Dan R Littman

CUNY Graduate Center, New York, New York, United States

Are you Dan R Littman?

Claim your profile

Publications (325)4828.82 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stability of a lineage program (cellular memory) is dependent on mechanisms that epigenetically maintain active or repressed states of gene expression (transcriptional memory). Although epigenetic silencing of genes has been clearly demonstrated from yeast to mammals, heritable maintenance of active transcription has been less clearly defined. To investigate the potential role of active transcriptional memory during lineage diversification, we employed targeted mutation of a positive-acting cis element in the Cd4 locus to determine the impact on CD4 expression and the differentiation of CD4(+) helper T cells in mice. We show that the proximal enhancer (E4(P)) of Cd4 is essential for CD4 expression in immature CD4(+)8(+) thymocytes. Furthermore, its loss resulted in reduced and unstable expression of CD4 in mature T cells. However, if the enhancer was deleted after cells had already committed to the helper T-cell lineage, CD4 expression remained high and was stable upon cell division. "Active" histone modifications, once initiated by E4(P), were also propagated independently of the enhancer. Thus, E4(P) is responsible for establishing an epigenetically inherited active Cd4 locus in the helper T-cell lineage. To our knowledge, this is the first genetic demonstration of active transcriptional memory in mammalian cells.
    Genes & development 04/2010; 24(7):659-69. DOI:10.1101/gad.1901610 · 12.64 Impact Factor
  • D. R. Littman
    Journal of Crohn s and Colitis Supplements 04/2010; 4(1):13-13. DOI:10.1016/S1873-9954(10)70020-3
  • Journal of Crohn s and Colitis Supplements 04/2010; 4(1):30-30. DOI:10.1016/S1873-9954(10)70057-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 replication requires transport of nascent viral DNA and associated virion proteins, the retroviral preintegration complex (PIC), into the nucleus. Too large for passive diffusion through nuclear pore complexes (NPCs), PICs use cellular nuclear transport mechanisms and nucleoporins (NUPs), the NPC components that permit selective nuclear-cytoplasmic exchange, but the details remain unclear. Here we identify a fragment of the cleavage and polyadenylation factor 6, CPSF6, as a potent inhibitor of HIV-1 infection. When enriched in the cytoplasm, CPSF6 prevents HIV-1 nuclear entry by targeting the viral capsid (CA). HIV-1 harboring the N74D mutation in CA fails to interact with CPSF6 and evades the nuclear import restriction. Interestingly, whereas wild-type HIV-1 requires NUP153, N74D HIV-1 mimics feline immunodeficiency virus nuclear import requirements and is more sensitive to NUP155 depletion. These findings reveal a remarkable flexibility in HIV-1 nuclear transport and highlight a single residue in CA as essential in regulating interactions with NUPs.
    Cell host & microbe 03/2010; 7(3):221-33. DOI:10.1016/j.chom.2010.02.007 · 12.19 Impact Factor
  • Source
    Dan R Littman, Alexander Y Rudensky
    [Show abstract] [Hide abstract]
    ABSTRACT: The vertebrate immune system is poised in a state of equilibrium that permits accurate and rapid protective responses against pathogens but curtails potential for causing harm to the host through targeting of "self" and provoking overexuberant inflammatory processes. In this Review we discuss this balance achieved in large part by interactions of different classes of T lymphocytes that have potent pro- or anti-inflammatory activity in the context of genetic and environmental factors, particularly the commensal microbiota.
    Cell 03/2010; 140(6):845-58. DOI:10.1016/j.cell.2010.02.021 · 33.12 Impact Factor
  • Source
    I I Ivanov, D R Littman
    [Show abstract] [Hide abstract]
    ABSTRACT: Commensal bacteria are crucial for maturation and function of the mucosal immune system. However, the mechanisms of these interactions are poorly understood. In addition, the role of the composition of the microbiota and the importance of individual species in this community in stimulating different types of immunity are major unanswered questions. We recently showed that the balance between two major effector T cell populations in the intestine, IL-17(+) Th17 cells and Foxp3(+) Tregs, requires signals from commensal bacteria and is dependent on the composition of the intestinal microbiota. Comparison of microbiota from Th17 cell-deficient and Th17 cell-sufficient mice identified segmented filamentous bacteria (SFB) as capable of specifically inducing Th17 cells in the gut. SFB represent the first example of a commensal species that can skew the mucosal effector T cell balance and thus affect the immune fitness of the individual.
