Dan R Littman

Erasmus MC, Rotterdam, South Holland, Netherlands

Are you Dan R Littman?

Claim your profile

Publications (310)4478.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To characterize the diversity and taxonomic relative abundance of the gut microbiota in patients with never-treated, recent-onset psoriatic arthritis (PsA). Methods: High-throughput 16S rRNA pyrosequencing was utilized to compare community composition of gut microbiota in PsA patients (n=16), subjects with psoriasis of the skin (Ps) (n=15) and healthy, matched-controls (n=17). Samples were further assessed for the presence and levels of fecal and serum secretory immunoglobulin A (sIgA), pro-inflammatory proteins and fatty-acids. Results: The gut microbiota observed in PsA and Ps patients was less diverse when compared to healthy controls. These could be attributed to the reduced presence of several taxa. While both groups showed a relative decrease in Coprococcus spp., PsA samples were characterized by a significant reduction in Akkermansia, Ruminococcus, and Pseudobutyrivibrio. Supernatants of fecal samples from PsA patients revealed an increase in sIgA and a decrease in receptor activator of nuclear factor kappa-B ligand (RANKL) levels. Fatty acid analysis revealed low levels of hexanoate and heptanoate in PsA and Ps patients. Conclusion: PsA and Ps patients had a lower relative abundance of multiple intestinal bacteria. Although some genera were concomitantly decreased in both conditions, PsA samples had lower abundance of reportedly beneficial taxa. This gut microbiota profile in PsA was similar to that published for patients with IBD and was associated with changes in specific inflammatory proteins unique to this group, and distinct from Ps and controls. Thus, the role of gut microbiota in the continuum of Ps-PsA pathogenesis and the associated immune response merits further study. © 2014 American College of Rheumatology.
    Arthritis & rheumatology (Hoboken, N.J.). 10/2014;
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 16S-ribosomal sequencing and other metagonomic techniques provide snapshots of microbial communities, revealing phylogeny and the abundances of microbial populations across diverse ecosystems. While changes in microbial community structure are demonstrably associated with certain environmental conditions, identification of underlying mechanisms requires new statistical tools, as these datasets present several technical challenges. First, the abundances of microbial operational taxonomic units (OTUs) from 16S datasets are compositional, and thus, microbial abundances are not independent. Secondly, microbial sequencing-based studies typically measure hundreds of OTUs on only tens to hundreds of samples; thus, inference of OTU-OTU interaction networks is severely under-powered, and additional assumptions are required for accurate inference. Here, we present SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological interactions from metagenomic datasets that addresses both of these issues. SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological interaction network is sparse. To reconstruct the interaction network, SPIEC-EASI relies on algorithms for sparse neighborhood and inverse covariance selection. Because no large-scale microbial ecological networks have been experimentally validated, SPIEC-EASI comprises computational tools to generate realistic OTU count data from a set of diverse underlying network topologies. SPIEC-EASI outperforms state-of-the-art methods in terms of edge recovery and network properties on realistic synthetic data under a variety of scenarios. SPIEC-EASI also reproducibly predicts previously unknown microbial interactions using data from the American Gut project.
    08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-22-producing group 3 innate lymphoid cells (ILC3) promote mucosal healing and maintain barrier integrity, but how microbial signals are integrated to regulate mucosal protection offered by these cells remains unclear. Here, we show that in vivo depletion of CX3CR1(+) mononuclear phagocytes (MNPs) resulted in more severe colitis and death after infection with Citrobacter rodentium. This phenotype was rescued by exogenous IL-22, which was endogenously produced by ILC3 in close spatial proximity to CX3CR1(+) MNPs that were dependent on MyD88 signaling. CX3CR1(+) MNPs from both mouse and human tissue produced more IL-23 and IL-1β than conventional CD103(+) dendritic cells (cDCs) and were more efficient than cDCs in supporting IL-22 production in ILC3 in vitro and in vivo. Further, colonic ILC3 from patients with mild to moderate ulcerative colitis or Crohn's disease had increased IL-22 production. IBD-associated SNP gene set analysis revealed enrichment for genes selectively expressed in human intestinal MNPs. The product of one of these, TL1A, potently enhanced IL-23- and IL-1β-induced production of IL-22 and GM-CSF by ILC3. Collectively, these results reveal a critical role for CX3CR1(+) mononuclear phagocytes in integrating microbial signals to regulate colonic ILC3 function in IBD.
