Peter P Fu

U.S. Food and Drug Administration, Washington, Washington, D.C., United States

Are you Peter P Fu?

Claim your profile

Publications (161)411.5 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyrrolizidine alkaloids, produced by a large number of poisonous plants with wide global distribution, are associated with genotoxicity, tumorigenicity, and hepatotoxicity in animals and humans. Mammalian metabolism converts pyrrolizidine alkaloids to reactive pyrrolic metabolites (dehydropyrrolizidine alkaloids) that form covalent protein and DNA adducts. Although a mechanistic understanding is currently unclear, pyrrolizidine alkaloids can cause secondary (hepatogenous) photosensitization and induce skin cancer. In this study, the phototoxicity of monocrotaline, riddelliine, dehydromonocrotaline, dehydroriddelliine, and dehydroretronecine (DHR) in human HaCaT keratinocytes under ultraviolet A (UVA) irradiation was determined. UVA irradiation of HaCaT cells treated with dehydromonocrotaline, dehydroriddelline, and DHR resulted in increased release of lactate dehydrogenase and enhanced photocytotoxicity proportional to the UVA doses. UVA-induced photochemical DNA damage also increased proportionally with dehydromonocrotaline and dehydroriddelline. UVA treatment potentiated the formation of 8-hydroxy-2'-deoxyguanosine DNA adducts induced by dehydromonocrotaline in HaCaT skin keratinocytes. Using electron spin resistance trapping, we found that UVA irradiation of dehydromonocrotaline and dehydroriddelliine generates reactive oxygen species (ROS), including hydroxyl radical, singlet oxygen, and superoxide, and electron transfer reactions, indicating that cytotoxicity and genotoxicity of these compounds could be mediated by ROS. Our results suggest that dehydropyrrolizidine alkaloids formed or delivered to the skin cause pyrrolizidine alkaloid-induced secondary photosensitization and possible skin cancer.
    Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews 10/2014; 32(4):362-84. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrrolizidine alkaloid-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids exert toxicity through metabolism to dehydropyrrolizidine alkaloids that bind to cellular protein and DNA, leading to hepatotoxicity, genotoxicity, and tumorigenicity. To date, it is not clear how dehydropyrrolizidine alkaloids bind to cellular constituents, including amino acids and proteins, resulting in toxicity. Metabolism of carcinogenic monocrotaline, riddelliine, and heliotrine produces dehydromonocrotaline, dehyroriddelliine, and dehydroheliotrine, respectively, as primary reactive metabolites. In this study, we report that reaction of dehydromonocrotaline with valine generated four highly unstable 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived valine (DHP-valine) adducts. For structural elucidation, DHP-valine adducts were derivatized with phenyl isothiocyanate (PITC) to DHP-valine-PITC products. After HPLC separation, their structures were characterized by mass spectrometry, UV-visible spectrophotometry, (1)H NMR, and (1)H-(1)H COSY NMR spectral analysis. Two DHP-valine-PITC adducts, designated as DHP-valine-PITC-1 and DHP-valine-PITC-3, had the amino group of valine linked to the C7 position of the necine base, and the other two DHP-valine-PITC products, DHP-valine-PITC-2 and DHP-valine-PITC-4, linked to the C9 position of the necine base. DHP-valine-PITC-1 was interconvertible with DHP-valine-PITC-3, and DHP-valine-PITC-2 was interconvertible with DHP-valine-PITC-4. Reaction of dehydroriddelliine and dehydroheliotrine with valine provided similar results. However, reaction of valine and dehydroretronecine (DHR) under similar experimental conditions did not produce DHP-valine adducts. Reaction of dehydromonocrotaline with rat hemoglobin followed by derivatization with PITC also generated the same four DHP-valine-PITC adducts. This represents the first full structural elucidation of protein conjugated pyrrolic adducts formed from reaction of dehydropyrrolizidine alkaloids with an amino acid (valine). In addition, it was found that DHP-valine-2 and DHP-valine-4, with the valine amino group linked at the C7 position of the necine base, can lose the valine moiety to form DHP.
