Alex J Freemerman

University of North Carolina at Chapel Hill, North Carolina, United States

Are you Alex J Freemerman?

Claim your profile

Publications (10)42.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucose is a critical component in the pro-inflammatory response of macrophages (MФs). However, the contribution of glucose transporters (GLUTs) and the mechanisms regulating subsequent glucose metabolism in the inflammatory response are not well understood. Since MФs contribute to obesity-induced inflammation, it is important to understand how substrate metabolism may alter inflammatory function. We report that GLUT1 (SLC2A1) is the primary rate limiting glucose transporter on pro-inflammatory polarized MФs. Furthermore, in high fat diet-fed rodents, MФs in crown-like structures and inflammatory loci in adipose and liver, respectively, stain positively for GLUT1. We hypothesized that metabolic reprogramming via increased glucose availability could modulate the MФ inflammatory response. To increase glucose uptake, we stably over-expressed the GLUT1 transporter in RAW264.7 MФs (GLUT1-OE MΦs). Cellular bioenergetics analysis, metabolomics and radiotracer studies demonstrated that GLUT1 overexpression resulted in elevated glucose uptake and metabolism, increased pentose phosphate pathway intermediates, with a complimentary reduction in cellular oxygen consumption rates. Gene expression and proteome profiling analysis revealed that GLUT1-OE MΦs demonstrated a hyper-inflammatory state characterized by elevated secretion of inflammatory mediators and that this effect could be blunted by pharmacologic inhibition of glycolysis. Finally, reactive oxygen species production and evidence of oxidative stress were significantly enhanced in GLUT1-OE MФs; antioxidant treatment blunted the expression of inflammatory mediators such as PAI-1, suggesting that glucose-mediated oxidative stress was driving the pro-inflammatory response. Our results indicate that increased utilization of glucose induces a ROS-driven pro-inflammatory phenotype in MФs, which may play an integral role in the promotion of obesity-associated insulin resistance.
    Journal of Biological Chemistry 02/2014; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiologic studies demonstrate that obesity is associated with an aggressive subtype of breast cancer called basal-like breast cancer (BBC). Using the C3(1)-TAg murine model of BBC, we previously demonstrated that mice displayed an early onset of tumors when fed obesogenic diets in the adult window of susceptibility. Obesity was also shown to elevate mammary gland expression and activation of hepatocyte growth factor (HGF)/c-Met compared to lean controls, a pro-tumorigenic pathway associated with BBC in patients. Epidemiologic studies estimate that weight loss could prevent a large proportion of BBC. We sought to investigate whether weight loss in adulthood prior to tumor onset would protect mice from accelerated tumorigenesis observed in obese mice. Using a life-long model of obesity, C3(1)-TAg mice were weaned onto and maintained on an obesogenic high-fat diet. Obese mice displayed significant elevations in tumor progression, but not latency or burden. Tumor progression was significantly reversed when obese mice were induced to lose weight by switching to a control low-fat diet prior to tumor onset compared to mice maintained on obesogenic diet. We investigated the HGF/c-Met pathway known to regulate tumorigenesis. Importantly, HGF/c-Met expression in normal mammary glands and c-Met in tumors was elevated with obesity and was significantly reversed with weight loss. Changes in tumor growth could not be explained by measures of HGF action including phospho-AKT or phospho-S6. Other mediators associated with oncogenesis such as hyperinsulinemia and a high leptin:adiponectin ratio were elevated by obesity and reduced with weight loss. In sum, weight loss significantly blunted the obesity-responsive pro-tumorigenic HGF/c-Met pathway and improved several metabolic risk factors associated with BBC, which together may have contributed to the dramatic reversal of obesity-driven tumor progression. Future research aims to evaluate the role of obesity and the HGF/c-Met pathway in basal-like breast cancer progression.