    The Journal of experimental medicine. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vertebrate intestinal tract is colonized by hundreds of species of bacteria that must be compartmentalized and tolerated to prevent invasive growth and harmful inflammatory responses. Signaling initiated by commensal bacteria shapes antigen-specific mucosal and systemic adaptive immunity. A distinct type of effector CD4(+) T cells, Th17 cells, have a key role in coordinating the inflammatory immune responses that afford protection to pathogens at the mucosal interface. Balancing this powerful inflammatory response, regulatory T cells limit collateral damage and provide antigen-specific tolerance to both food and microbial antigens. Here, we discuss the implications for how the microbiota as a whole contributes to compartmentalization from the host and how individual constituents of the microbiota influence the functions and repertoire of effector T cells and organ-specific autoimmune disease.
    Cold Spring Harbor Symposia on Quantitative Biology 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T-helper-17 (TH17) cells have critical roles in mucosal defence and in autoimmune disease pathogenesis. They are most abundant in the small intestine lamina propria, where their presence requires colonization of mice with microbiota. Segmented filamentous bacteria (SFB) are sufficient to induce TH17 cells and to promote TH17-dependent autoimmune disease in animal models. However, the specificity of TH17 cells, the mechanism of their induction by distinct bacteria, and the means by which they foster tissue-specific inflammation remain unknown. Here we show that the T-cell antigen receptor (TCR) repertoire of intestinal TH17 cells in SFB-colonized mice has minimal overlap with that of other intestinal CD4(+) T cells and that most TH17 cells, but not other T cells, recognize antigens encoded by SFB. T cells with antigen receptors specific for SFB-encoded peptides differentiated into RORγt-expressing TH17 cells, even if SFB-colonized mice also harboured a strong TH1 cell inducer, Listeria monocytogenes, in their intestine. The match of T-cell effector function with antigen specificity is thus determined by the type of bacteria that produce the antigen. These findings have significant implications for understanding how commensal microbiota contribute to organ-specific autoimmunity and for developing novel mucosal vaccines.
    Nature 04/2014; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.
    Nature 03/2014; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.
    Cell 12/2013; 155(7):1596-609. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunoglobulin A (IgA) production at mucosal surfaces contributes to protection against pathogens and controls intestinal microbiota composition. However, mechanisms regulating IgA induction are not completely defined. We show that soluble lymphotoxin α (sLTα3) produced by RORγt(+) innate lymphoid cells (ILCs) controls T cell-dependent IgA induction in the lamina propria via regulation of T cell homing to the gut. By contrast, membrane-bound lymphotoxin β (LTα1β2) produced by RORγt(+) ILCs is critical for T cell-independent IgA induction in the lamina propria via control of dendritic cell functions. Ablation of LTα in RORγt(+) cells abrogated IgA production in the gut and altered microbiota composition. Thus, soluble and membrane-bound lymphotoxins produced by ILCs distinctly organize adaptive immune responses in the gut and control commensal microbiota composition.
    Science 12/2013; 342(6163):1243-6. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lymphocyte homing, which contributes to inflammation, has been studied extensively in the small intestine, but there is little known about homing to the large intestine, the site most commonly affected in inflammatory bowel disease. GPR15, an orphan G protein-coupled receptor, controlled the specific homing of T cells, particularly FOXP3(+) regulatory T cells (Tregs), to the large intestine lamina propria (LILP). GPR15 expression was modulated by gut microbiota and transforming growth factor-β1, but not by retinoic acid. GPR15-deficient mice were prone to develop more severe large intestine inflammation, which was rescued by the transfer of GPR15-sufficient Tregs. Our findings thus describe a T cell homing receptor for LILP and indicate that GPR15 plays a role in mucosal immune tolerance largely by regulating the influx of Tregs.
    Science 05/2013; · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+) T cells can perform a panoply of tasks to shape an effective response against a pathogen. Limited attention has been paid to the potential importance of functional CD4(+) T cell responses in the context of the development of next-generation vaccines, including HIV vaccines. Many CD4(+) T cell functions are newly appreciated and only partially understood. A workshop was held as a forum to bring together a small group of experts to exchange ideas on the role of CD4(+) T cells in developing durable functional antibody responses, via follicular helper T cells, as well as on the roles of CD4(+) T cells in other aspects of protective immunity. Here we discuss whether CD4(+) T cell responses may represent a beneficial component of an efficacious HIV vaccine.
