H M McClure

Emory University, Atlanta, Georgia, United States

Are you H M McClure?

Claim your profile

Publications (226)1074.21 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the cellular immune response is essential for controlling SIV replication in Asian macaques, its role in maintaining nonpathogenic SIV infection in natural hosts such as sooty mangabeys (SM) remains to be defined. We have previously shown that similar to rhesus macaques (RM), SM are able to mount a T lymphocyte response against SIV infection. To investigate early control of SIV replication in natural hosts, we performed a detailed characterization of SIV-specific cellular immunity and viral control in the first 6 mo following SIV infection in SM. Detection of the initial SIV-specific IFN-γ ELISPOT response in SIVsmE041-infected SM coincided temporally with a decline in peak plasma viremia and was similar in magnitude, specificity, and breadth to SIVsmE041-infected and SIVmac239-infected RM. Despite these similarities, SM showed a greater reduction in postpeak plasma viremia and a more rapid disappearance of productively SIV-infected cells from the lymph node compared with SIVmac239-infected RM. The early Gag-specific CD8(+) T lymphocyte response was significantly more polyfunctional in SM compared with RM, and granzyme B-positive CD8(+) T lymphocytes were present at significantly higher frequencies in SM even prior to SIV infection. These findings suggest that the early SIV-specific T cell response may be an important determinant of lymphoid tissue viral clearance and absence of lymph node immunopathology in natural hosts of SIV infection.
    The Journal of Immunology 03/2011; 186(9):5151-61. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: T-cell receptor (TCR) complementarily determining region 3 (CDR3) spetratyping analysis was employed to assess the ability of an AIDS virus to disrupt CD4 + T-cell repertoires during the primary infection. Rhesus and pig-tailed macaques infected with simian immunodeficiency virus (SIV)mac 251 and SIVsmmFGb, respectively, were evaluated. Following SIV infection, the macaques exhibited an apparent decline of CD4 + peripheral blood lymphocyte (PBL) counts, which was associated with a change in CDR3 profiles from multiple-length distribution to one- or two-length dominance in the selected TCR Vbeta-expressing CD4 + PBL subpopulations. Molecular analysis of the perturbed cell subpopulations suggested that the CD4 + T cells bearing the dominant CDR3 length were clonally expanded. These results indicate that SIV infection can induce a disruption of macaque CD4 + T-cell repertoires during the primary infection. The finding in this study, therefore, suggests that the virus-induced clonal dominance can contribute to the disruption of CD4 + T-cell repertoires.
    Journal of Medical Primatology 01/2011; 28(4-5):174-80. · 1.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies were undertaken to determine whether previously described reductions in splenic DC-SIGN expression in simian acquired immune deficiency syndrome (AIDS) are limited to pathogenic simian immunodeficiency virus (SIV) infection. DC-SIGN expression was evaluated by immunohistochemistry in lymphoid tissues from AIDS-susceptible Asian macaque monkeys as compared with AIDS-resistant sooty mangabey monkeys in the presence and absence of SIV infection. The phenotype of DC-SIGN+ cells in susceptible and resistant species was identical and most consistent with macrophage identity. Significantly lower levels of DC-SIGN expression were identified in spleen, mesenteric lymph node, and bone marrow of macaques with AIDS (P<0.05). Reduced levels of splenic DC-SIGN correlated significantly with CD4T cell depletion in long-term pathogenic infection of macaques (P<0.01), whereas SIV-infected mangabeys retained high levels of DC-SIGN expression in spleen despite persistent infection. Reduced expression of DC-SIGN in spleen specifically characterizes pathogenic forms of SIV infection, correlates with disease progression, and may contribute to SIV pathogenesis.