    Frontiers in oncology. 01/2014; 4:175.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is associated with basal-like breast cancer (BBC), an aggressive breast cancer subtype. The objective of this study was to determine whether obesity promotes BBC onset in adulthood and to evaluate the role of stromal-epithelial interactions in obesity-associated tumorigenesis. We hypothesized that hepatocyte growth factor (HGF) plays a promoting role in BBC, which express the HGF receptor, c-Met. In C3(1)-TAg mice, a murine model of BBC, we demonstrated that obesity leads to a significant increase in HGF secretion and an associated decrease in tumor latency. By immunohistochemical analysis, normal mammary gland exhibited obesity-induced HGF, c-Met and phospho-c-Met, indicating that the activation of the cascade was obesity-driven. HGF secretion was also increased from primary mammary fibroblasts isolated from normal mammary glands and tumors of obese mice compared to lean. These results demonstrate that obesity-induced elevation of HGF expression is a stable phenotype, maintained after several passages, and after removal of dietary stimulation. Conditioned media from primary tumor fibroblasts from obese mice drove tumor cell proliferation. In co-culture, neutralization of secreted HGF blunted tumor cell migration, further linking obesity-mediated HGF-dependent effects to in vitro measures of tumor aggressiveness. In sum, these results demonstrate that HGF/c-Met plays an important role in obesity-associated carcinogenesis. Understanding the effects of obesity on risk and progression is important given that epidemiologic studies imply a portion of BBC could be eliminated by reducing obesity.
    Breast Cancer Research and Treatment 11/2013; · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Cancer cells have altered metabolism, with increased glucose uptake, glycolysis, and biomass production. This study performed genomic and metabolomic analyses to elucidate how tumor and stromal genomic characteristics influence tumor metabolism. EXPERIMENTAL DESIGN: Thirty-three breast tumors and six normal breast tissues were analyzed by gene expression microarray and by mass spectrometry for metabolites. Gene expression data and clinical characteristics were evaluated in association with metabolic phenotype. To evaluate the role of stromal interactions in altered metabolism, cocultures were performed using breast cancer cells and primary cancer-associated fibroblasts (CAFs). RESULTS: Across all metabolites, unsupervised clustering resulted in two main sample clusters. Normal breast tissue and a subset of tumors with less aggressive clinical characteristics had lower levels of nucleic and amino acids and glycolysis byproducts, while more aggressive tumors had higher levels of these Warburg-associated metabolites. While tumor intrinsic subtype did not predict metabolic phenotype, metabolic cluster was significantly associated with expression of a wound response signature. In cocultures, CAFs from basal-like breast cancers increased glucose uptake and basal-like epithelial cells increased glucose oxidation and glycogen synthesis, suggesting interplay of stromal and epithelial phenotypes on metabolism. Cytokine arrays identified hepatocyte growth factor (HGF) as a potential mediator of stromal-epithelial interaction, and antibody neutralization of HGF resulted in reduced expression of glucose transporter 1 (GLUT1) and decreased glucose uptake by epithelium. CONCLUSIONS: Both tumor/epithelial and stromal characteristics play important roles in metabolism. Warburg-like metabolism is influenced by changes in stromal-epithelial interactions, including altered expression of HGF/Met pathway and GLUT1 expression.
    Clinical Cancer Research 12/2012; · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The metabolic differences between B-NHL and primary human B cells are poorly understood. Among human B-cell non-Hodgkin lymphomas (B-NHL), primary effusion lymphoma (PEL) is a unique subset that is linked to infection with Kaposi's sarcoma-associated herpesvirus (KSHV). We report that the metabolic profiles of primary B cells are significantly different from that of PEL. Compared with primary B cells, both aerobic glycolysis and fatty acid synthesis (FAS) are up-regulated in PEL and other types of nonviral B-NHL. We found that aerobic glycolysis and FAS occur in a PI3K-dependent manner and appear to be interdependent. PEL overexpress the fatty acid synthesizing enzyme, FASN, and both PEL and other B-NHL were much more sensitive to the FAS inhibitor, C75, than primary B cells. Our findings suggest that FASN may be a unique candidate for molecular targeted therapy against PEL and other B-NHL.