    Chemical Research in Toxicology 09/2014; · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A 2-year cancer bioassay in rodents with a preparation of Aloe vera whole leaf extract administered in drinking water showed clear evidence of carcinogenic activity. To provide insight into the identity and mechanisms associated with mutagenic components of the Aloe vera extracts, we used the mouse lymphoma assay to evaluate the mutagenicity of Aloe vera whole leaf extract (WLE) and Aloe vera decolorized whole leaf extract (WLD). The WLD extract was obtained by subjecting WLE to activated carbon-adsorption. HPLC analysis indicated that the decolorization process removed many components from the WLE extract, including anthraquinones. Both WLE and WLD extracts showed cytotoxic and mutagenic effects in mouse lymphoma cells but at different concentration ranges, and WLD induced about 3-fold higher levels of intracellular reactive oxygen species than WLE. Molecular analysis of mutant colonies from cells treated with WLE and WLD revealed that the primary type of damage from both treatments was largely due to chromosome mutations (deletions and/or mitotic recombination). The fact that the samples were mutagenic at different concentrations suggests that while some mutagenic components of WLE were removed by activated carbon filtration, components with pro-oxidant activity and mutagenic activity remained. The results demonstrate the utility of the mouse lymphoma assay as a tool to characterize the mutagenic activity of fractionated complex botanical mixtures to identify bioactive components.
    Toxicol. Res. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrrolizidine alkaloids (PAs) are natural toxins widely distributed in plants. The toxic potencies of different PAs vary significantly. PAs are mono- or di-esters of necine acids with a necine base. Based on the necine bases, PAs are classified into three types: retronecine-type, otonecine-type and platynecine-type. Hepatotoxic PAs contain an unsaturated necine base. PAs exert hepatotoxicity through metabolic activation by hepatic cytochromes P450s (CYPs) to generate reactive intermediates which form pyrrole-protein adducts. These adducts provide a mechanism-based biomarker to assess PA toxicity. In the present study, metabolic activation of twelve PAs from three structural types was investigated firstly in mice to demonstrate significant variations in hepatic metabolic activation of different PAs. Subsequently, the structural and enzymatic factors affecting metabolic activation of these PAs were further investigated by using human liver microsomes and recombinant human CYPs. Pyrrole-protein adducts were detected in the liver and blood of mice and the in vitro systems treated with toxic retronecine-type and otonecine-type PAs having unsaturated necine bases but not with a platynecine-type PA containing a saturated necine base. Retronecine-type PAs produced more pyrrole-protein adducts than otonecine-type PAs with similar necine acids, demonstrating the structure of necine base affected PA toxic potency. Among retronecine-type PAs, open-ring di-esters generated the highest amount of pyrrole-protein adducts, followed by macrocyclic di-esters, while mono-esters produced the least. Only CYP3A4 and CYP3A5 activated otonecine-type PAs, while all ten CYPs studied showed the ability to activate retronecine-type PAs. Moreover, the contribution of major CYPs involved also varied significantly among retronecine-type PAs. In conclusion, our findings provide a scientific basis for predicting the toxicities of individual PAs in biological systems based on PA structural features and on the pattern of expression and the selectivity of the CYP isoforms present.
    Chemical research in toxicology. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to possessing an extremely small size and a large surface area per unit of volume, nanomaterials have specific characteristic physical, chemical, photochemical, and biological properties that are very useful in many new applications. Nanoparticles' catalytic activity and intrinsic ability in generating or scavenging reactive oxygen species in general can be used to mimic the catalytic activity of natural enzymes. Many nanoparticles with enzyme-like activities have been found, potentially capable of being applied for commercial uses, such as in biosensors, pharmaceutical processes, and the food industry. To date, a variety of nanoparticles, especially those formed from noble metals, have been determined to possess oxidase-like, peroxidase-like, catalase-like, and/or superoxide dismutase-like activity. The ability of nanoparticles to mimic enzymatic activity, especially peroxidase mimics, can be used in a variety of applications, such as detection of glucose in biological samples and waste water treatment. To study the enzyme-like activity of nanoparticles, the electron spin resonance method represents a critically important and convenient analytical approach for zero-time detection of the reactive substrates and products as well as for mechanism determination.
    Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews 04/2014; 32(2):186-211. · 3.23 Impact Factor
  • Peter P Fu
    Journal of Food and Drug Analysis 03/2014; 22(1):1-2. · 0.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is the second leading cause of death in the USA according to the American Cancer Society. In the past 5 years, "theranostic nanomedicine", for both therapeutics and imaging, has shown to be "the right drug for the right patient at the right moment" to manage deadly cancers. This review article presents an overview of recent developments, mainly from the authors' laboratories, along with potential medical applications for theranostic nanomedicine including basic concepts and critical properties. Finally, we outline the future research direction and possible challenges for theranostic nanomedicine research.
    Journal of Food and Drug Analysis 03/2014; 22(1):3-17. · 0.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanotechnology is a rapidly developing field in the 21(st) century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS). Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium.
    Journal of Food and Drug Analysis 03/2014; 22(1):64-75. · 0.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrrolizidine alkaloid-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. The U.S. National Toxicology Program (NTP) classified riddelliine, a tumorigenic pyrrolizidine alkaloid, as "reasonably anticipated to be a human carcinogen" in the NTP 12th Report on Carcinogens in 2011. We previously determined that four DNA adducts were formed in rats dosed with riddelliine. The structures of the four DNA adducts were elucidated as (i) a pair of epimers of 7-hydroxy-9-(deoxyguanosin-N2-yl)dehydrosupinidine adducts (termed as DHP-dG-3 and DHP-dG-4) as the predominant adducts; and (ii) a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N6-yl)dehydrosupinidine adducts (termed as DHP-dA-3 and DHP-dA-4 adducts). In this study, we selected a non-tumorigenic pyrrolizidine alkaloid, platyphylliine, a pyrrolizidine alkaloid N-oxide, riddelliine N-oxide, and nine tumorigenic pyrrolizidine alkaloids (riddelliine, retrorsine, monocrotaline, lycopsamine, retronecine, lasiocarpine, heliotrine, clivorine, and senkirkine) for animal study. Seven of the nine tumorigenic pyrrolizidine alkaloids, with the exception of lycopsamine and retronecine, are liver carcinogens. At 8-10 weeks of age, female F344 rats were orally gavaged for 3 consecutive days with 4.5 and 24 µmol/kg body weight test article in 0.5 mL of 10% DMSO in water. Twenty-four hours after the last dose, the rats were sacrificed, livers were removed, and liver DNA was isolated for DNA adducts analysis. DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts were formed in the liver of rats treated with the individual seven hepatocarcinogenic pyrrolizidine alkaloids and riddelliine N-oxide. These DNA adducts were not formed in the liver of rats administered lycopsamine, retronecine, the non-tumorigenic pyrrolizidine alkaloid, platyphylliine, or vehicle control. These results indicate that this set of DNA adducts, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, is a common biological biomarker of pyrrolizidine alkaloid-induced liver tumor formation. To date, this is the first finding that a set of exogenous DNA adducts are commonly formed from a series of tumorigenic foreign chemicals.
    Chemical Research in Toxicology 08/2013; · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc oxide nanoparticles (nano-ZnO) are one of the most commonly used nanomaterials in industrial products including paints, cosmetics, and medical materials. Since ZnO is a well-known photocatalyst, it is important to further study if nano-ZnO cause phototoxic effect on skin cells under UVA-irradiation and visible light illumination. Human-derived keratinocytes (HaCaT) were treated with 1-20 microg/mL of nano-ZnO (< 50 nm) and then exposed to UVA (0.5-2 J/cm2). Twenty four hours later, cell viability, membrane integrity, and oxidative DNA damage were determined by MTS assay, lactate dehydrogenase (LDH) release, and the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct, respectively. High concentration of nano-ZnO (10-20 microg/mL) significantly induced cytotoxicity, whereas 0.5-2 J/cm2 of UVA irradiation dose-dependently aggravated nano-ZnO-induced cell death via induction of LDH release and DNA damage. The level of photocytotoxicity is mainly dependent on the level of reactive oxygen species (ROS) production. UVA irradiation of nano-ZnO in methanol induced lipid peroxidation in a light dose and substrate dose response manner. Electron spin resonance (ESR) spin trapping studies confirmed that both hydroxyl radical and superoxide anion radical were formed during photoirradiation, while nano-ZnO-induced hydroxyl radical formation is not evolved from superoxide. In addition, nano-ZnO dose-dependently induced single strand DNA break in supercoiled phi x 174 plasmid DNA. Under visible light illumination, nano-ZnO induced the LDH leakage, hydroxyl radical generation, and 8-OHdG formation in a dose-dependent manner. Collectively, these results suggest the photocytotoxic and photogenotoxic effects of nano-ZnO on human skin keratinocytes.
