Verónica Torrano

Universidad de Cantabria, Santander, Cantabria, Spain

Are you Verónica Torrano?

Claim your profile

Publications (10)64.3 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BCL6 is a zinc-finger transcriptional repressor, which is highly expressed in germinal centre B-cells and is essential for germinal centre formation and T-dependent antibody responses. Constitutive BCL6 expression is sufficient to produce lymphomas in mice. Deregulated expression of BCL6 due to chromosomal rearrangements, mutations of a negative autoregulatory site in the BCL6 promoter region and aberrant post-translational modifications have been detected in a number of human lymphomas. Tight lineage and temporal regulation of BCL6 is, therefore, required for normal immunity, and abnormal regulation occurs in lymphomas. CCCTC-binding factor (CTCF) is a multi-functional chromatin regulator, which has recently been shown to bind in a methylation-sensitive manner to sites within the BCL6 first intron. We demonstrate a novel CTCF-binding site in BCL6 exon1A within a potential CpG island, which is unmethylated both in cell lines and in primary lymphoma samples. CTCF binding, which was found in BCL6-expressing cell lines, correlated with the presence of histone variant H2A.Z and active histone marks, suggesting that CTCF induces chromatin modification at a transcriptionally active BCL6 locus. CTCF binding to exon1A was required to maintain BCL6 expression in germinal centre cells by avoiding BCL6-negative autoregulation. Silencing of CTCF in BCL6-expressing cells reduced BCL6 mRNA and protein expression, which is sufficient to induce B-cell terminal differentiation toward plasma cells. Moreover, lack of CTCF binding to exon1A shifts the BCL6 local chromatin from an active to a repressive state. This work demonstrates that, in contexts in which BCL6 is expressed, CTCF binding to BCL6 exon1A associates with epigenetic modifications indicative of transcriptionally open chromatin.Oncogene advance online publication, 23 December 2013; doi:10.1038/onc.2013.535.
    Oncogene 12/2013; 34(2). DOI:10.1038/onc.2013.535 · 8.56 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CCCTC binding factor (CTCF) is a highly conserved zinc finger protein, which is involved in chromatin organization, local histone modifications, and RNA polymerase II-mediated gene transcription. CTCF may act by binding tightly to DNA and recruiting other proteins to mediate its various functions in the nucleus. To further explore the role of this essential factor, we used a mass spectrometry-based approach to screen for novel CTCF-interacting partners. Using biotinylated CTCF as bait, we identified upstream binding factor (UBF) and multiple other components of the RNA polymerase I complex as potential CTCF-interacting partners. Interestingly, CTCFL, the testis-specific paralog of CTCF, also binds UBF. The interaction between CTCF(L) and UBF is direct, and requires the zinc finger domain of CTCF(L) and the high mobility group (HMG)-box 1 and dimerization domain of UBF. Because UBF is involved in RNA polymerase I-mediated ribosomal (r)RNA transcription, we analyzed CTCF binding to the rDNA repeat. We found that CTCF bound to a site upstream of the rDNA spacer promoter and preferred non-methylated over methylated rDNA. DNA binding by CTCF in turn stimulated binding of UBF. Absence of CTCF in cultured cells resulted in decreased association of UBF with rDNA and in nucleolar fusion. Furthermore, lack of CTCF led to reduced binding of RNA polymerase I and variant histone H2A.Z near the rDNA spacer promoter, a loss of specific histone modifications, and diminished transcription of non-coding RNA from the spacer promoter. UBF is the first common interaction partner of CTCF and CTCFL, suggesting a role for these proteins in chromatin organization of the rDNA repeats. We propose that CTCF affects RNA polymerase I-mediated events globally by controlling nucleolar number, and locally by regulating chromatin at the rDNA spacer promoter, similar to RNA polymerase II promoters. CTCF may load UBF onto rDNA, thereby forming part of a network that maintains rDNA genes poised for transcription.
    Epigenetics & Chromatin 11/2010; 3(1):19. DOI:10.1186/1756-8935-3-19 · 4.46 Impact Factor
  • D. Delgado · M. Rosa-Garrido · A. Batlle · V. Torrano
    EJC Supplements 06/2010; 8(5):178-178. DOI:10.1016/S1359-6349(10)71503-2 · 9.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of differentiation has been proposed as an important mechanism for Myc-induced tumorigenesis, but the mechanisms involved are unclear. We have established a genetically defined differentiation model in human leukemia K562 cells by conditional expression of the cyclin-dependent kinase (Cdk) inhibitor p27 (inducible by Zn(2+)) and Myc (activatable by 4-hydroxy-tamoxifen). Induction of p27 resulted in erythroid differentiation, accompanied by Cdk inhibition and G(1) arrest. Interestingly, activation of Myc inhibited p27-mediated erythroid differentiation without affecting p27-mediated proliferation arrest. Microarray-based gene expression indicated that, in the presence of p27, Myc blocked the upregulation of several erythroid-cell-specific genes, including NFE2, JUNB, and GATA1 (transcription factors with a pivotal role in erythropoiesis). Moreover, Myc also blocked the upregulation of Mad1, a transcriptional antagonist of Myc that is able to induce erythroid differentiation. Cotransfection experiments demonstrated that Myc-mediated inhibition of differentiation is partly dependent on the repression of Mad1 and GATA1. In conclusion, this model demonstrates that Myc-mediated inhibition of differentiation depends on the regulation of a specific gene program, whereas it is independent of p27-mediated cell cycle arrest. Our results support the hypothesis that differentiation inhibition is an important Myc tumorigenic mechanism that is independent of cell proliferation.