    Mucosal Immunology 02/2010; 3(3):209-12. DOI:10.1038/mi.2010.3 · 7.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of the Th17 T cell subset as important mediators of host defense and pathology prompted us to determine their susceptibility to human immunodeficiency virus (HIV) infection. We found that a sizeable portion of Th17 cells express HIV coreceptor CCR5 and produce very low levels of CCR5 ligands macrophage inflammatory protein (MIP)-1alpha and MIP-1beta. Accordingly, CCR5(+) Th17 cells were efficiently infected with CCR5-tropic HIV and were depleted during viral replication in vitro. Remarkably, HIV-infected individuals receiving treatment had significantly reduced Th17 cell counts, compared with HIV-uninfected subjects, regardless of viral load or CD4 cell count, whereas treatment-naive subjects had normal levels. However, there was a preferential reduction in CCR5(+) T cells that were also CCR6 positive, which is expressed on all Th17 cells, compared with CCR6(-)CCR5(+) cells, in both treated and untreated HIV-infected subjects. This observation suggests preferential targeting of CCR6(+)CCR5(+) Th17 cells by CCR5-tropic viruses in vivo. Th17 cell levels also inversely correlated with activated CD4(+) T cells in HIV-infected individuals who are receiving treatment. Our findings suggest a complex perturbation of Th17 subsets during the course of HIV disease potentially through both direct viral infection and virus indirect mechanisms, such as immune activation.
    The Journal of Infectious Diseases 02/2010; 201(6):843-54. DOI:10.1086/651021 · 5.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Passage through the beta-selection developmental checkpoint requires productive rearrangement of segments of the T cell antigen receptor-beta gene (Tcrb) and formation of a pre-TCR on the surface of CD4(-)CD8(-) thymocytes. How other receptors influence betabeta-selection is less well understood. Here we define a new role for the chemokine receptor CXCR4 during T cell development. CXCR4 functionally associated with the pre-TCR and influenced beta-selection by regulating the steady-state localization of immature thymocytes in thymic subregions, by facilitating optimal pre-TCR-induced survival signals, and by promoting thymocyte proliferation. We also characterize functionally relevant signaling molecules downstream of CXCR4 and the pre-TCR in thymocytes. Our data designate CXCR4 as a costimulator of the pre-TCR during beta-selection.
    Nature Immunology 12/2009; 11(2):162-70. DOI:10.1038/ni.1830 · 24.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The RUNX1/AML1 gene is the most frequently mutated gene in human leukemia. Conditional deletion of Runx1 in adult mice results in an increase of hematopoietic stem cells (HSCs), which serve as target cells for leukemia; however, Runx1(-/-) mice do not develop spontaneous leukemia. Here we show that maintenance of Runx1(-/-) HSCs is compromised, progressively resulting in HSC exhaustion. In leukemia development, the stem cell exhaustion was rescued by additional genetic changes. Retroviral insertional mutagenesis revealed Evi5 activation as a cooperating genetic alteration and EVI5 overexpression indeed prevented Runx1(-/-) HSC exhaustion in mice. Moreover, EVI5 was frequently overexpressed in human RUNX1-related leukemias. These results provide insights into the mechanism for maintenance of pre-leukemic stem cells and may provide a novel direction for therapeutic applications.
