Sandya Liyanarachchi

The Ohio State University, Columbus, Ohio, United States

Are you Sandya Liyanarachchi?

Claim your profile

Publications (65)539.73 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: By genome-wide association studies (GWAS) the risk allele [A] of SNP rs965513 predisposes strongly to papillary thyroid carcinoma (PTC). It is located in a gene-poor region of 9q22 some 60kb from the FOXE1 gene. The underlying mechanisms remain to be discovered. Objective: Our objective was to identify novel transcripts in the 9q22 locus and correlate gene expression levels with the genotypes of rs965513. Design: We performed 3' and 5' RACE and RT-PCR to detect novel transcripts. One novel transcript was forcibly expressed in a cell line followed by gene expression array analysis. We genotyped rs965513 from PTC patients and measured gene expression levels by real time RT-PCR in unaffected thyroid tissue and matched tumor. Setting: This was a laboratory-based study using cells from clinical tissue samples and a cancer cell line. Main Outcome Measures: We detected previously uncharacterized transcripts and evaluated the gene expression levels and the correlation with the risk allele of rs965513, age, gender, chronic lymphocyte thyroiditis (CLT), and TSH levels. Results: We found a novel long intergenic noncoding RNA (lincRNA) gene and named it papillary thyroid cancer susceptibility candidate 2 (PTCSC2). Transcripts of PTCSC2 are downregulated in PTC tumors. The risk allele [A] of rs965513 was significantly associated with low expression of unspliced PTCSC2, FOXE1 and TSHR in unaffected thyroid tissue. We also observed a significant association of age and CLT with PTCSC2 unspliced transcript levels. The correlation between the rs965513 genotype and the PTCSC2 unspliced transcript levels remained significant after adjusting for age, gender, and CLT. Forced expression of PTCSC2 in the BCPAP cell line affected the expression of a subset of non-coding and coding transcripts with enrichment of genes functionally involved in cell cycle and cancer. Conclusions: Our data suggest a role for PTCSC2, FOXE1, and TSHR in the predisposition to PTC.
    The Journal of clinical endocrinology and metabolism. 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma rat sarcoma (RAS) viral oncogene homolog (NRAS), a small GTPase, is one of the most thoroughly studied oncogenes that controls cell growth, differentiation, and survival by facilitating signal transduction. Here, we identify four novel naturally occurring NRAS isoforms (isoforms 2-5) in addition to the canonical isoform (isoform 1). Expression analyses performed on a panel of several different human malignancies and matching normal tissue revealed distinct isoform expression patterns. Two of the novel isoforms were found in the nucleus and cytoplasm, whereas the others were exclusively cytoplasmic. The isoforms varied in their binding affinities to known downstream targets and differentially regulated the RAS signaling pathway. Strikingly, forced expression of isoform 5, which encodes only a 20-aa peptide, led to increased cell proliferation and to transformation by activation of known NRAS targets. These discoveries open new avenues in the study of NRAS.
    Proceedings of the National Academy of Sciences 02/2014; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5×10(-8)) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68-2.81, P = 8.1×10(-8)), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26-1.82, P = 2.9×10(-6)), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66-0.89, P = 6.5×10(-4)). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves' disease (OR: 1.37, 95% CI 1.22-1.54, P = 1.2×10(-7) and OR: 1.25, 95% CI 1.12-1.39, P = 6.2×10(-5)). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18-2.10, P = 1.9×10(-3)). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.
    PLoS Genetics 02/2014; 10(2):e1004123. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid cancer shows high heritability but causative genes remain largely unknown. According to a common hypothesis the genetic predisposition to thyroid cancer is highly heterogeneous; being in part due to many different rare alleles. Here we used linkage analysis and targeted deep sequencing to detect a novel single-nucleotide mutation in chromosome 4q32 (4q32A>C) in a large pedigree displaying non-medullary thyroid carcinoma (NMTC). This mutation is generally ultra-rare; it was not found in 38 NMTC families, in 2676 sporadic NMTC cases or 2470 controls. The mutation is located in a long-range enhancer element whose ability to bind the transcription factors POU2F and YY1 is significantly impaired, with decreased activity in the presence of the C- allele compared with the wild type A-allele. An enhancer RNA (eRNA) is transcribed in thyroid tissue from this region and is greatly downregulated in NMTC tumors. We suggest that this is an example of an ultra-rare mutation predisposing to thyroid cancer with high penetrance.
