Jason D Warren

University College London, Londinium, England, United Kingdom

Are you Jason D Warren?

Claim your profile

Publications (154)1132.45 Total impact

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recognition of nonverbal sounds in semantic dementia and other syndromes of anterior temporal lobe degeneration may determine clinical symptoms and help to define phenotypic profiles. However, nonverbal auditory semantic function has not been widely studied in these syndromes. Here we investigated semantic processing in two key nonverbal auditory domains - environmental sounds and melodies - in patients with semantic dementia (SD group; n=9) and in patients with anterior temporal lobe atrophy presenting with behavioural decline (TL group; n=7, including four cases with MAPT mutations) in relation to healthy older controls (n=20). We assessed auditory semantic performance in each domain using novel, uniform within-modality neuropsychological procedures that determined sound identification based on semantic classification of sound pairs. Both the SD and TL groups showed comparable overall impairments of environmental sound and melody identification; individual patients generally showed superior identification of environmental sounds than melodies, however relative sparing of melody over environmental sound identification also occurred in both groups. Our findings suggest that nonverbal auditory semantic impairment is a common feature of neurodegenerative syndromes with anterior temporal lobe atrophy. However, the profile of auditory domain involvement varies substantially between individuals. Copyright © 2015. Published by Elsevier B.V.
    Journal of the neurological sciences 03/2015; 6. DOI:10.1016/j.jns.2015.03.007 · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of musical abilities in dementia have for the most part been rather general assessments of abilities, for instance, assessing retention of music learned premorbidly. Here, we studied patients with dementias with contrasting cognitive profiles to explore specific aspects of music cognition under challenge. Patients suffered from Alzheimer's disease (AD), in which a primary impairment is in forming new declarative memories, or Lewy body disease (PD/LBD), a type of parkinsonism in which executive impairments are prominent. In the AD patients, we examined musical imagery. Behavioral and neural evidence confirms involvement of perceptual networks in imagery, and these are relatively spared in early stages of the illness. Thus, we expected patients to have relatively intact imagery in a mental pitch comparison task. For the LBD patients, we tested whether executive dysfunction would extend to music. We probed inhibitory skills by asking for a speeded pitch or timbre judgment when the irrelevant dimension was held constant or also changed. Preliminary results show that AD patients score similarly to controls in the imagery tasks, but PD/LBD patients are impaired relative to controls in suppressing some irrelevant musical dimensions, particularly when the required judgment varies from trial to trial. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
    Annals of the New York Academy of Sciences 03/2015; 1337(1). DOI:10.1111/nyas.12616 · 4.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal dementia is an important neurodegenerative disorder of younger life led by profound emotional and social dysfunction. Here we used fMRI to assess brain mechanisms of music emotion processing in a cohort of patients with frontotemporal dementia (n = 15) in relation to healthy age-matched individuals (n = 11). In a passive-listening paradigm, we manipulated levels of emotion processing in simple arpeggio chords (mode versus dissonance) and emotion modality (music versus human emotional vocalizations). A complex profile of disease-associated functional alterations was identified with separable signatures of musical mode, emotion level, and emotion modality within a common, distributed brain network, including posterior and anterior superior temporal and inferior frontal cortices and dorsal brainstem effector nuclei. Separable functional signatures were identified post-hoc in patients with and without abnormal craving for music (musicophilia): a model for specific abnormal emotional behaviors in frontotemporal dementia. Our findings indicate the potential of music to delineate neural mechanisms of altered emotion processing in dementias, with implications for future disease tracking and therapeutic strategies. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
    Annals of the New York Academy of Sciences 03/2015; 1337(1). DOI:10.1111/nyas.12620 · 4.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘background’. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3 T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal dementia is a highly heritable neurodegenerative disorder. In about a third of patients, the disease is caused by autosomal dominant genetic mutations usually in one of three genes: progranulin (GRN), microtubule-associated protein tau (MAPT), or chromosome 9 open reading frame 72 (C9orf72). Findings from studies of other genetic dementias have shown neuroimaging and cognitive changes before symptoms onset, and we aimed to identify whether such changes could be shown in frontotemporal dementia. We recruited participants to this multicentre study who either were known carriers of a pathogenic mutation in GRN, MAPT, or C9orf72, or were at risk of carrying a mutation because a first-degree relative was a known symptomatic carrier. We