    Nature medicine 02/2013; 19(2):143-9. · 27.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal microbiota has a critical role in immune system and metabolic homeostasis, but it must be tolerated by the host to avoid inflammatory responses that can damage the epithelial barrier separating the host from the luminal contents. Breakdown of this regulation and the resulting inappropriate immune response to commensals are thought to lead to the development of inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. We proposed that the intestinal immune system is instructed by the microbiota to limit responses to luminal antigens. Here we demonstrate in mice that, at steady state, the microbiota inhibits the transport of both commensal and pathogenic bacteria from the lumen to a key immune inductive site, the mesenteric lymph nodes (MLNs). However, in the absence of Myd88 or under conditions of antibiotic-induced dysbiosis, non-invasive bacteria were trafficked to the MLNs in a CCR7-dependent manner, and induced both T-cell responses and IgA production. Trafficking was carried out by CX(3)CR1(hi) mononuclear phagocytes, an intestinal-cell population previously reported to be non-migratory. These findings define a central role for commensals in regulating the migration to the MLNs of CX(3)CR1(hi) mononuclear phagocytes endowed with the ability to capture luminal bacteria, thereby compartmentalizing the intestinal immune response to avoid inflammation.
    Nature 01/2013; · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinoic acid-related orphan receptor RORγt plays a pivotal role in the differentiation of TH17 cells. Antagonizing RORγt transcriptional activity is a potential means to treat TH17-related autoimmune diseases. Herein, we describe the identification of a series of diphenylpropanamides as novel and selective RORγ antagonists. Diphenylpropanamide 4n inhibited transcriptional activity of RORγt, but not RORα, in cells. In addition, it suppressed human TH17 cell differentiation at sub-micromolar concentrations.
    ACS Medicinal Chemistry Letters 01/2013; 4(1):79-84. · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mice cannot be used to evaluate HIV-1 therapeutics and vaccines because they are not infectible by HIV-1 due to structural differences between several human and mouse proteins required for HIV-1 entry and replication including CD4, CCR5 and cyclin T1. We overcame this limitation by constructing mice with CD4 enhancer/promoter-regulated human CD4, CCR5 and cyclin T1 genes integrated as tightly linked transgenes (hCD4/R5/cT1 mice) promoting their efficient co-transmission and enabling the murine CD4-expressing cells to support HIV-1 entry and Tat-mediated LTR transcription. All of the hCD4/R5/cT1 mice developed disseminated infection of tissues that included the spleen, small intestine, lymph nodes and lungs after intravenous injection with an HIV-1 infectious molecular clone (HIV-IMC) expressing Renilla reniformis luciferase (LucR). Furthermore, localized infection of cervical-vaginal mucosal leukocytes developed after intravaginal inoculation of hCD4/R5/cT1 mice with the LucR-expressing HIV-IMC. hCD4/R5/cT1 mice reproducibly developed in vivo infection after inoculation with LucR-expressing HIV-IMC which could be bioluminescently quantified and visualized with a high sensitivity and specificity which enabled them to be used to evaluate the efficacy of HIV-1 therapeutics. Treatment with highly active anti-retroviral therapy or one dose of VRC01, a broadly neutralizing anti-HIV-1 antibody, almost completed inhibited acute systemic HIV-1 infection of the hCD4/R5/cT1 mice. hCD4/R5/cT1 mice could also be used to evaluate the capacity of therapies delivered by gene therapy to inhibit in vivo HIV infection. VRC01 secreted in vivo by primary B cells transduced with a VRC01-encoding lentivirus transplanted into hCD4/R5/cT1 mice markedly inhibited infection after intravenous challenge with LucR-expressing HIV-IMC. The reproducible infection of CD4/R5/cT1 mice with LucR-expressing HIV-IMC after intravenous or mucosal inoculation combined with the availability of LucR-expressing HIV-IMC expressing transmitted/founder and clade A/E and C Envs will provide researchers with a highly accessible pre-clinical in vivo HIV-1-infection model to study HIV-1 acquisition, treatment, and prevention.