    Journal of Nanoscience and Nanotechnology 06/2013; 13(6):3880-8. · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3'-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxic impurities even at low levels is significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-l-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites.
    Toxicology and Applied Pharmacology 04/2013; · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Benzo[a]pyrene (BaP) is a prototype for studying carcinogenesis of polycyclic aromatic hydrocarbons (PAHs). We have long been interested in studying the phototoxicity of PAHs. In this study, we determined that metabolism of BaP by human skin HaCaT keratinocytes resulted in six identified phase I metabolites, for example, BaP trans-7,8-dihydrodiol (BaP t-7,8-diol), BaP t-4,5-diol, BaP t-9,10-diol, 3-hydroxybenzo[a]pyrene (3-OH-BaP), BaP (7,10/8,9)tetrol, and BaP (7/8,9,10)tetrol. The photocytotoxicity of BaP, 3-OH-BaP, BaP t-7,8-diol, BaP trans-7,8-diol-anti-9,10-epoxide (BPDE), and BaP (7,10/8,9)tetrol in the HaCaT keratinocytes was examined. When irradiated with 1.0 J/cm(2) UVA light, these compounds when tested at doses of 0.1, 0.2, and 0.5 μM, all induced photocytotoxicity in a dose-dependent manner. When photoirradiation was conducted in the presence of a lipid (methyl linoleate), BaP metabolites, BPDE, and three related PAHs, pyrene, 7,8,9,10-tetrahydro-BaP trans-7,8-diol, and 7,8,9,10-tetrahydro-BaP trans-9,10-diol, all induced lipid peroxidation. The formation of lipid peroxides by BaP t-7,8-diol was inhibited by NaN3 and enhanced by deuterated methanol, which suggests that singlet oxygen may be involved in the generation of lipid peroxides. The formation of lipid hydroperoxides was partially inhibited by superoxide dismutase (SOD). Electron spin resonance spin trapping experiments indicated that both singlet oxygen and superoxide radical anion were generated from UVA photoirradiation of BPDE in a light dose responding manner.
    Toxicology and Industrial Health 04/2013; · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors.
    International Journal of Environmental Research and Public Health 01/2013; 10(3):1062-1084. · 2.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants are used by humans in daily life in many different ways, including as food, herbal medicines, and cosmetics. Unfortunately, many natural plants and their chemical constituents are photocytotoxic and photogenotoxic, and these phototoxic phytochemicals are widely present in many different plant families. To date, information concerning the phototoxicity and photogenotoxicity of many plants and their chemical constituents is limited. In this review, we discuss phototoxic plants and their major phototoxic constituents; routes of human exposure; phototoxicity of these plants and their constituents; general mechanisms of phototoxicity of plants and phototoxic components; and several representative phototoxic plants and their photoactive chemical constituents.
    Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews 01/2013; 31(3):213-55. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrrolizidine alkaloid-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids are among the first chemical carcinogens identified in plants. Previously, we determined that metabolism of pyrrolizidine alkaloids in vivo and in vitro generated a common set of DNA adducts that are responsible for tumor induction. Using LC-ESI/MS/MS analysis, we previously determined that four DNA adducts (DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4) were formed in rats dosed with riddelliine, a tumorigenic pyrrolizidine alkaloid. Because of the lack of an adequate amount of authentic standards, the structures of DHP-dA-3 and DHP-dA-4 were not elucidated, and the structural assignment for DHP-dG-4 warranted further validation. In this study, we developed an improved synthetic methodology for these DNA adducts, enabling their full structural elucidation by mass spectrometry and NMR spectroscopy. We determined that DHP-dA-3 and DHP-dA-4 are a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl) dehydrosupinidine, while DHP-dG-4 is 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine, an epimer of DHP-dG-3. With the structures of these DNA adducts unequivocally elucidated, we conclude that cellular DNA preferentially binds dehydropyrrolizidine alkaloid, for example, dehydroriddelliine, at the C9 position of the necine base, rather than at the C7 position. We also determined that DHP-dA-3 and DHP-dA-4, as well as DHP-dG-3 and DHP-dG-4, are interconvertible. This study represents the first report with detailed structural assignments of the DNA adducts that are responsible for pyrrolizidine alkaloid tumor induction on the molecular level. A mechanism of tumor initiation by pyrrolizidine alkaloids is consequently fully determined.