calculated time to expected onset as the difference between age at assessment and mean age at onset within the family. Participants underwent a standardised clinical assessment and neuropsychological battery. We did MRI and generated cortical and subcortical volumes using a parcellation of the volumetric T1-weighted scan. We used linear mixed-effects models to examine whether the association of neuropsychology and imaging measures with time to expected onset of symptoms differed between mutation carriers and non-carriers. Between Jan 30, 2012, and Sept 15, 2013, we recruited participants from 11 research sites in the UK, Italy, the Netherlands, Sweden, and Canada. We analysed data from 220 participants: 118 mutation carriers (40 symptomatic and 78 asymptomatic) and 102 non-carriers. For neuropsychology measures, we noted the earliest significant differences between mutation carriers and non-carriers 5 years before expected onset, when differences were significant for all measures except for tests of immediate recall and verbal fluency. We noted the largest Z score differences between carriers and non-carriers 5 years before expected onset in tests of naming (Boston Naming Test -0·7; SE 0·3) and executive function (Trail Making Test Part B, Digit Span backwards, and Digit Symbol Task, all -0·5, SE 0·2). For imaging measures, we noted differences earliest for the insula (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume was 0·80% in mutation carriers and 0·84% in non-carriers; difference -0·04, SE 0·02) followed by the temporal lobe (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume 8·1% in mutation carriers and 8·3% in non-carriers; difference -0·2, SE 0·1). Structural imaging and cognitive changes can be identified 5-10 years before expected onset of symptoms in asymptomatic adults at risk of genetic frontotemporal dementia. These findings could help to define biomarkers that can stage presymptomatic disease and track disease progression, which will be important for future therapeutic trials. Centres of Excellence in Neurodegeneration. Copyright © 2015 Rohrer et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd. All rights reserved.
    The Lancet Neurology 02/2015; DOI:10.1016/S1474-4422(14)70324-2 · 21.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: C9orf72 hexanucleotide repeat expansions are the most common cause of familial frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) worldwide. The clinical presentation is often indistinguishable from classic FTD or ALS, although neuropsychiatric symptoms are more prevalent and, for ALS, behavioural and cognitive symptoms occur more frequently. Pathogenic repeat length is in the hundreds or thousands, but the minimum length that increases risk of disease, and how or whether the repeat size affects phenotype, are unclear. Like in many patients with FTD and ALS, neuronal inclusions that contain TARDBP are seen, but are not universal, and the characteristic pathological finding is of dipeptide repeat (DPR) proteins, formed by unconventional repeat-associated non-ATG translation. Possible mechanisms of neurodegeneration include loss of C9orf72 protein and function, RNA toxicity, and toxicity from the DPR proteins, but which of these is the major pathogenic mechanism is not yet certain. Copyright © 2015 Elsevier Ltd. All rights reserved.
    The Lancet Neurology 01/2015; 14(3). DOI:10.1016/S1474-4422(14)70233-9 · 21.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching ("looming") or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases.
    Frontiers in Behavioral Neuroscience 01/2015; 9:73. DOI:10.3389/fnbeh.2015.00073 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer's disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer's disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer's disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer's disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer's disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer's disease syndromic spectrum. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
    Brain 12/2014; 138(1). DOI:10.1093/brain/awu337 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective:Novel biomarkers for monitoring progression in neurodegenerative conditions are needed. Measurement of microstructural changes in white matter (WM) using diffusion tensor imaging (DTI) may be a useful outcome measure. Here we report trajectories of WM change using serial DTI in a cohort with behavioural variant Frontotemporal Dementia (bvFTD).Methods:23 patients with bvFTD (12 having genetic mutations), and 18 age-matched control participants were assessed using DTI and neuropsychological batteries at baseline and ˜1.3 years later. Baseline and follow-up DTI scans were registered using a group-wise approach. Annualised rates of change for DTI metrics, neuropsychological measures and whole brain volume were calculated. DTI metric performances were compared and sample sizes for potential clinical trials calculated.Results:In the bvFTD group as a whole, rates of change in fractional anisotropy (FA) and mean diffusivity (MD) within the right paracallosal cingulum were greatest (FA, -6.8%/year, p<0.001; MD 2.9%/year, p=0.01). MAPT carriers had the greatest change within left uncinate fasciculus (FA, -7.9%/year, p<0.001; MD, 10.9%/year, p<0.001); sporadic bvFTD and C9ORF72 carriers had the greatest change within right paracallosal cingulum (sporadic bvFTD, FA, -6.7%/year, p<0.001; MD 3.8%/year, p=0.001; C9ORF72, FA, -6.8%/year, p=0.004). Sample size estimates using FA change were substantially lower than neuropsychological or whole brain measures of change.Interpretation:Serial DTI scans may be useful for measuring disease progression in bvFTD with particular trajectories of WM damage emerging. Sample size calculations suggest that longitudinal DTI may be a useful biomarker in future clinical trials. ANN NEUROL 2014. © 2014 American Neurological Association