    PLoS ONE 09/2013; 8(5):e61920. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Two recent genome-wide association studies (GWAS) identified five single nucleotide polymorphisms (SNPs) (rs965513, rs944289, rs966423, rs2439302, and rs116909374) associated with papillary thyroid carcinoma (PTC). Each variant showed highly significant but moderate to low disease risk. Here we assessed the cumulative risk and predictive value of the five SNPs. Methods: We genotyped two cohorts of individuals, 747 PTC cases and 1047 controls from Ohio, and 1795 PTC and 2090 controls from Poland. Cumulative genetic risk scores were calculated using un-weighted and weighted approaches. Results: All five SNPs showed significant association with PTC. The average cumulative risk score in cases was significantly higher than in controls (p < 2.2e-16). Each additional risk allele increased the risk of having PTC by 1.51 (95% CI, 1.4 to 1.64) in Ohio and by 1.35 (95% CI, 1.27 to 1.44) in Poland. An analysis was performed weighing risk alleles by effect size and assigning individuals to 3 weighted risk score groups, Low (<=2), Medium (2-5) and High (>5). Individuals in the High group were significantly more susceptible to PTC compared to individuals in the Low group with an odds ratio of 8.7 (95% CI, 5.8 to 13.3) in Ohio and 4.24 (95% CI, 3.10 to 5.84) in Poland. Almost identical results were obtained when follicular variant PTCs and micro PTCs were omitted. These five SNPs explain about 11% of the familial risk of thyroid cancer in the Ohio cohort and 6% in the Polish cohort. Conclusion: As the genetic risk score increases, the risk of having PTC increases. However the predictive power of the cumulative effect of these five variants is only moderately high and clinical use may not be feasible until more variants are detected.
    Thyroid: official journal of the American Thyroid Association 05/2013; · 2.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background:Papillary thyroid carcinoma (PTC) shows high heritability, yet efforts to find predisposing genes have been largely negative.Objectives:The objective of this study was to identify susceptibility genes for PTC.Methods:A genome-wide linkage analysis was performed in 38 families. Targeted association study and screening were performed in 2 large cohorts of PTC patients and controls. Candidate DNA variants were tested in functional studies.Results:Linkage analysis and association studies identified the Slit-Robo Rho GTPase activating protein 1 gene (SRGAP1) in the linkage peak as a candidate gene. Two missense variants, Q149H and A275T, localized in the Fes/CIP4 homology domain segregated with the disease in 1 family each. One missense variant, R617C, located in the RhoGAP domain occurred in 1 family. Biochemical assays demonstrated that the ability to inactivate CDC42, a key function of SRGAP1, was severely impaired by the Q149H and R617C variants.Conclusions:Our findings suggest that SRGAP1 is a candidate gene in PTC susceptibility. SRGAP1 is likely a low-penetrant gene, possibly of a modifier type.
    The Journal of Clinical Endocrinology and Metabolism 03/2013; · 6.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inherited malabsorption of cobalamin (Cbl) causes hematological and neurological abnormalities that can be fatal. Three genes have been implicated in Cbl malabsorption; yet, only about 10% of ~400-500 reported cases have been molecularly studied to date. Recessive mutations in CUBN or AMN cause Imerslund-Gräsbeck Syndrome (IGS), while recessive mutations in GIF cause Intrinsic Factor Deficiency (IFD). IGS and IFD differ in that IGS usually presents with proteinuria, which is not observed in IFD. The genetic heterogeneity and numerous differential diagnoses make clinical assessment difficult. We present a large genetic screening study of 154 families or patients with suspected hereditary Cbl malabsorption. Patients and their families have been accrued over a period spanning >12 years. Systematic genetic testing of the three genes CUBN, AMN, and GIF was accomplished using a combination of single strand conformation polymorphism and DNA and RNA sequencing. In addition, six genes that were contenders for a role in inherited Cbl malabsorption were studied in a subset of these patients. Our results revealed population-specific mutations, mutational hotspots, and functionally distinct regions in the three causal genes. We identified mutations in 126/154 unrelated cases (82%). Fifty-three of 126 cases (42%) were mutated in CUBN, 45/126 (36%) were mutated in AMN, and 28/126 (22%) had mutations in GIF. We found 26 undescribed mutations in CUBN, 19 in AMN, and 7 in GIF for a total of 52 novel defects described herein. We excluded six other candidate genes as culprits and concluded that additional genes might be involved. Cbl malabsorption is found worldwide and genetically complex. However, our results indicate that population-specific founder mutations are quite common. Consequently, targeted genetic testing has become feasible if ethnic ancestry is considered. These results will facilitate clinical and molecular genetic testing of Cbl malabsorption. Early diagnosis improves the lifelong care required by these patients and prevents potential neurological long-term complications. This study provides the first comprehensive overview of the genetics that underlies the inherited Cbl malabsorption phenotype.