    Chemical Research in Toxicology 08/2012; 25(9):1985-96. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nano-sized titanium dioxide (TiO(2)) is among the top five widely used nanomaterials for various applications. In this study, we determine the phototoxicity of TiO(2) nanoparticles (nano-TiO(2)) with different molecular sizes and crystal forms (anatase and rutile) in human skin keratinocytes under UVA irradiation. Our results show that all nano-TiO(2) particles caused phototoxicity, as determined by the MTS assay and by cell membrane damage measured by the lactate dehydrogenase (LDH) assay, both of which were UVA dose- and nano-TiO(2) dose-dependent. The smaller the particle size of the nano-TiO(2) the higher the cell damage. The rutile form of nano-TiO(2) showed less phototoxicity than anatase nano-TiO(2). The level of photocytotoxicity and cell membrane damage is mainly dependent on the level of reactive oxygen species (ROS) production. Using polyunsaturated lipids in plasma membranes and human serum albumin as model targets, and employing electron spin resonance (ESR) oximetry and immuno-spin trapping as unique probing methods, we demonstrated that UVA irradiation of nano-TiO(2) can induce significant cell damage, mediated by lipid and protein peroxidation. These overall results suggest that nano-TiO(2) is phototoxic to human skin keratinocytes, and that this phototoxicity is mediated by ROS generated during UVA irradiation.
    Toxicology and Applied Pharmacology 06/2012; 263(1):81-8. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrrolizidine alkaloid (PA)-containing plants are widely distributed in the world. PAs are hepatotoxic, affecting livestock and humans. PA N-oxides are often present together with PAs in plants and also exhibit hepatotoxicity but with less potency. HPLC-MS is generally used to analyze PA-containing herbs, although PA references are unavailable in most cases. However, to date, without reference standards, HPLC-MS methodology cannot distinguish PA N-oxides from PAs because they both produce the same characteristic ions in mass spectra. In the present study, the mass spectra of 10 PA N-oxides and the corresponding PAs were systemically investigated using HPLC-MS to define the characteristic mass fragment ions specific to PAs and PA N-oxides. Mass spectra of toxic retronecine-type PA N-oxides exhibited two characteristic ion clusters at m/z 118-120 and 136-138. These ion clusters were produced by three unique fragmentation pathways of PA N-oxides and were not found in their corresponding PAs. Similarly, the nontoxic platynecine-type PA N-oxides also fragmented via three similar pathways to form two characteristic ion clusters at m/z 120-122 and 138-140. Further application of using these characteristic ion clusters allowed successful and rapid identification of PAs and PA N-oxides in two PA-containing herbal plants. Our results demonstrated, for the first time, that these characteristic ion clusters are unique determinants to discriminate PA N-oxides from PAs even without the availability of reference samples. Our findings provide a novel and specific method to differentiate PA N-oxides from PAs in PA-containing natural products, which is crucial for the assessment of their intoxication.
    Biological Mass Spectrometry 03/2012; 47(3):331-7. · 3.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The toxic effects of ZnO nanoparticles (nano-ZnO) (1-100 microg/mL) suspended in DMEM were examined in human A549 cells, HepG2 cells, human skin fibroblast cells, human skin keratinocytes, and rat primary neuronal cells for 24 h. Nano-ZnO induced dose dependent cytotoxicity and damaged cell membranes. Cell death was not mediated by reactive oxygen species (ROS) or apoptosis. Nano-ZnO induced DNA damage in rat primary neuronal cells, human fibroblasts, and A549 cells. The cytotoxicity of nano-ZnO in DMEM supplemented with 10% FBS, instead of serum free DMEM, was also examined in the A549 cells, human skin fibroblast cells, and human skin keratinocytes. The levels of cytotoxicity induced were similar to those tested without FBS; in addition, ROS was observed. These results indicate that the cause of cytotoxicity is medium dependent and imply that cellular growth conditions may play a significant role in induction of cytotoxicity and DNA damage by nano-ZnO.