    Annals of Neurology 11/2014; 77(1). DOI:10.1002/ana.24296 · 11.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Crowding is a breakdown in the ability to identify objects in clutter, and is a major constraint on object recognition. Crowding particularly impairs object perception in peripheral, amblyopic and possibly developing vision. Here we argue that crowding is also a critical factor limiting object perception in central vision of individuals with neurodegeneration of the occipital cortices. In the current study, individuals with posterior cortical atrophy (n = 26), typical Alzheimer's disease (n = 17) and healthy control subjects (n = 14) completed centrally-presented tests of letter identification under six different flanking conditions (unflanked, and with letter, shape, number, same polarity and reverse polarity flankers) with two different target-flanker spacings (condensed, spaced). Patients with posterior cortical atrophy were significantly less accurate and slower to identify targets in the condensed than spaced condition even when the target letters were surrounded by flankers of a different category. Importantly, this spacing effect was observed for same, but not reverse, polarity flankers. The difference in accuracy between spaced and condensed stimuli was significantly associated with lower grey matter volume in the right collateral sulcus, in a region lying between the fusiform and lingual gyri. Detailed error analysis also revealed that similarity between the error response and the averaged target and flanker stimuli (but not individual target or flanker stimuli) was a significant predictor of error rate, more consistent with averaging than substitution accounts of crowding. Our findings suggest that crowding in posterior cortical atrophy can be regarded as a pre-attentive process that uses averaging to regularize the pathologically noisy representation of letter feature position in central vision. These results also help to clarify the cortical localization of feature integration components of crowding. More broadly, we suggest that posterior cortical atrophy provides a neurodegenerative disease model for exploring the basis of crowding. These data have significant implications for patients with, or who will go on to develop, dementia-related visual impairment, in whom acquired excessive crowding likely contributes to deficits in word, object, face and scene perception.
    Brain 10/2014; 137(12). DOI:10.1093/brain/awu293 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathophysiology of nonfluent primary progressive aphasia (nfvPPA) remains poorly understood. Here, we compared quantitatively speech parameters in patients with nfvPPA versus healthy older individuals under altered auditory feedback, which has been shown to modulate normal speech output. Patients (n=15) and healthy volunteers (n=17) were recorded during reading aloud under delayed auditory feedback [DAF] with latency 0, 50 or 200 msec and under DAF at 200 msec plus 0.5 octave upward pitch shift. DAF in healthy older individuals was associated with reduced speech rate and emergence of speech sound errors, particularly at latency 200msec. Around a third of the healthy older group under DAF showed speech slowing and frequency of speech sound errors within the range of the nfvPPA cohort. Our findings suggest that (in addition to any anterior, primary language output disorder) these key features of nfvPPA may reflect distorted speech input signal processing, as simulated by DAF. DAF may constitute a novel candidate pathophysiological model of posterior dorsal cortical language pathway dysfunction in nfvPPA.
    Journal of the Neurological Sciences 09/2014; 347(1-2). DOI:10.1016/j.jns.2014.09.039 · 2.26 Impact Factor
  • Journal of Neurology Neurosurgery & Psychiatry 09/2014; 85(10):e4-e4. DOI:10.1136/jnnp-2014-309236.79 · 5.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Compulsive production of verse is an unusual form of hypergraphia that has been reported mainly in patients with right temporal lobe seizures. We present a patient with transient epileptic amnesia and a left temporal seizure focus, who developed isolated compulsive versifying, producing multiple rhyming poems, following seizure cessation induced by lamotrigine. Functional neuroimaging studies in the healthy brain implicate left frontotemporal areas in generating novel verbal output and rhyme, while dysregulation of neocortical and limbic regions occurs in temporal lobe epilepsy. This case complements previous observations of emergence of altered behavior with reduced seizure frequency in patients with temporal lobe epilepsy. Such cases suggest that reduced seizure frequency has the potential not only to stabilize or improve memory function, but also to trigger complex, specific behavioral alterations.