    Developmental & Comparative Immunology 08/2008; 32(12):1510-21. · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor-binding domain of Plasmodium vivax Duffy-binding protein, region II (PvRII), is an attractive candidate for a vaccine against P. vivax malaria. Here, we have studied the safety and immunogenicity of recombinant PvRII in Macaca mulatta (rhesus monkeys). Recombinant PvRII with a C-terminal 6-histidine tag was expressed in E. coli, recovered from inclusion bodies, refolded into its functional conformation, purified to homogeneity and formulated with three adjuvants, namely, Alhydrogel, Montanide ISA 720 and the GSK proprietary Adjuvant System AS02A for use in immunogenicity studies. All the PvRII vaccine formulations tested were safe and highly immunogenic. The overall magnitude of the antibody response was significantly higher for both Montanide ISA 720 and AS02A formulations in comparison with Alhydrogel. Furthermore, there was a significant correlation between antibody recognition titers by ELISA and binding inhibition titers in in vitro binding assays. The PvRII vaccine formulations also induced IFN-gamma recall responses that were identified using ex vivo ELISPOT assays. These results provide support for further clinical development of a vaccine for P. vivax malaria based on recombinant PvRII.
    Vaccine 07/2008; 26(34):4338-44. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A dose-response model using rhesus monkeys as a surrogate for pregnant women indicates that oral exposure to 10(7) CFU of Listeria monocytogenes results in about 50% stillbirths. Ten of 33 pregnant rhesus monkeys exposed orally to a single dose of 10(2) to 10(10) CFU of L. monocytogenes had stillbirths. A log-logistic model predicts a dose affecting 50% of animals at 10(7) CFU, comparable to an estimated 10(6) CFU based on an outbreak among pregnant women but much less than the extrapolated estimate (10(13) CFU) from the FDA-U.S. Department of Agriculture-CDC risk assessment using an exponential curve based on mouse data. Exposure and etiology of the disease are the same in humans and primates but not in mice. This information will aid in risk assessment, assist policy makers, and provide a model for mechanistic studies of L. monocytogenes-induced stillbirths.
    Infection and immunity 03/2008; 76(2):726-31. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased lymphocyte turnover is a hallmark of pathogenic lentiviral infection. To investigate perturbations in lymphocyte dynamics in natural hosts with nonpathogenic simian immunodeficiency virus (SIV) infection, the nucleoside analog bromodeoxyuridine (BrdU) was administered to six naturally SIV-infected and five SIV-negative sooty mangabeys. As a measure of lymphocyte turnover, we estimated the mean death rate by fitting a mathematical model to the fraction of BrdU-labeled cells during a 2-week labeling and a median 10-week delabeling period. Despite significantly lower total T- and B-lymphocyte counts in SIV-infected sooty mangabeys than in SIV-negative mangabeys, the turnover rate of B lymphocytes and CD4(+) and CD8(+) T lymphocytes was not increased in the SIV-infected animals. A small, rapidly proliferating CD45RA(+) memory subset and a large, slower-proliferating CD45RA(-) central memory subset of CD4(+) T lymphocytes identified in the peripheral blood of sooty mangabeys also did not show evidence of increased turnover in the context of SIV infection. Independently of SIV infection, the turnover of CD4(+) T lymphocytes in sooty mangabeys was significantly higher (P < 0.01) than that of CD8(+) T lymphocytes, a finding hitherto not reported in rhesus macaques or humans. The absence of aberrant T-lymphocyte turnover along with an inherently high rate of CD4(+) T-lymphocyte turnover may help to preserve the pool of central memory CD4(+) T lymphocytes in viremic SIV-infected sooty mangabeys and protect against progression to AIDS.
