 horse breeds provide haplotype markers for future case/control studies investigating the genetic bases of horse susceptibility to infectious diseases.
    The Journal of heredity 06/2008; 99(5):500-11. DOI:10.1093/jhered/esn029 · 1.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed an integrated map from five elite cultivars of Vitis vinifera L.; Syrah, Pinot Noir, Grenache, Cabernet Sauvignon and Riesling which are parents of three segregating populations. A new source of markers, SNPs, identified in ESTs and unique BAC-end sequences was added to the available IGGP reference set of SSRs. The complete integrated map comprises 1,134 markers (350 AFLP, 332 BESs, 169 ESTs, 283 SSRs) spanning 1,443 cM over 19 linkage groups and shows a mean distance between neighbouring loci of 1.27 cM. Marker order was mainly conserved between the integrated map and the highly dense SyrahxPinot Noir consensus map except for few inversions. Moreover, the marker order has been validated through the assembled genome sequence of Pinot Noir. We have also assessed the transferability of SNP-based markers among five V. vinifera varieties, enabling marker validation across different genotypes. This integrated map can serve as a fundamental tool for molecular breeding in V. vinifera and related species and provide a basis for studies of genome organization and evolution in grapevines.
    Theoretical and Applied Genetics 06/2008; 117(4):499-511. DOI:10.1007/s00122-008-0794-3 · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new approach to sequencing and assembling a highly heterozygous genome, that of grape, species Vitis vinifera cv Pinot Noir, is described. The combining of genome shotgun of paired reads produced by Sanger sequencing and sequencing by synthesis of unpaired reads was shown to be an efficient procedure for decoding a complex genome. About 2 million SNPs and more than a million heterozygous gaps have been identified in the 500 Mb genome of grape. More than 91% of the sequence assembled into 58,611 contigs is now anchored to the 19 linkage groups of V. vinifera.
    Journal of Biotechnology 06/2008; 136(1-2):38-43. DOI:10.1016/j.jbiotec.2008.04.013 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Until recently, only a small number of low- and mid-throughput methods have been used for single nucleotide polymorphism (SNP) discovery and genotyping in grapevine (Vitis vinifera L.). However, following completion of the sequence of the highly heterozygous genome of Pinot Noir, it has been possible to identify millions of electronic SNPs (eSNPs) thus providing a valuable source for high-throughput genotyping methods. Herein we report the first application of the SNPlexgenotyping system in grapevine aiming at the anchoring of an eukaryotic genome. This approach combines robust SNP detection with automated assay readout and data analysis. 813 candidate eSNPs were developed from non-repetitive contigs of the assembled genome of Pinot Noir and tested in 90 progeny of Syrah x Pinot Noir cross. 563 new SNP-based markers were obtained and mapped. The efficiency rate of 69% was enhanced to 80% when multiple displacement amplification (MDA) methods were used for preparation of genomic DNA for the SNPlex assay. Unlike other SNP genotyping methods used to investigate thousands of SNPs in a few genotypes, or a few SNPs in around a thousand genotypes, the SNPlex genotyping system represents a good compromise to investigate several hundred SNPs in a hundred or more samples simultaneously. Therefore, the use of the SNPlex assay, coupled with whole genome amplification (WGA), is a good solution for future applications in well-equipped laboratories.
    BMC Plant Biology 02/2008; 8:12. DOI:10.1186/1471-2229-8-12 · 3.94 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.
    PLoS ONE 02/2007; 2(12):e1326. DOI:10.1371/journal.pone.0001326 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian OAS/RNASEL pathway plays an important role in antiviral host defense. A premature stop-codon within the murine Oas1b gene results in the increased susceptibility of mice to a number of flaviviruses, including West Nile virus (WNV). Mutations in either the OAS1 or RNASEL genes may also modulate the outcome of WNV-induced disease or other viral infections in horses. Polymorphisms in the human OAS gene cluster have been previously utilized for case-control analysis of virus-induced disease in humans. No polymorphisms have yet been identified in either the equine OAS1 or RNASEL genes for use in similar case-control studies. Genomic sequence for equine OAS1 was obtained from a contig assembly generated from a shotgun subclone library of CHORI-241 BAC 100I10. Specific amplification of regions of the OAS1 gene from 13 horses of various breeds identified 33 single nucleotide polymorphisms (SNP) and two microsatellites. RNASEL cDNA sequences were determined for 8 mammals and utilized in a phylogenetic analysis. The chromosomal location of the RNASEL gene was assigned by FISH to ECA5p17-p16 using two selected CHORI-241 BAC clones. The horse genomic RNASEL sequence was assembled. Specific amplification of regions of the RNASEL gene from 13 horses identified 31 SNPs. In this report, two dinucleotide microsatellites and 64 single nucleotide polymorphisms within the equine OAS1 and RNASEL genes were identified. These polymorphisms are the first to be reported for these genes and will facilitate future case-control studies of horse susceptibility to infectious diseases.