    Blood 12/2009; 115(8):1610-20. DOI:10.1182/blood-2009-07-232249 · 10.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Forkhead box P3 (FOXP3)(+)CD4(+)CD25(+) inducible regulatory T (iT reg) cells play an important role in immune tolerance and homeostasis. In this study, we show that the transforming growth factor-beta (TGF-beta) induces the expression of the Runt-related transcription factors RUNX1 and RUNX3 in CD4(+) T cells. This induction seems to be a prerequisite for the binding of RUNX1 and RUNX3 to three putative RUNX binding sites in the FOXP3 promoter. Inactivation of the gene encoding RUNX cofactor core-binding factor-beta (CBFbeta) in mice and small interfering RNA (siRNA)-mediated suppression of RUNX1 and RUNX3 in human T cells resulted in reduced expression of Foxp3. The in vivo conversion of naive CD4(+) T cells into Foxp3(+) iT reg cells was significantly decreased in adoptively transferred Cbfb(F/F) CD4-cre naive T cells into Rag2(-/-) mice. Both RUNX1 and RUNX3 siRNA silenced human T reg cells and Cbfb(F/F) CD4-cre mouse T reg cells showed diminished suppressive function in vitro. Circulating human CD4(+) CD25(high) CD127(-) T reg cells significantly expressed higher levels of RUNX3, FOXP3, and TGF-beta mRNA compared with CD4(+)CD25(-) cells. Furthermore, FOXP3 and RUNX3 were colocalized in human tonsil T reg cells. These data demonstrate Runx transcription factors as a molecular link in TGF-beta-induced Foxp3 expression in iT reg cell differentiation and function.
    Journal of Experimental Medicine 11/2009; 206(12):2701-15. DOI:10.1084/jem.20090596 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+)Foxp3(+) regulatory T cells (Treg cells) are known to control the progression of autoimmune diabetes, but when, where, and how they exert their influence in this context are questions still under vigorous debate. Exploiting a transgene encoding the human diphtheria toxin receptor, we punctually and specifically ablated Foxp3(+) cells in the BCD2.5/NOD mouse model of autoimmune diabetes. Strikingly, overt disease developed within 3 days. The earliest detectable event was the activation of natural killer (NK) cells directly within the insulitic lesion, particularly the induction of Ifng gene expression within 7 hours of Treg cell ablation. Interferon-gamma had a strong impact on the gene-expression program of the local CD4(+) T effector cell population, unleashing it to aggressively attack the islets, which was required for the development of diabetes. Thus, Treg cells regulate pancreatic autoimmunity in situ through control of a central innate immune system player, NK cells.
    Immunity 10/2009; 31(4):654-64. DOI:10.1016/j.immuni.2009.08.023 · 19.75 Impact Factor
  • Cytokine 10/2009; 48(1):18-18. DOI:10.1016/j.cyto.2009.07.071 · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. How commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to induce the appearance of CD4(+) T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria. SFB adhere tightly to the surface of epithelial cells in the terminal ileum of mice with Th17 cells but are absent from mice that have few Th17 cells. Colonization with SFB was correlated with increased expression of genes associated with inflammation and antimicrobial defenses and resulted in enhanced resistance to the intestinal pathogen Citrobacter rodentium. Thus, manipulation of this commensal-regulated pathway may provide new opportunities for enhancing mucosal immunity and treating autoimmune disease.
    Cell 10/2009; 139(3):485-98. DOI:10.1016/j.cell.2009.09.033 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor Foxp3 has an indispensable role in establishing stable transcriptional and functional programs of regulatory T cells (T(reg) cells). Loss of Foxp3 expression in mature T(reg) cells results in a failure of suppressor function, yet the molecular mechanisms that ensure steady, heritable Foxp3 expression in the T(reg) cell lineage remain unknown. Using T(reg) cell-specific gene targeting, we found that complexes of the transcription factors Runx and CBFbeta were required for maintenance of Foxp3 mRNA and protein expression in T(reg) cells. Consequently, mice lacking CBFbetab exclusively in the T(reg) cell lineage had a moderate lymphoproliferative syndrome. Thus, Runx-CBFbeta complexes maintain stable high expression of Foxp3 and serve as an essential determinant of T(reg) cell lineage stability.