    Orphanet Journal of Rare Diseases 08/2012; 7:56. · 4.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A genome-wide association study of papillary thyroid carcinoma (PTC) pinpointed two independent SNPs (rs944289 and rs965513) located in regions containing no annotated genes (14q13.3 and 9q22.33, respectively). Here, we describe a unique, long, intergenic, noncoding RNA gene (lincRNA) named Papillary Thyroid Carcinoma Susceptibility Candidate 3 (PTCSC3) located 3.2 kb downstream of rs944289 at 14q.13.3 and the expression of which is strictly thyroid specific. By quantitative PCR, PTCSC3 expression was strongly down-regulated (P = 2.84 × 10(-14)) in thyroid tumor tissue of 46 PTC patients and the risk allele (T) was associated with the strongest suppression (genotype [TT] (n = 21) vs. [CT] (n = 19), P = 0.004). In adjacent unaffected thyroid tissue, the genotype [TT] was associated with up-regulation of PTCSC3 ([TT] (n = 21) vs. [CT] (n = 19), P = 0.034). The SNP rs944289 was located in a binding site for the CCAAT/enhancer binding proteins (C/EBP) α and β. The risk allele destroyed the binding site in silico. Both C/EBPα and C/EBPβ activated the PTCSC3 promoter in reporter assays (P = 0.0009 and P = 0.0014, respectively) and the risk allele reduced the activation compared with the nonrisk allele (C) (P = 0.026 and P = 0.048, respectively). Restoration of PTCSC3 expression in PTC cell line cells (TPC-1 and BCPAP) inhibited cell growth (P = 0.002 and P = 0.019, respectively) and affected the expression of genes involved in DNA replication, recombination and repair, cellular movement, tumor morphology, and cell death. Our data suggest that SNP rs944289 predisposes to PTC through a previously uncharacterized, long intergenic noncoding RNA gene (PTCSC3) that has the characteristics of a tumor suppressor.
    Proceedings of the National Academy of Sciences 05/2012; 109(22):8646-51. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However, some mutations are observed repeatedly across individuals not known to be related due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here, we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations and one (c.903G>T) a probable founder. One (c.1A>G) could not be evaluated for founder mutation status. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2.
    Clinical Genetics 05/2012; · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High BAALC expression levels are associated with poor outcome in cytogenetically normal acute myeloid leukemia (CN-AML) patients. Recently, miR-3151 was discovered in intron 1 of BAALC. To evaluate the prognostic significance of miR-3151 expression levels and to gain insight into the biologic and prognostic interplay between miR-3151 and its host, miR-3151 and BAALC expression were measured in pretreatment blood of 179 CN-AML patients. Gene-expression profiling and miRNA-expression profiling were performed using microarrays. High miR-3151 expression was associated with shorter disease-free and overall survival, whereas high BAALC expression predicted failure of complete remission and shorter overall survival. Patients exhibiting high expression of both miR-3151 and BAALC had worse outcome than patients expressing low levels of either gene or both genes. In gene-expression profiling, high miR-3151 expressers showed down-regulation of genes involved in transcriptional regulation, posttranslational modification, and cancer pathways. Two genes, FBXL20 and USP40, were validated as direct miR-3151 targets. The results of the present study show that high expression of miR-3151 is an independent prognosticator for poor outcome in CN-AML and affects different outcome end points than its host gene, BAALC. The combination of both markers identified a patient subset with the poorest outcome. This interplay between an intronic miR and its host may have important biologic implications.