    PLoS ONE 01/2013; 8(5):e63537. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid arthritis (RA) is a prevalent systemic autoimmune disease, caused by a combination of genetic and environmental factors. Animal models suggest a role for intestinal bacteria in supporting the systemic immune response required for joint inflammation. Here we performed 16S sequencing on 114 stool samples from rheumatoid arthritis patients and controls, and shotgun sequencing on a subset of 44 such samples. We identified the presence of Prevotella copri as strongly correlated with disease in new-onset untreated rheumatoid arthritis (NORA) patients. Increases in Prevotella abundance correlated with a reduction in Bacteroides and a loss of reportedly beneficial microbes in NORA subjects. We also identified unique Prevotella genes that correlated with disease. Further, colonization of mice revealed the ability of P. copri to dominate the intestinal microbiota and resulted in an increased sensitivity to chemically induced colitis. This work identifies a potential role for P. copri in the pathogenesis of RA. DOI: http://dx.doi.org/10.7554/eLife.01202.001.
    eLife Sciences 01/2013; 2.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor 4 (IRF4) and IRF8 regulate B, T, macrophage, and dendritic cell differentiation. They are recruited to cis-regulatory Ets-IRF composite elements by PU.1 or Spi-B. How these IRFs target genes in most T cells is enigmatic given the absence of specific Ets partners. Chromatin immunoprecipitation sequencing in T helper 17 (TH17) cells reveals that IRF4 targets sequences enriched for activating protein 1 (AP-1)–IRF composite elements (AICEs) that are co-bound by BATF, an AP-1 factor required for TH17, B, and dendritic cell differentiation. IRF4 and BATF bind cooperatively to structurally divergent AICEs to promote gene activation and TH17 differentiation. The AICE motif directs assembly of IRF4 or IRF8 with BATF heterodimers and is also used in TH2, B, and dendritic cells. This genomic regulatory element and cognate factors appear to have evolved to integrate diverse immunomodulatory signals.
    Science 11/2012; 338(6109):975-980. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Th17 cells have critical roles in mucosal defense and are major contributors to inflammatory disease. Their differentiation requires the nuclear hormone receptor RORγt working with multiple other essential transcription factors (TFs). We have used an iterative systems approach, combining genome-wide TF occupancy, expression profiling of TF mutants, and expression time series to delineate the Th17 global transcriptional regulatory network. We find that cooperatively bound BATF and IRF4 contribute to initial chromatin accessibility and, with STAT3, initiate a transcriptional program that is then globally tuned by the lineage-specifying TF RORγt, which plays a focal deterministic role at key loci. Integration of multiple data sets allowed inference of an accurate predictive model that we computationally and experimentally validated, identifying multiple new Th17 regulators, including Fosl2, a key determinant of cellular plasticity. This interconnected network can be used to investigate new therapeutic approaches to manipulate Th17 functions in the setting of inflammatory disease.
    Cell 09/2012; 151(2):289-303. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foxp3 activity is essential for the normal function of the immune system. Two types of regulatory T (T reg) cells express Foxp3, thymus-generated natural T reg (nT reg) cells, and peripherally generated adaptive T reg (iT reg) cells. These cell types have complementary functions. Until now, it has not been possible to distinguish iT reg from nT reg cells in vivo based solely on surface markers. We report here that Neuropilin 1 (Nrp1) is expressed at high levels by most nT reg cells; in contrast, mucosa-generated iT reg and other noninflammatory iT reg cells express low levels of Nrp1. We found that Nrp1 expression is under the control of TGF-β. By tracing nT reg and iT reg cells, we could establish that some tumors have a very large proportion of infiltrating iT reg cells. iT reg cells obtained from highly inflammatory environments, such as the spinal cords of mice with spontaneous autoimmune encephalomyelitis (EAE) and the lungs of mice with chronic asthma, express Nrp1. In the same animals, iT reg cells in secondary lymphoid organs remain Nrp1(low). We also determined that, in spontaneous EAE, iT reg cells help to establish a chronic phase of the disease.
    Journal of Experimental Medicine 09/2012; 209(10):1723-42. · 13.21 Impact Factor
  • Source
    Jun R Huh, Dan R Littman
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear hormone receptors (NHRs) form a family of transcription factors that are composed of modular protein structures with DNA- and ligand-binding domains (DBDs and LBDs). The DBDs confer gene target site specificity, whereas LBDs serve as control switches for NHR function. For many NHRs, both endogenous and synthetic small molecule ligands bind to small pockets within the LBDs, resulting in conformational changes that regulate transcriptional activity. This property of NHRs has been exploited by the pharmaceutical industry for therapeutic targeting of a wide variety of diseases, ranging from inflammatory diseases and cancer to endocrine and metabolic diseases. Th17 cells are CD4(+) T helper effector cells that express several pro-inflammatory cytokines, including IL-17A, and the actions of these cells have been linked to multiple human autoimmune diseases. Our laboratory previously identified the NHR RORγt, an immune cell-specific isoform of RORγ (retinoic acid receptor-related orphan nuclear receptor gamma), as a key transcription factor for the development of Th17 cells both in human and mouse. Although endogenous ligands for RORγt have not yet been reported, it is thought that RORγt activity and Th17-cell development can be modulated with highly specific small molecules that bind to the RORγt LBD and displace its endogenous ligands. Recent studies from multiple groups have reported the activities of such inhibitors. In this mini review, we describe how RORγt inhibitors were identified and how they may contribute to our understanding about RORγt and its biology.