    Proceedings of the National Academy of Sciences 06/2012; 109(29):11818-23. · 9.81 Impact Factor
  • Source
    BMC proceedings 06/2012; 6(3).
  • Source
    BMC proceedings 06/2012; 6(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD) to "Cafeteria diets" (CAF) consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity leading to Metabolic Syndrome.
    PLoS ONE 01/2012; 7(6):e38812. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We evaluated X-ray repair complementing defective repair in Chinese hamster cells 1 (XRCC1) protein in head and neck squamous cell carcinoma (HNSCC) patients in association with outcome. XRCC1 protein expression was assessed by immunohistochemical (IHC) staining of pretreatment tissue samples in 138 consecutive HNSCC patients treated with surgery (n = 31), radiation (15), surgery and radiation (23), surgery and adjuvant chemoradiation (17), primary chemoradiation (51), and palliative measures (1). Patients with high XRCC1 expression by IHC (n = 77) compared with patients with low XRCC1 expression (n = 60) had poorer median overall survival (OS; 41.0 months vs. OS not reached, P = 0.009) and poorer progression-free survival (28.0 months vs. 73.0 months, P = 0.031). This association was primarily due to patients who received chemoradiation (median OS of high- and low-XRCC1 expression patients, 35.5 months and not reached respectively, HR 3.48; 95% CI: 1.44-8.38; P = 0.006). In patients treated with nonchemoradiation modalities, there was no survival difference by XRCC1 expression. In multivariable analysis, high XRCC1 expression and p16(INK4a)-positive status were independently associated with survival in the overall study population (HR = 2.62; 95% CI: 1.52-4.52; P < 0.001 and HR = 0.21; 95% CI: 0.06-0.71; P = 0.012, respectively) and among chemoradiation patients (HR = 6.02; 95% CI: 2.36-15.37; P < 0.001 and HR = 0.26; 95% CI: 0.08-0.92, respectively; P = 0.037). In HNSCC, high XRCC1 protein expression is associated with poorer survival, particularly in patients receiving chemoradiation. Future validation of these findings may enable identification of HNSCC expressing patients who benefit from chemoradiation treatment.
    Clinical Cancer Research 09/2011; 17(20):6542-52. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity has reached epidemic proportions worldwide and reports estimate that American children consume up to 25% of calories from snacks. Several animal models of obesity exist, but studies are lacking that compare high-fat diets (HFD) traditionally used in rodent models of diet-induced obesity (DIO) to diets consisting of food regularly consumed by humans, including high-salt, high-fat, low-fiber, energy dense foods such as cookies, chips, and processed meats. To investigate the obesogenic and inflammatory consequences of a cafeteria diet (CAF) compared to a lard-based 45% HFD in rodent models, male Wistar rats were fed HFD, CAF or chow control diets for 15 weeks. Body weight increased dramatically and remained significantly elevated in CAF-fed rats compared to all other diets. Glucose- and insulin-tolerance tests revealed that hyperinsulinemia, hyperglycemia, and glucose intolerance were exaggerated in the CAF-fed rats compared to controls and HFD-fed rats. It is well-established that macrophages infiltrate metabolic tissues at the onset of weight gain and directly contribute to inflammation, insulin resistance, and obesity. Although both high fat diets resulted in increased adiposity and hepatosteatosis, CAF-fed rats displayed remarkable inflammation in white fat, brown fat and liver compared to HFD and controls. In sum, the CAF provided a robust model of human metabolic syndrome compared to traditional lard-based HFD, creating a phenotype of exaggerated obesity with glucose intolerance and inflammation. This model provides a unique platform to study the biochemical, genomic and physiological mechanisms of obesity and obesity-related disease states that are pandemic in western civilization today.
    Obesity 02/2011; 19(6):1109-17. · 3.92 Impact Factor