    Blood 04/2012; 120(2):249-58. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of the brain and acute leukemia, cytoplasmic (BAALC) gene is implicated in myeloid leukemogenesis and associated with poor outcome in both acute myeloid leukemia (AML) and acute lymphoblastic leukemia patients. Additionally, high BAALC expression occurs in glioblastoma, melanoma, and childhood gastrointestinal stroma tumors, suggesting an oncogenic role for BAALC. However, the mechanisms underlying the deregulated expression are unknown. We hypothesized that a common heritable genetic feature located in cis might account for overexpression of BAALC in an allele-specific manner. By sequencing the genomic region of BAALC we identified nine informative single nucleotide polymorphisms (SNPs) and tested them for a possible association with BAALC expression levels. We show that BAALC overexpression occurs in the presence of the T allele of SNP rs62527607[GT], which creates a binding site for the activating RUNX1 transcription factor in the BAALC promoter region. The mechanism is demonstrated experimentally in vitro using luciferase reporter assays and electrophoretic mobility shift assay (EMSA) analysis. The association of high BAALC expression with the T allele and its correlations with RUNX1 expresser status are shown in vivo in a test set (n = 253) and validation set (n = 105) of samples from cytogenetically normal AML patients from different populations. Thus, we identify a heritable genomic feature predisposing to overexpression of an oncogene, thereby possibly leading to enhanced AML leukemogenesis. Our findings further suggest that genomic variants might become useful tools in the practice of personalized medicine.
    Proceedings of the National Academy of Sciences 04/2012; 109(17):6668-73. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the physiological basis of canonical or classical IκB kinase β (IKKβ)-nuclear factor κB (NF-κB) signaling pathway is well established, how alternative NF-κB signaling functions beyond its role in lymphoid development remains unclear. In particular, alternative NF-κB signaling has been linked with cellular metabolism, but this relationship is poorly understood. In this study, we show that mice deleted for the alternative NF-κB components IKKα or RelB have reduced mitochondrial content and function. Conversely, expressing alternative, but not classical, NF-κB pathway components in skeletal muscle stimulates mitochondrial biogenesis and specifies slow twitch fibers, suggesting that oxidative metabolism in muscle is selectively controlled by the alternative pathway. The alternative NF-κB pathway mediates this specificity by direct transcriptional activation of the mitochondrial regulator PPAR-γ coactivator 1β (PGC-1β) but not PGC-1α. Regulation of PGC-1β by IKKα/RelB also is mammalian target of rapamycin (mTOR) dependent, highlighting a cross talk between mTOR and NF-κB in muscle metabolism. Together, these data provide insight on PGC-1β regulation during skeletal myogenesis and reveal a unique function of alternative NF-κB signaling in promoting an oxidative metabolic phenotype.
    The Journal of Cell Biology 02/2012; 196(4):497-511. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM), the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4) is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future.
    PLoS ONE 01/2012; 7(8):e42818. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA (miR) expression signatures are proposed to be able to differentiate thyroid cancer from benign thyroid lesions. We selected eight miRs (miR-146b, -221, -187, -197, -346, -30d, -138, and -302c) to examine the potential use of miRs to supplement diagnostic cytology in cases designated as "atypia of undetermined significance." miR expression was measured in thyroid fine needle aspiration (FNA) specimens by quantitative polymerase chain reaction. Gene expression analyses and linear discriminant analysis (LDA) were performed in a training sample set (n=60) to obtain a classification rule to predict FNA cases as benign or malignant. The predictions were cross-validated by comparing with the corresponding histological diagnoses. A validation sample set (n=68) was further tested with the established four-miR LDA classification rule. A set of four miRs (miR-146b, -221, -187, and -30d) was identified that could differentiate malignant from benign lesions. A four-miR LDA classification rule was obtained and used to predict FNA cases as benign or malignant. For the training sample set, we obtained a diagnostic accuracy of 93.3%, sensitivity of 93.2%, specificity of 93.8%, positive predictive value (PPV) of 0.98, and negative predictive value (NPV) of 0.83. For the validation sample set, we obtained a diagnostic accuracy of 85.3%, sensitivity of 88.9%, specificity of 78.3%, PPV of 0.89, and NPV of 0.78. For the 30 atypia cases in the validation sample set, we obtained a diagnostic accuracy of 73.3%, sensitivity of 63.6%, specificity of 78.9%, PPV of 0.64, and NPV of 0.79. Based on the miR predictions, we classified the atypia cases predicted as "malignant" into "high risk" and those predicted as "benign" into "low risk" categories. While thyroid carcinomas, particularly papillary thyroid carcinomas (PTCs), were relatively enriched in the high-risk category, this particular miR panel is subject to inaccurate results in follicular neoplasias in atypia cases. We demonstrate that miR amplification from FNA samples is feasible and that the particular four miR profile in this study can identify PTCs. However, further refinement is required for application to FNA cytology of "atypia of undetermined significance" cases due to low accuracy in classifying follicular neoplasias.