    Journal of Virology 02/2008; 82(3):1084-93. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induction of strong cellular immunity will be important for AIDS vaccine candidates. Natural infection with wild-type Listeria monocytogenes (Lm), an orally transmitted organism, is known to generate strong cellular immunity, thus raising the possibility that live attenuated Lm could serve as a vaccine vector. We sought to examine the potential of live attenuated Lm to induce cellular immune responses to HIV Gag. Rhesus macaques were immunized with Lmdd-gag that expresses HIV gag and lacks two genes in the D-alanine (D-ala) synthesis pathway. Without this key component of the bacterial cell wall, vaccine vector replication critically depends on exogenous D-ala. Lmdd-gag was given to animals either solely orally or by oral priming followed by intramuscular (i.m.) boosting; D-ala was co-administered with all vaccinations. Lmdd-gag and D-ala were well tolerated. Oral priming/oral boosting induced Gag-specific cellular immune responses, whereas oral priming/i.m. boosting induced systemic as well as mucosal anti-Gag antibodies. These results suggest that the route of vaccination may bias anti-Gag immune responses either towards T-helper type 1 (Th1) or Th2 responses; overall, our data show that live attenuated, recombinant Lmdd-gag is safe and immunogenic in primates.
    Vaccine 11/2007; 25(42):7470-9. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beta-D-dioxolane-thymine (D-DOT) has potent and selective in vitro activity against several clinically important resistant human immunodeficiency virus (HIV) mutants and is in advanced preclinical development. Therefore, the single-dose intravenous and oral pharmacokinetics of D-DOT were studied with three rhesus monkeys. The pharmacokinetic profiles of D-DOT in serum and urine were adequately described by a two-compartment open pharmacokinetic model. D-DOT was rapidly and almost completely absorbed (absorption rate constant = 2.7 h(-1); fraction of oral dose absorbed = 0.82 to 1.06). The average serum beta half-life was 2.16 h. The average central and steady-state volumes of distributions were 0.52 and 1.02 liter/kg of body weight, respectively, and the average systemic and renal clearance values were 0.36 liter/h/kg and 0.18 liter/h/kg. Four or eight percent of administered D-DOT was eliminated in the urine as glucuronide within 8 h after intravenous or oral administration, respectively. D-DOT reached levels in the cerebrospinal fluid in excess of 10 to 20 times the median effective concentration for wild-type HIV and resistant mutants. The potent antiretroviral activity of D-DOT against a lamivudine- and zidovudine-resistant HIV-1 mutant, together with an excellent pharmacokinetic profile for rhesus monkeys, suggest that further development is warranted.
    Antimicrobial Agents and Chemotherapy 08/2007; 51(7):2424-9. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SIV infection of sooty mangabeys (SMs), a natural host species, does not cause AIDS despite high-level virus replication. In contrast, SIV infection of nonnatural hosts such as rhesus macaques (RMs) induces an AIDS-like disease. The depletion of CD8+ T cells during SIV infection of RMs results in marked increases in plasma viremia, suggesting a key role for CD8+ T cells in controlling levels of SIV replication. To assess the role that CD8+ T cells play in determining the virologic and immunologic features of nonpathogenic SIV infection in SMs, we transiently depleted CD8+ T cells in SIV-infected and uninfected SMs using a CD8alpha-specific Ab (OKT8F) previously used in studies of SIV-infected RMs. Treatment of SMs with the OKT8F Ab resulted in the prompt and profound depletion of CD8+ T cells. However, in contrast to CD8+ cell depleted, SIV-infected RMs, only minor changes in the levels of plasma viremia were observed in most SIV-infected SMs during the period of CD8+ cell deficiency. Those SMs demonstrating greater increases in SIV replication following CD8+ cell depletion also displayed higher levels of CD4+ T cell activation and/or evidence of CMV reactivation, suggesting that an expanded target cell pool rather than the absence of CD8+ T cell control may have been primarily responsible for transient increases in viremia. These data indicate that CD8+ T cells exert a limited influence in determining the levels of SIV replication in SMs and provide additional evidence demonstrating that the absence of AIDS in SIV-infected SMs is not due to the effective control of viral replication by cellular immune responses.