    Molecular and Cellular Biology 11/2008; 28(24):7286-95. DOI:10.1128/MCB.00752-08 · 5.04 Impact Factor
  • V. Torrano · M. Rosa-Garrido · J. León · M. D. Delgado
    EJC Supplements 07/2008; 6(9):123-123. DOI:10.1016/S1359-6349(08)71647-1 · 9.39 Impact Factor
  • EJC Supplements 07/2008; 6(9):79-80. DOI:10.1016/S1359-6349(08)71482-4 · 9.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brother of the regulator of imprinted sites (BORIS) is a novel member of the cancer-testis antigen gene family. These genes are normally expressed only in spermatocytes but abnormally activated in different malignancies, including breast cancer. The aim of this study was to investigate the expression of BORIS in the leukocytes of breast cancer patients and the correlation between BORIS levels and clinical/pathologic variables. Leukocytes were obtained from whole blood of 87 breast cancer patients and 52 donors not diagnosed with cancer. BORIS protein was detected in leukocytes by immunohistochemical staining; the immunoreactivity score (IRS) of each sample was determined. Additionally, BORIS expression was assessed by Western blot analysis and real-time reverse transcription-PCR. We describe significantly high levels of BORIS (IRS = 4.25 +/- 0.034) in a subpopulation of leukocytes, the neutrophil polymorphonuclear granulocytes, in 88.5% of breast cancer patients. Increased IRS for BORIS in these patients correlated with increased tumor size. In comparison, 19.2% samples from the control group were BORIS positive with only very low levels of BORIS (IRS = 0.25 +/- 0.009). We report here the novel finding of BORIS expression in polymorphonuclear granulocytes of breast cancer patients. This tumor-related occurrence is a phenomenon not observed in donors with injuries and immune and inflammatory diseases. Detection of BORIS in a high proportion of patients with various types of breast tumors indicates that BORIS can be a valuable early blood marker of breast cancer. We conclude that BORIS represents a new class of cancer biomarkers different from those currently used in medical practice.
    Clinical Cancer Research 11/2006; 12(20 Pt 1):5978-86. DOI:10.1158/1078-0432.CCR-05-2731 · 8.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple functions have been reported for the transcription factor and candidate tumour suppressor, CTCF. Among others, they include regulation of cell growth, differentiation and apoptosis, enhancer-blocking activity and control of imprinted genes. CTCF is usually localized in the nucleus and its subcellular distribution during the cell cycle is dynamic; CTCF was found associated with mitotic chromosomes and the midbody, suggesting different roles for CTCF at different stages of the cell cycle. Here we report the nucleolar localization of CTCF in several experimental model systems. Translocation of CTCF from nucleoplasm to the nucleolus was observed after differentiation of K562 myeloid cells and induction of apoptosis in MCF7 breast cancer cells. CTCF was also found in the nucleoli in terminally differentiated rat trigeminal ganglion neurons. Thus our data show that nucleolar localization of CTCF is associated with growth arrest. Interestingly, the 180 kDa poly(ADP-ribosyl)ated isoform of CTCF was predominantly found in the nucleoli fractions. By transfecting different CTCF deletion constructs into cell lines of different origin we demonstrate that the central zinc-finger domain of CTCF is the region responsible for nucleolar targeting. Analysis of subnucleolar localization of CTCF revealed that it is distributed homogeneously in both dense fibrillar and granular components of the nucleolus, but is not associated with fibrillar centres. RNA polymerase I transcription and protein synthesis were required to sustain nucleolar localization of CTCF. Notably, the labelling of active transcription sites by in situ run-on assays demonstrated that CTCF inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism.
    Journal of Cell Science 06/2006; 119(Pt 9):1746-59. DOI:10.1242/jcs.02890 · 5.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CTCF is a transcription factor and a candidate tumor suppressor that contains a DNA-binding domain composed of 11 zinc fingers. We reported previously that CTCF is differentially regulated during differentiation of human myeloid leukemia cells. In this study we aimed to investigate the role of CTCF in myeloid cell differentiation. A human cell line, K562, that can be chemically induced to differentiate into various hematopoietic lineages was chosen as a model system for this study. Several K562 cell lines with constitutive and conditional expression of CTCF have been generated. By using these model systems we demonstrated that: (i) ectopic expression of CTCF in K562 cells led to growth retardation and promotion of differentiation into the erythroid lineage; (ii) CTCF knock-down significantly inhibited differentiation of K562 cells into erythroid lineage; (iii) differentiation of K562 into the megakaryocytic lineage was not significantly affected; and (iv) down-regulation of MYC has been identified as one of the mechanisms by which CTCF promotes erythroid differentiation. Taken together our results demonstrate that CTCF is involved in the control of myeloid cell growth and differentiation.
    Journal of Biological Chemistry 08/2005; 280(30):28152-61. DOI:10.1074/jbc.M501481200 · 4.57 Impact Factor

Publication Stats

191 Citations
64.30 Total Impact Points


  • 2005–2013
    • Universidad de Cantabria
      • Department of Molecular Biology
      Santander, Cantabria, Spain
  • 2008
    • Hospital Universitario Marques de Valdecilla
      Santander, Cantabria, Spain
  • 2006
    • University of Essex
      • School of Biological Sciences
      Colchester, England, United Kingdom