    Neurocase 08/2014; DOI:10.1080/13554794.2014.953178 · 1.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template-based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimer's disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimer's disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimer's disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co-localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 08/2014; 35(8). DOI:10.1002/hbm.22468 · 6.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reading deficits are a common early feature of the degenerative syndrome posterior cortical atrophy (PCA) but are poorly understood even at the single word level. The current study evaluated the reading accuracy and speed of 26 PCA patients, 17 typical Alzheimer’s disease patients (tAD) and 14 healthy controls on a corpus of 192 single words in which the following perceptual properties were manipulated systematically: inter-letter spacing, font size, length, font type, case and confusability. PCA reading was significantly less accurate and slower than tAD patients and controls, with performance significantly adversely affected by increased letter spacing, size, length and font (cursive<non-cursive), and characterised by visual errors (69% of all error responses). By contrast, tAD and control accuracy rates were at or near ceiling, letter spacing was the only perceptual factor to influence reading speed in the same direction as controls, and, in contrast to PCA patients, control reading was faster for larger font sizes. The inverse size effect in PCA (less accurate reading of large than small font size print) was associated with lower grey matter volume in the right superior parietal lobule. Reading accuracy was associated with impairments of early visual (especially crowding), visuoperceptual and visuospatial processes. However, these deficits were not causally related to a universal impairment of reading as some patients showed preserved reading for small, unspaced words despite grave visual deficits. Rather, the impact of specific types of visual dysfunction on reading was found to be (con)text specific, being particularly evident for large, spaced, lengthy words. These findings improve the characterisation of dyslexia in PCA, shed light on the causative and associative factors, and provide clear direction for the development of reading aids and strategies to maximise and sustain reading ability in the early stages of disease.
    Cortex 08/2014; 57. DOI:10.1016/j.cortex.2014.03.010 · 6.04 Impact Factor
  • Alzheimer's and Dementia 07/2014; 10(4):P177-P178. DOI:10.1016/j.jalz.2014.04.193 · 17.47 Impact Factor
  • Source
    Brain 06/2014; 137. DOI:10.1093/brain/awu145 · 10.23 Impact Factor
  • Source
    Camilla N Clark, Laura E Downey, Jason D Warren
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite its evident universality and high social value, the ultimate biological role of music and its connection to brain disorders remain poorly understood. Recent findings from basic neuroscience have shed fresh light on these old problems and new insights provided by clinical neuroscience concerning the effects of brain disorders promise to be particularly valuable in uncovering the underlying cognitive and neural architecture of music and for assessing candidate accounts of the biological role of music. Here we advance a new model of the biological role of music in human evolution and the link to brain disorders, drawing on diverse lines of evidence derived from comparative ethology, cognitive neuropsychology and neuroimaging studies in the normal and disordered brain. We propose that music evolved from the call signals of our hominid ancestors as a means mentally to rehearse and predict potentially costly, affectively-laden social routines in surrogate, coded, low-cost form: essentially, a mechanism for transforming emotional mental states efficiently and adaptively into social signals. This biological role of music has its legacy today in the disordered processing of music and mental states that characterises certain developmental and acquired clinical syndromes of brain network disintegration.
    Social Cognitive and Affective Neuroscience 05/2014; 10(3). DOI:10.1093/scan/nsu079 · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semantic dementia is a unique clinicopathological syndrome in the frontotemporal lobar degeneration spectrum. It is characterized by progressive and relatively selective impairment of semantic memory, associated with asymmetric antero-inferior temporal lobe atrophy. Although the syndrome became widely recognized only in the 1980s, descriptions of cases with typical features of semantic dementia have been on record for over a century. Here, we draw attention to a well documented historical case of a patient with features that would have fulfilled current consensus criteria for semantic dementia, as reconstructed from the notes made by her neurologist, Macdonald Critchley, in 1938. This case raises a number of issues concerning the nosology of the semantic dementia syndrome and the potential value of archived case material.
    Neurocase 05/2014; DOI:10.1080/13554794.2014.910307 · 1.38 Impact Factor

Publication Stats

4k Citations
1,132.45 Total Impact Points

Institutions

  • 2002–2015
    • University College London
      • • Centre for Obesity Research
      • • Institute of Neurology
      • • Department of Neurodegenerative Disease
      • • Institute of Cognitive Neuroscience
      Londinium, England, United Kingdom
    • Newcastle University
      Newcastle-on-Tyne, England, United Kingdom
  • 2008–2013
    • UCL Eastman Dental Institute
      Londinium, England, United Kingdom
  • 1999–2009
    • Royal Adelaide Hospital
      • • Department of Neurology
      • • Department of Medicine
      Tarndarnya, South Australia, Australia
  • 2005
    • Imperial College London
      Londinium, England, United Kingdom