    The Journal of Immunology 07/2007; 178(12):8002-12. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diarrheal disease is a major cause of morbidity and mortality in humans and animals, including non human primates. While the diagnostics for gastrointestinal bacterial and parasitic pathogens and their etiological role in disease are well established, little is known about the epidemiology, prevalence and role of viral agents in diarrheal illness among monkeys. We collected fecal specimens from monkeys with diarrhea that were housed in two primate colonies, the Institute of Laboratory Animal Sciences, Beijing, China and the Yerkes National Primate Research Center, Georgia, USA. We screened these fecal specimens for rotaviruses and enteric adenoviruses 40/41 by using commercial EIA kits (Rotaclone and Adenoclone), enteroviruses by RT-PCR and Southern blot hybridization, and picobirnaviruses by polyacrylamide gel electrophoresis and silver staining. Some of the specimens were examined by EM for coronaviruses and noroviruses. Of the 92 specimens from China, we found 63 (68%) positive for viruses, including enteroviruses (52%), enteric adenoviruses (21%), rotaviruses (20%), and picobirnaviruses (2%). Coronaviruses were detected in some specimens. Mixed infection of two or more viral agents was seen in 23 (25%) specimens. In the US collection, we detected enteroviruses and enteric adenoviruses in 76% (45/59) and 14% (7/50) of the specimens, respectively. Electron microscopy showed norovirus-like particles in some specimens from both colonies. Our findings indicate endemic infections with enteric viruses in monkeys of both colonies. The availability of new simian rotaviruses, enteric adenoviruses, enteroviruses, and coronaviruses and the discovery of noroviruses and picobirnaviruses may allow us to develop better diagnostics for these agents and determine which of these agents are clearly associated with gastroenteritis in monkeys.
    Journal of Medical Primatology 05/2007; 36(2):101-7. · 1.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the hypothesis that helminth parasite coinfection would intensify viremia and accelerate disease progression in monkeys chronically infected with an R5 simian-human immunodeficiency virus (SHIV) encoding a human immunodeficiency virus type 1 (HIV-1) clade C envelope. Fifteen rhesus monkeys with stable SHIV-1157ip infection were enrolled into a prospective, randomized trial. These seropositive animals had undetectable viral RNA and no signs of immunodeficiency. Seven animals served as virus-only controls; eight animals were exposed to Schistosoma mansoni cercariae. From week 5 after parasite exposure onward, coinfected animals shed eggs in their feces, developed eosinophilia, and had significantly higher mRNA expression of the T-helper type 2 cytokine interleukin-4 (P = 0.001) than animals without schistosomiasis. Compared to virus-only controls, viral replication was significantly increased in coinfected monkeys (P = 0.012), and the percentage of their CD4(+) CD29(+) memory cells decreased over time (P = 0.05). Thus, S. mansoni coinfection significantly increased viral replication and induced T-cell subset alterations in monkeys with chronic SHIV clade C infection.
    Infection and Immunity 05/2007; 75(4):1751-6. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to HIV-infected humans, naturally SIV-infected sooty mangabeys (SMs) very rarely progress to AIDS. Although the mechanisms underlying this disease resistance are unknown, a consistent feature of natural SIV infection is the absence of the generalized immune activation associated with HIV infection. To define the correlates of preserved CD4(+) T cell counts in SMs, we conducted a cross-sectional immunological study of 110 naturally SIV-infected SMs. The nonpathogenic nature of the infection was confirmed by an average CD4(+) T cell count of 1,076 +/- 589/mm(3) despite chronic infection with a highly replicating virus. No correlation was found between CD4(+) T cell counts and either age (used as a surrogate marker for length of infection) or viremia. The strongest correlates of preserved CD4(+) T cell counts were a low percentage of circulating effector T cells (CD28(-)CD95(+) and/or IL-7R/CD127(-)) and a high percentage of CD4(+)CD25(+) T cells. These findings support the hypothesis that the level of immune activation is a key determinant of CD4(+) T cell counts in SIV-infected SMs. Interestingly, we identified 14 animals with CD4(+) T cell counts of <500/mm(3), of which two show severe and persistent CD4(+) T cell depletion (<50/mm(3)). Thus, significant CD4(+) T cell depletion does occasionally follow SIV infection of SMs even in the context of generally low levels of immune activation, lending support to the hypothesis of multifactorial control of CD4(+) T cell homeostasis in this model of infection. The absence of AIDS in these "CD4(low)" naturally SIV-infected SMs defines a protective role of the reduced immune activation even in the context of a significant CD4(+) T cell depletion.