    Thyroid: official journal of the American Thyroid Association 12/2011; 22(1):9-16. · 2.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imerslund-Gräsbeck syndrome (IGS) was described just over 50 years ago by Olga Imerslund and Ralph Gräsbeck and colleagues. IGS is caused by specific malabsorption of cobalamin (Cbl) due to bi-allelic mutations in either the cubilin gene (CUBN) or the human amnionless homolog (AMN). Mutations in the two genes are commonly seen in founder populations or in societies with a high degree of consanguineous marriages. One particular mutation in AMN, c.208-2A>G, causing an out-of-frame loss of exon 4 in the mRNA, is responsible for some 15% of IGS cases globally. We present evidence that this founder mutation causes a substantial percentage of cases among diverse ethnicities and that the mutation is as old as human civilization. Partial genotyping indicated a founder event but its presence in diverse peoples of Arabic, Turkish, Jewish, and Hispanic ancestry suggested that the mutation might be recurrent. We therefore studied the flanking sequence spanning 3.5 Mb to elucidate the origin of the haplotype and estimate the age of the mutation using a Bayesian inference method based on observed linkage disequilibrium. The mutation's distribution, the size of the shared haplotype, and estimates of growth rate and carrier frequency indicated that the mutation was a single prehistoric event. Dating back to the ancient Middle East around 11,600 BC, the mutation predates the advent of writing, farming, and the monotheistic religions of the region. This mutation causes over 50% of the IGS cases among Arabic, Turkish, and Sephardic Jewish families, making it a primary target for genetic screening among diverse IGS cases originating from the Middle East. Thus, rare founder mutations may cause a substantial number of cases, even among diverse ethnicities not usually thought to be related.
    Orphanet Journal of Rare Diseases 11/2011; 6:74. · 4.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The family risk ratio for papillary thyroid carcinoma (PTC) is among the highest of all cancers. Collectively, familial cases (fPTC) and sporadic cases (sPTC) are not known to show molecular differences. However, one study reported that telomeres were markedly shorter and the telomerase reverse transcriptase (TERT) gene was amplified and up-regulated in germline DNA from patients with fPTC compared with sPTC. The aim of this study was to evaluate telomere length and TERT gene amplification and expression in blood samples of fPTC and sPTC patients in a genetically distinct population from the previous study. In 42 fPTC and 65 sPTC patients, quantitative real-time PCR was employed to measure the relative telomere length (RTL) and TERT gene copy number and RNA level. To validate the results using alternative methods, we further studied a subset of the original cohort consisting of randomly chosen fPTC (n = 10) and sPTC (n = 14) patients and controls (n = 21) by assessing both telomere length by flow fluorescent in situ hybridization and TERT gene expression by quantitative real-time PCR. RTL and TERT gene copy number did not differ between fPTC and sPTC (P = 0.957 and P = 0.998, respectively). The mean RTL and TERT gene expression were not significantly different among the groups of the validation series (P = 0.169 and P = 0.718, respectively). Our data show no difference between familial and sporadic PTC with respect to telomere length, TERT copy number, or expression in our cohort. Further investigations in additional cohorts of patients are desirable.
    The Journal of Clinical Endocrinology and Metabolism 09/2011; 96(11):E1876-80. · 6.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of the netrin-1 dependence receptor UNC5C is reduced in many colorectal tumors; mice with the UNC5C mutations have increased progression of intestinal tumors. We investigated whether specific variants in UNC5C increase risk of colorectal cancer (CRC). We analyzed the sequence of UNC5C in blood samples from 1801 patients with CRC and 4152 controls from 3 cohorts (France, United States, and Finland). Almost all cases from France and the United States had familial CRC; of the Finnish cases, 92 of 984 were familial. We analyzed whether CRC segregates with the UNC5C variant A628K in 3 families with histories of CRC. We also performed haplotype analysis to determine the origin of this variant. Of 817 patients with familial CRC, 14 had 1 of 4 different, unreported missense variants in UNC5C. The variants p.Asp353Asn (encodes D353N), p.Arg603Cys (encodes R603C), and p.Gln630Glu (encodes Q630E) did not occur significantly more often in cases than controls. The variant p.Ala628Lys (A628K) was detected in 3 families in the French cohort (odds ratio, 8.8; Wald's 95% confidence interval, 1.47-52.93; P = .03) and in 2 families in the US cohort (odds ratio, 1.9; P = .6) but was not detected in the Finnish cohort; UNC5C A628K segregated with CRC in families. Three families with A628K had a 109-kilobase identical haplotype that spanned most of UNC5C, indicating recent origin of this variant in white subjects (14 generations; 95% confidence interval, 6-36 generations). Transfection of HEK293T cells with UNC5C-A628K significantly reduced apoptosis compared with wild-type UNC5C, measured in an assay of active caspase-3. Inherited mutations in UNC5C prevent apoptosis and increase risk of CRC.