    Journal of Nanoscience and Nanotechnology 03/2012; 12(3):2126-35. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overproduction of reactive oxygen species (ROS) in vivo can result in damage associated with many aging-associated diseases. Defenses against ROS that have evolved include antioxidant enzymes, such as superoxide dismutases, peroxidases, and catalases, which can scavenge ROS. In addition, endogenous and dietary antioxidants play an important role in moderating damage associated with ROS. In this study, we use four common dietary antioxidants to demonstrate that, in the presence of copper (cupric sulfate and cupric gluconate) and physiologically relevant levels of hydrogen peroxide, these antioxidants can also act as pro-oxidants by producing hydroxyl radicals. Using electron spin resonance (ESR) spin trapping techniques, we demonstrate that the level of hydroxyl radical formation is a function of the pH of the medium and the relative amounts of antioxidant and copper. On the basis of the level of hydroxyl radical formation, the relative pro-oxidant potential of these antioxidants is cysteine > ascorbate > EGCG > GSH. It has been reported that copper sequestered by protein ligands, as happens in vivo, loses its redox activity (diminishing/abolishing the formation of free radicals). However, in the presence of hydrogen peroxide, cysteine and GSH efficiently react with cupric sulfate sequestered with bovine serum albumin to generate hydroxyl radicals. Overall, the results demonstrate that in the presence of copper, endogenous and dietary antioxidants can also exhibit pro-oxidative activity.
    Journal of Agricultural and Food Chemistry 02/2012; 60(10):2554-61. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyaromatic hydrocarbons (PAHs) are prevalent, potent carcinogens, and 7,12-dimethylbenz[a]anthracene (DMBA) is a model PAH widely used to study tumorigenesis. Mice lacking Langerhans cells (LCs), a signatory epidermal dendritic cell (DC), are protected from cutaneous chemical carcinogenesis, independent of T cell immunity. Investigation of the underlying mechanism revealed that LC-deficient skin was relatively resistant to DMBA-induced DNA damage. LCs efficiently metabolized DMBA to DMBA-trans-3,4-diol, an intermediate proximal to oncogenic Hras mutation, and DMBA-treated LC-deficient skin contained significantly fewer Hras mutations. Moreover, DMBA-trans-3,4-diol application bypassed tumor resistance in LC-deficient mice. Additionally, the genotoxic impact of DMBA on human keratinocytes was significantly increased by prior incubation with human-derived LC. Thus, tissue-associated DC can enhance chemical carcinogenesis via PAH metabolism, highlighting the complex relation between immune cells and carcinogenesis.
    Science 01/2012; 335(6064):104-8. · 31.20 Impact Factor

Publication Stats

2k Citations
411.50 Total Impact Points

Institutions

  • 1988–2014
    • U.S. Food and Drug Administration
      • • National Center for Toxicological Research
      • • Division of Biochemical Toxicology
      • • Division of Microbiology
      Washington, Washington, D.C., United States
    • University of Arkansas at Little Rock
      Little Rock, Arkansas, United States
  • 2008–2012
    • U.S. Department of Health and Human Services
      Washington, Washington, D.C., United States
  • 2007–2012
    • The Chinese University of Hong Kong
      • School of Biomedical Sciences
      Hong Kong, Hong Kong
  • 2007–2011
    • National Institute of Environmental Health Sciences
      Durham, North Carolina, United States
  • 2002–2011
    • Jackson State University
      • Department of Chemistry and Biochemistry
      Jackson, MS, United States
  • 1977–2009
    • University of Illinois at Chicago
      Chicago, Illinois, United States
  • 2006–2007
    • University of Puerto Rico at Ponce
      Ponce, Ponce, Puerto Rico
    • Uniformed Services University of the Health Sciences
      • Department of Medicine
      Bethesda, MD, United States
  • 1982–2006
    • University of Chicago
      • Ben May Department for Cancer Research
      Chicago, IL, United States
  • 1993
    • Yonsei University
      • Department of Chemistry
      Seoul, Seoul, South Korea