    The Journal of Immunology 03/2007; 178(3):1680-91. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a primate model of postnatal virus transmission, we have previously shown that 1 h post-exposure prophylaxis (PEP) with a triple combination of neutralizing monoclonal antibodies (nmAbs) conferred sterilizing protection to neonatal macaques against oral challenge with pathogenic simian-human immunodeficiency virus (SHIV). Here, we show that nmAbs can also partially protect SHIV-exposed newborn macaques against infection or disease, when given as 12 or 24 h PEP, respectively. This work delineates the potential and the limits of passive immunoprophylaxis with nmAbs. Even though 24 h PEP with nmAbs did not provide sterilizing immunity to neonatal monkeys, it contained viremia and protected infants from acute disease. Taken together with our results from other PEP studies, these data show that the success of passive immunization depends on the nmAb potency/dose and the time window between virus exposure and start of immunotherapy.
    Virology 03/2007; 358(1):69-78. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Not Available Bibtex entry for this abstract Preferred format for this abstract (see Preferences) Find Similar Abstracts: Use: Authors Title Return: Query Results Return items starting with number Query Form Database: Astronomy Physics arXiv e-prints
    Annals of the New York Academy of Sciences 12/2006; 616(1):385 - 397. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent years have seen a worldwide resurgence in serious infections caused by group A streptococci. This group includes Streptococcus pyogenes, one of the most common pathogens among children which causes diverse suppurative infections, such as pharyngitis, as well as nonsuppurative infections with sequelae, such as rheumatoid fever and rheumatic heart disease. S. pyogenes produces several superantigen-like erythrogenic toxins, which are believed to be associated with pyrogenicity, erythromatous skin reactions, and various immunologic and cytotoxic effects. These toxins also can cause myocardial necrosis. In addition, recently reported streptococcal infections in obstetric human patients appear to be clinically different from classic puerperal sepsis. Here, we report a case of spontaneous streptococcal infection in a pregnant female rhesus monkey (Macaca mulatta). In addition to lesions consistent with bacteremia and toxic shock, this animal had severe cardiac lesions resembling those described in humans with rheumatic heart disease. S. pyogenes was isolated from intracardiac blood, liver, placenta, and fetal tissues. This isolate also had a unique M protein gene.
    Journal of the American Association for Laboratory Animal Science: JAALAS 10/2006; 45(5):79-82. · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus type 1 (HIV-1) clade C causes >50% of all HIV infections worldwide, and an estimated 90% of all transmissions occur mucosally with R5 strains. A pathogenic R5 simian-human immunodeficiency virus (SHIV) encoding HIV clade C env is highly desirable to evaluate candidate AIDS vaccines in nonhuman primates. To this end, we generated SHIV-1157i, a molecular clone from a Zambian infant isolate that carries HIV clade C env. SHIV-1157i was adapted by serial passage in five monkeys, three of which developed peripheral CD4(+) T-cell depletion. After the first inoculated monkey developed AIDS at week 137 postinoculation, transfer of its infected blood to a naïve animal induced memory T-cell depletion and thrombocytopenia within 3 months in the recipient. In parallel, genomic DNA from the blood donor was amplified to generate the late proviral clone SHIV-1157ipd3. To increase the replicative capacity of SHIV-1157ipd3, an extra NF-kappaB binding site was engineered into its 3' long terminal repeat, giving rise to SHIV-1157ipd3N4. This virus was exclusively R5 tropic and replicated more potently in rhesus peripheral blood mononuclear cells than SHIV-1157ipd3 in the presence of tumor necrosis factor alpha. Rhesus macaques of Indian and Chinese origin were next inoculated intrarectally with SHIV-1157ipd3N4; this virus replicated vigorously in both sets of monkeys. We conclude that SHIV-1157ipd3N4 is a highly replication-competent, mucosally transmissible R5 SHIV that represents a valuable tool to test candidate AIDS vaccines targeting HIV-1 clade C Env.