    Gastroenterology 09/2011; 141(6):2039-46. · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of malignant gliomas is their ability to disperse through neural tissue, leading to long-term failure of all known therapies. Identifying new antimigratory targets could reduce glioma recurrence and improve therapeutic efficacy, but screens based on conventional migration assays are hampered by the limited ability of these assays to reproduce native cell motility. Here, we have analyzed the motility, gene expression, and sensitivity to migration inhibitors of glioma cells cultured on scaffolds formed by submicron-sized fibers (nanofibers) mimicking the neural topography. Glioma cells cultured on aligned nanofiber scaffolds reproduced the elongated morphology of cells migrating in white matter tissue and were highly sensitive to myosin II inhibition but only moderately affected by stress fiber disruption. In contrast, the same cells displayed a flat morphology and opposite sensitivity to myosin II and actin inhibition when cultured on conventional tissue culture polystyrene. Gene expression analysis indicated a correlation between migration on aligned nanofibers and increased STAT3 signaling, a known driver of glioma progression. Accordingly, cell migration out of glioblastoma-derived neurospheres and tumor explants was reduced by STAT3 inhibitors at subtoxic concentrations. Remarkably, these inhibitors were ineffective when tested at the same concentrations in a conventional two-dimensional migration assay. We conclude that migration of glioma cells is regulated by topographical cues that affect cell adhesion and gene expression. Cell migration analysis using nanofiber scaffolds could be used to reproduce native mechanisms of migration and to identify antimigratory strategies not disclosed by other in vitro models.
    Neoplasia (New York, N.Y.) 09/2011; 13(9):831-40. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the mismatch repair genes cause Lynch syndrome (LS), conferring high risk of colorectal, endometrial and some other cancers. After the same splice site mutation in the MLH1 gene (c.589-2A>G) had been observed in four ostensibly unrelated American families with typical LS cancers, its occurrence in comprehensive series of LS cases (Mayo Clinic, Germany and Italy) was determined. It occurred in 10 out of 995 LS mutation carriers (1.0%) diagnosed in the Mayo Clinic diagnostic laboratory. It did not occur among 1,803 cases tested for MLH1 mutations by the German HNPCC consortium, while it occurred in three probands and an additional five family members diagnosed in Italy. In the U.S., the splice site mutation occurs on a large (∼4.8 Mb) shared haplotype that also harbors the variant c.2146G>A, which predicts a missense change in codon 716 referred to here as V716M. In Italy, it occurs on a different, shorter shared haplotype (∼2.2 Mb) that does not carry V716M. The V716M variant was found to be present by itself in the U.S., German and Italian populations with individuals sharing a common haplotype of 280 kb, allowing us to calculate that the variant arose around 5,600 years ago (225 generations; 95% confidence interval 183-272). The splice site mutation in America arose or was introduced some 450 years ago (18 generations; 95% confidence interval 14-23); it accounts for 1.0% all LS in the Unites States and can be readily screened for.
    International Journal of Cancer 06/2011; 130(9):2088-95. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small nuclear RNAs (snRNAs) are essential factors in messenger RNA splicing. By means of homozygosity mapping and deep sequencing, we show that a gene encoding U4atac snRNA, a component of the minor U12-dependent spliceosome, is mutated in individuals with microcephalic osteodysplastic primordial dwarfism type I (MOPD I), a severe developmental disorder characterized by extreme intrauterine growth retardation and multiple organ abnormalities. Functional assays showed that mutations (30G>A, 51G>A, 55G>A, and 111G>A) associated with MOPD I cause defective U12-dependent splicing. Endogenous U12-dependent but not U2-dependent introns were found to be poorly spliced in MOPD I patient fibroblast cells. The introduction of wild-type U4atac snRNA into MOPD I cells enhanced U12-dependent splicing. These results illustrate the critical role of minor intron splicing in human development.
    Science 04/2011; 332(6026):238-40. · 31.20 Impact Factor