    Nature Immunology 09/2009; 10(11):1170-7. DOI:10.1038/ni.1795 · 24.97 Impact Factor
  • Source
    Liang Zhou, Mark M W Chong, Dan R Littman
    [Show abstract] [Hide abstract]
    ABSTRACT: The differentiation of naive CD4(+) T cells into lineages with distinct effector functions has been considered to be an irreversible event. T helper type 1 (Th1) cells stably express IFN-gamma, whereas Th2 cells express IL-4. The discovery and investigation of two other CD4(+) T cell subsets, induced regulatory T (iTreg) cells and Th17 cells, has led to a rethinking of the notion that helper T cell subsets represent irreversibly differentiated endpoints. Accumulating evidence suggests that CD4(+) T cells, particularly iTreg and Th17 cells, are more plastic than previously appreciated. It appears that expression of Foxp3 by iTreg cells or IL-17 by Th17 cells may not be stable and that there is a great degree of flexibility in their differentiation options. Here, we will discuss recent findings that demonstrate the plasticity of CD4(+) T cell differentiation and the biological implications of this flexibility.
    Immunity 06/2009; 30(5):646-55. DOI:10.1016/j.immuni.2009.05.001 · 19.75 Impact Factor
  • Zaruhi Hovhannisyan, Lloyd Mayer, Dan R. Littman
    Gastroenterology 05/2009; 136(5). DOI:10.1016/S0016-5085(09)61122-7 · 13.93 Impact Factor
  • Source
    Liang Zhou, Dan R Littman
    [Show abstract] [Hide abstract]
    ABSTRACT: Upon encountering antigen in the context of antigen presenting cells, naïve CD4(+) T cells undergo differentiation into effector T helper (Th) cells, which can secrete high levels of cytokines and other immunomodulators to mediate host defense and tissue inflammation. During the past three years, the immunology field has witnessed an explosion of research advances in the biology of Th17 cells, the most recently described subset of T helper cells, which play crucial roles in host immunity and inflammation. Here we review emerging data on transcriptional regulatory networks that govern the differentiation program of Th17 cells, and focus on how the orphan nuclear receptor RORgammat coordinates this process in concert with diverse cytokine-induced transcription factors.
    Current opinion in immunology 04/2009; 21(2):146-52. DOI:10.1016/j.coi.2009.03.001 · 7.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IL-17-producing CD4(+) T helper (Th17) cells have recently been defined as a unique subset of proinflammatory helper cells whose development depends on signaling initiated by IL-6 and TGF-beta, autocrine activity of IL-21, activation of STAT3, and induction of the orphan nuclear receptor RORgammat. The maintenance, expansion, and further differentiation of the committed Th17 cells depend on IL-1beta and IL-23. IL-17 was originally found produced by circulating human CD45RO(+) memory T cells. A recent study found that human Th17 memory cells selectively express high levels of CCR6. In this study, we report that human peripheral blood and lymphoid tissue contain a significant number of CD4(+)FOXP3(+) T cells that express CCR6 and have the capacity to produce IL-17 upon activation. These cells coexpress FOXP3 and RORgammat transcription factors. The CD4(+)FOXP3(+)CCR6(+) IL-17-producing cells strongly inhibit the proliferation of CD4(+) responder T cells. CD4(+)CD25(high)-derived T-cell clones express FOXP3, RORgammat, and IL-17 and maintain their suppressive function via a cell-cell contact mechanism. We further show that human CD4(+)FOXP3(+)CCR6(-) regulatory T (Treg) cells differentiate into IL-17 producer cells upon T-cell receptor stimulation in the presence of IL-1beta, IL-2, IL-21, IL-23, and human serum. This, together with the finding that human thymus does not contain IL-17-producing Treg cells, suggests that the IL-17(+)FOXP3(+) Treg cells are generated in the periphery. IL-17-producing Treg cells may play critical roles in antimicrobial defense, while controlling autoimmunity and inflammation.