    Journal of Virology 09/2006; 80(17):8729-38. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we use a vaccine consisting of DNA priming followed by MVA boosting in rhesus macaques to investigate the ability of GM-CSF DNA to serve as an adjuvant for the elicitation of neutralizing Ab against an HIV-1 Env. The trial used Gag, Pol, and Env sequences from SHIV-89.6 in the immunogens and a neutralization escape variant of SHIV-89.6, SHIV-89.6P, for challenge. Co-delivery of GM-CSF and vaccine DNAs enhanced the temporal appearance of neutralizing Ab and broadened the specificity of the neutralizing activity to include SHIV-89.6P. Two long-term SHIV-89.6 infections elicited neutralizing activity for SHIV-89.6 but not SHIV-89.6P. Studies on the avidity of the anti-Env antisera revealed that the GM-CSF-adjuvanted vaccine had elicited higher avidity Ab than the non-adjuvanted vaccine or the infection. The GM-CSF-adjuvanted group showed a trend towards better control of the challenge infection and had better control of re-emergent virus (P < 0.01) than the non-adjuvanted group.
    Virology 09/2006; 352(2):285-94. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to human immunodeficiency virus (HIV)-infected humans, natural hosts for simian immunodeficiency virus (SIV) very rarely progress to acquired immunodeficiency syndrome (AIDS). While the mechanisms underlying this disease resistance are still poorly understood, a consistent feature of natural SIV infection is the absence of the generalized immune activation associated with HIV infection. To investigate the immunologic mechanisms underlying the absence of AIDS in SIV-infected sooty mangabeys (SMs), a natural host species, we performed a detailed analysis of the SIV-specific cellular immune responses in 110 SIV-infected SMs. We found that while SIV-specific T-cell responses are detectable in the majority of animals, their magnitude and breadth are, in fact, lower than what has been described in HIV-infected humans, both in terms of cytokine production (ie, IFN-gamma, TNF-alpha, and IL-2) and degranulation (ie, CD107a expression). Of importance, SIV-specific T-cell responses were similarly low when either SIVmac239-derived peptides or autologous SIVsmm peptides were used as stimuli. No correlation was found between SIV-specific T-cell responses and either viral load or CD4+ T-cell count, or between these responses and markers of T-cell activation and proliferation. These findings indicate that the absence of AIDS in naturally SIV-infected sooty mangabeys is independent of a strong cellular immune response to the virus.
    Blood 08/2006; 108(1):209-17. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sooty mangabeys are a natural host of simian immunodeficiency virus (SIV) that remain asymptomatic and do not exhibit increased immune activation or increased T-lymphocyte turnover despite sustained high levels of SIV viremia. In this study we asked whether an altered immune response to SIV contributes to the lack of immunopathology in sooty mangabeys as opposed to species with pathogenic lentivirus infection. SIV-specific cellular immune responses were investigated in a cohort of 25 sooty mangabeys with natural SIV infection. Gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay responses targeting a median of four SIV proteins were detected in all 25 mangabeys and were comparable in magnitude to those of 13 rhesus macaques infected with SIVmac251 for more than 6 months. As with rhesus macaques, Th2 ELISPOT responses to SIV were absent or >10-fold lower than the IFN-gamma ELISPOT response to the same SIV protein. The SIV-specific ELISPOT response was predominantly mediated by CD8+ T lymphocytes; the frequency of circulating SIV-specific CD8+ T lymphocytes ranged between 0.11% and 3.26% in 13 mangabeys. Functionally, the SIV-specific CD8+ T lymphocytes were cytotoxic; secreted IFN-gamma, tumor necrosis factor alpha, and macrophage inflammatory protein 1beta; and had an activated effector phenotype. Although there was a trend toward higher frequencies of SIV-specific CD8+ T lymphocytes in mangabeys with lower viral loads, a significant inverse correlation between SIV viremia and SIV-specific cellular immunity was not detected. The consistent detection of Th1-type SIV-specific cellular immune responses in naturally infected sooty mangabeys suggests that immune attenuation is neither a feature of nor a requirement for maintenance of nonpathogenic SIV infection in its natural host.