    European Journal of Immunology 09/2012; 42(9):2232-7. · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Graft-versus-host disease (GVHD) remains the most significant complication after allogeneic stem cell transplantation. Previously, acute GVHD had been considered to be mediated predominantly by Th1-polarized T cells. Recently, investigators have identified a second proinflammatory lineage of T cells termed Th17 that is critically dependent on the transcription factor retinoic acid-related orphan receptor (ROR)γt. In this study, we have evaluated the role of Th17 cells in murine acute GVHD by infusing donor T cells lacking RORC and as a consequence the isoform RORγt. Recipients given donor CD4(+) and CD8(+) T cells lacking RORC had significantly attenuated acute GVHD and markedly decreased tissue pathology in the colon, liver, and lung. Using a clinically relevant haploidentical murine transplantation model, we showed that RORC(-/-) CD4(+) T cells alone diminished the severity and lethality of acute GVHD. This was not found when CD4(+) T cells from RORC(-/-) mice were given to completely mismatched BALB/c mice, and it was correlated with absolute differences in the generation of TNF in the colon after transplant. Thus, CD4(+) T cell expression of RORC is important in the pathogenesis of acute GVHD.
    The Journal of Immunology 07/2012; 189(4):1765-72. · 5.52 Impact Factor

Publication Stats

43k Citations
4,478.27 Total Impact Points

Institutions

  • 2014
    • Erasmus MC
      • Department of Cell Biology
      Rotterdam, South Holland, Netherlands
  • 1998–2013
    • CUNY Graduate Center
      New York City, New York, United States
  • 1985–2013
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 2011
    • Washington University in St. Louis
      • Department of Pathology and Immunology
      San Luis, Missouri, United States
    • Sanford-Burnham Medical Research Institute
      La Jolla, California, United States
    • Institut Curie
      Lutetia Parisorum, Île-de-France, France
    • The University of Tokyo
      • Faculty & Graduate School of Medicine
      Tokyo, Tokyo-to, Japan
  • 2001–2011
    • Columbia University
      • Department of Microbiology and Immunology
      New York City, NY, United States
  • 1998–2011
    • New York University
      New York City, New York, United States
  • 2010
    • Walter And Eliza Hall Institute For Medical Research
      Melbourne, Victoria, Australia
  • 2008
    • Yale University
      New Haven, Connecticut, United States
  • 1988–2006
    • University of California, San Francisco
      • Department of Microbiology and Immunology
      San Francisco, CA, United States
    • Memorial Sloan-Kettering Cancer Center
      • DeWitt Wallace Research Laboratory
      New York City, New York, United States
  • 2004
    • University of Texas MD Anderson Cancer Center
      Houston, Texas, United States
    • RIKEN
      • Laboratory for Transcriptional Regulation
      Wako, Saitama-ken, Japan
  • 2002
    • University of California, Berkeley
      • Department of Molecular and Cell Biology
      Berkeley, MO, United States
    • Kyushu University
      • Department of Molecular Genetics
      Fukuoka-shi, Fukuoka-ken, Japan
  • 2001–2002
    • University of Vienna
      • Institute of Immunology
      Vienna, Vienna, Austria
  • 2000
    • National Institute of Allergy and Infectious Diseases
      • Laboratory of Parasitic Diseases (LPD)
      Maryland, United States
  • 1997–1999
    • NYU Langone Medical Center
      • Skirball Institute of Biomolecular Medicine
      New York City, NY, United States
    • State University of New York Downstate Medical Center
      • Department of Physiology and Pharmacology
      Brooklyn, NY, United States
  • 1996
    • Stanford University
      Palo Alto, California, United States
  • 1986
    • Wistar Institute
      Philadelphia, Pennsylvania, United States