    BMC Genomics 02/2007; 8:313. DOI:10.1186/1471-2164-8-313 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple 2'-5' oligoadenylate (2-5A) synthetases are important components of innate immunity in mammals. Gene families encoding these proteins have previously been studied mainly in humans and mice. To reconstruct the evolution of this gene family in mammals, a search for additional 2-5A synthetase genes was performed in rat, cattle, pig, and dog. Twelve 2'-5' oligoadenylate synthetase (Oas) genes were identified in the rat genome, including eight Oas1 genes, two Oas1 pseudogenes, single copies of Oas2 and Oas3, and two Oas-like genes, Oasl1 and Oasl2. Four OAS genes were detected in the pig genome and five OAS genes were found in both the cattle and dog genomes. An OAS3 gene was not found in either the cattle or the pig genome. While two tandemly duplicated OAS-like (OASL) genes were identified in the dog genome, only a single OASL orthologue was found in both the cattle and the pig genomes. The bovine and porcine OASL genes contain premature stop codons and encode truncated proteins, which lack the typical C-terminal double ubiquitin domains. The cDNA sequences of the rat, cattle, pig, and dog OAS genes were amplified, sequenced and compared with each other and with those in the human, mouse, horse, and chicken genomes. Evidence of concerted evolution of paralogous 2'-5' oligoadenylate synthetase 1 genes was obtained in rodents (Rodentia) and even-toed ungulates (Artiodactyla). Calculations using the nonparametric Kolmogorov-Smirnov test suggested that the homogenization of paralogous OAS1 sequences was due to gene conversion rather than stabilizing selection.
    Journal of Molecular Evolution 11/2006; 63(4):562-76. DOI:10.1007/s00239-006-0073-3 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structures of the canine, rabbit, bovine and equine EIF2AK2 genes were determined. Each of these genes has a 5' non-coding exon as well as 15 coding exons. All of the canine, bovine and equine EIF2AK2 introns have consensus donor and acceptor splice sites. In the equine EIF2AK2 gene, a unique single nucleotide polymorphism that encoded a Tyr329Cys substitution was detected. Regulatory elements predicted in the promoter region were conserved in ungulates, primates, rodents, Afrotheria (elephant) and Insectifora (shrew). Western clawed frog and fugu EIF2AK2 gene sequences were detected in the USCS Genome Browser and compared to those of other vertebrate EIF2AK2 genes. A comparison of EIF2AK2 protein domains in vertebrates indicates that the kinase catalytic domains were evolutionarily more conserved than the nucleic acid-binding motifs. Nucleotide substitution rates were uniform among the vertebrate sequences with the exception of the zebrafish and goldfish EIF2AK2 genes, which showed substitution rates about 20% higher than those of other vertebrates. FISH was used to physically assign the horse and cattle genes to chromosome locations, ECA15q24-q25 and BTA11q12-15, respectively. Comparative mapping data confirmed conservation of synteny between ungulates, humans and rodents.
    Genetics Selection Evolution 09/2006; 38(5):551-63. DOI:10.1051/gse:2006021 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic testing for hereditary cancer syndromes contributes to the medical management of patients who may be at increased risk of one or more cancers. BRCA1 and BRCA2 testing for hereditary breast and ovarian cancer is one such widely used test. However, clinical testing methods with high sensitivity for deleterious mutations in these genes also detect many unclassified variants, primarily missense substitutions. We developed an extension of the Grantham difference, called A-GVGD, to score missense substitutions against the range of variation present at their position in a multiple sequence alignment. Combining two methods, co-occurrence of unclassified variants with clearly deleterious mutations and A-GVGD, we analysed most of the missense substitutions observed in BRCA1. A-GVGD was able to resolve known neutral and deleterious missense substitutions into distinct sets. Additionally, eight previously unclassified BRCA1 missense substitutions observed in trans with one or more deleterious mutations, and within the cross-species range of variation observed at their position in the protein, are now classified as neutral. The methods combined here can classify as neutral about 50% of missense substitutions that have been observed with two or more clearly deleterious mutations. Furthermore, odds ratios estimated for sets of substitutions grouped by A-GVGD scores are consistent with the hypothesis that most unclassified substitutions that are within the cross-species range of variation at their position in BRCA1 are also neutral. For most of these, clinical reclassification will require integrated application of other methods such as pooled family histories, segregation analysis, or validated functional assay.
    Journal of Medical Genetics 05/2006; 43(4):295-305. DOI:10.1136/jmg.2005.033878 · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian 2'-5' oligoadenylate (2-5A) synthetases are important mediators of the antiviral activity of interferons. Both human and mouse 2-5A synthetase gene families encode four forms of enzymes: small, medium, large and ubiquitin-like. In this study, the structures of four equine OAS genes were determined using DNA sequences derived from fifteen cDNA and four BAC clones. Composition of the equine OAS gene family is more similar to that of the human OAS family than the mouse Oas family. Two OAS-containing bovine BAC clones were identified in GenBank. Both equine and bovine BAC clones were physically assigned by FISH to horse and cattle chromosomes, ECA8p15-->p14 and BTA17q24--> q25, respectively. The comparative mapping data confirm conservation of synteny between ungulates, humans and rodents.
    Cytogenetic and Genome Research 02/2005; 111(1):51-6. DOI:10.1159/000085670 · 1.91 Impact Factor