    Journal of Virology 04/2006; 80(6):2771-83. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although it is now well established that a substantial proportion of wild-living primates in sub-Saharan Africa harbor SIV, no study to date has examined to what extent the various species are naturally infected. In this study, we first describe the development and validation of sensitive and specific SIV antibody detection assays representing all major known primate lentiviral lineages on a panel of 207 sera from 11 different primate species with known infection status. The newly developed assays were then used to determine SIV prevalence rates in nine primate species native to Cameroon. Analysis of 722 sera revealed widely varying prevalence rates, ranging from an apparent absence of SIV infection in crested mona (0/70), grey cheeked (0/36) and agile mangabeys (0/92), to prevalence rates of 3%, 4%, 11%, 27%, 39% and 52% for mustached (6/203), greater spot-nosed (8/193), northern talapoin (3/26), mantled guereza (14/52), De Brazza's (9/23) and mandrill (14/27) monkeys, respectively. The epidemiology of naturally occurring SIV infections is thus more complex than previously appreciated and the various non-human primate hosts seem to differ in their susceptibility to SIV infection. The newly developed assays should now permit to define with greater accuracy existing SIV reservoirs and associated human zoonotic risk.
    Virology 03/2006; 345(1):174-89. · 3.37 Impact Factor

Publication Stats

8k Citations
1,074.21 Total Impact Points

Institutions

  • 1987–2011
    • Emory University
      • • Emory Vaccine Center
      • • Department of Pediatrics
      • • Department of Internal Medicine
      • • Department of Pathology and Laboratory Medicine
      • • Winship Cancer Center
      Atlanta, Georgia, United States
  • 1990–2008
    • Wisconsin National Primate Research Center
      Madison, Wisconsin, United States
  • 2000–2007
    • Dana-Farber Cancer Institute
      • Department of Cancer Immunology and AIDS
      Boston, MA, United States
    • Georgia State University
      • Department of Biology
      Atlanta, GA, United States
  • 1995–2007
    • University of Georgia
      • • College of Pharmacy
      • • Department of Pharmaceutical and Biomedical Sciences
      Атина, Georgia, United States
  • 1988–2006
    • Centers for Disease Control and Prevention
      • National Center for Emerging and Zoonotic Infectious Diseases
      Atlanta, Michigan, United States
  • 2005
    • Duke University Medical Center
      • Department of Surgery
      Durham, North Carolina, United States
  • 1991–2004
    • University of Alabama at Birmingham
      • • Department of Medicine
      • • Division of Clinical Pharmacology
      • • Department of Pharmacology and Toxicology
      Birmingham, AL, United States
  • 1999–2003
    • Harvard Medical School
      • • Department of Medicine
      • • Division of Immunology
      Boston, MA, United States
    • University Center Rochester
      Rochester, Minnesota, United States
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2002
    • National Institute of Allergy and Infectious Diseases
      Maryland, United States
  • 2001
    • Beth Israel Deaconess Medical Center
      Boston, Massachusetts, United States
  • 1996–2001
    • University of Kansas
      • Department of Microbiology, Molecular Genetics and Immunology
      Kansas City, KS, United States
  • 1997
    • U.S. Department of Health and Human Services
      Washington, Washington, D.C., United States
  • 1991–1992
    • Georgetown University
      • Department of Microbiology and Immunology
      Rockville, MD, United States