    Proceedings of the National Academy of Sciences 04/2009; 106(12):4793-8. DOI:10.1073/pnas.0900408106 · 9.81 Impact Factor
  • Source
    Edward P Browne, Dan R Littman
    [Show abstract] [Hide abstract]
    ABSTRACT: Although retroviruses have been extensively studied for many years, basic questions about how retroviral infections are detected by the immune system and which innate pathways are required for the generation of immune responses remain unanswered. Defining these pathways and how they contribute to the anti-retroviral immune responses would assist in the development of more effective vaccines for retroviral pathogens such as HIV. We have investigated the roles played by CD11c(+) dendritic cells (DCs) and by Toll-like receptor (TLR) signaling pathways in the generation of an anti-retroviral immune response against a mouse retroviral pathogen, Friend murine leukemia virus (F-MLV). Specific deletion of DCs during F-MLV infection caused a significant increase in viral titers at 14 days post-infection, indicating the importance of DCs in immune control of the infection. Similarly, Myd88 knockout mice failed to control F-MLV, and sustained high viral titers (10(7) foci/spleen) for several months after infection. Strikingly, both DC-depleted mice and Myd88 knockout mice exhibited only a partial reduction of CD8(+) T cell responses, while the IgG antibody response to F-MLV was completely lost. Furthermore, passive transfer of immune serum from wild-type mice to Myd88 knockout mice rescued control of F-MLV. These results identify TLR signaling and CD11c(+) DCs as playing critical roles in the humoral response to retroviruses.
    PLoS Pathogens 03/2009; 5(2):e1000298. DOI:10.1371/journal.ppat.1000298 · 8.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent research has uncovered complex transcription factor networks that control the processes of T-cell development and differentiation. RUNX (runt-related transcription factor) proteins are among the many factors that have crucial roles in these networks. In this Review, we examine the mechanisms by which RUNX complexes act together with other transcription factors, such as Th-POK (T-helper-inducing POZ/Kruppel-like factor) and GATA-binding protein 3 (GATA3) in determining the CD4/CD8 lineage choice of developing thymocytes. In addition, we discuss evidence indicating that RUNX complexes are also involved in the differentiation of effector T-cell subsets and that the molecular mechanisms by which RUNX proteins regulate T-cell fate decisions are conserved between the thymus and periphery.
    Nature Reviews Immunology 03/2009; 9(2):106-15. DOI:10.1038/nri2489 · 33.84 Impact Factor

Publication Stats

56k Citations
4,828.82 Total Impact Points

Institutions

  • 1998–2015
    • CUNY Graduate Center
      New York, New York, United States
    • New York University
      New York City, New York, United States
  • 1997–2015
    • NYU Langone Medical Center
      • Skirball Institute of Biomolecular Medicine
      New York, New York, United States
    • San Raffaele Scientific Institute
      Milano, Lombardy, Italy
  • 2014
    • Erasmus MC
      • Department of Cell Biology
      Rotterdam, South Holland, Netherlands
  • 1985–2014
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 2012
    • University of North Carolina at Chapel Hill
      • Lineberger Comprehensive Cancer Center
      Chapel Hill, NC, United States
    • Indiana University South Bend
      South Bend, Indiana, United States
    • Albert Einstein College of Medicine
      New York, New York, United States
  • 2010
    • Christian-Albrechts-Universität zu Kiel
      Kiel, Schleswig-Holstein, Germany
  • 2008
    • Yale University
      New Haven, Connecticut, United States
  • 1988–2006
    • University of California, San Francisco
      • Department of Microbiology and Immunology
      San Francisco, CA, United States
  • 2004
    • University of Texas MD Anderson Cancer Center
      Houston, Texas, United States
  • 2002
    • University of Vienna
      • Institute of Immunology
      Vienna, Vienna, Austria
    • Kyushu University
      • Department of Molecular Genetics
      Fukuoka-shi, Fukuoka-ken, Japan
  • 2001
    • University of Pennsylvania
      Filadelfia, Pennsylvania, United States
  • 2000
    • National Institute of Allergy and Infectious Diseases
      • Laboratory of Parasitic Diseases (LPD)
      Maryland, United States
  • 1999
    • Memorial Sloan-Kettering Cancer Center
      New York, New York, United States
  • 1995
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 1994
    • The Scripps Research Institute
      La Jolla, California, United States
  • 1990
    • University of Washington Seattle
      • Department of Biochemistry
      Seattle, Washington, United States
  • 1987–1988
    • Stanford University
      • Department of Medicine
      Palo Alto, California, United States
    • Harvard University
      Cambridge, Massachusetts, United States
  • 1986
    • Wistar Institute
      Philadelphia, Pennsylvania, United States