David C Cottell

University College Dublin, Dublin, Leinster, Ireland

Are you David C Cottell?

Claim your profile

Publications (36)120.42 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumorigenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.
    Journal of Experimental & Clinical Cancer Research 04/2011; 30(1):45. DOI:10.1186/1756-9966-30-45 · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipoxins (LXs) are endogenously produced eicosanoids with well-described anti-inflammatory and proresolution activities, stimulating nonphlogistic phagocytosis of apoptotic cells by macrophages. LXA(4) and the glucocorticoid-derived annexin A1 peptide (Ac2-26) bind to a common G-protein-coupled receptor, termed FPR2/ALX. However, direct evidence of the involvement of FPR2/ALX in the anti-inflammatory and proresolution activity of LXA(4) is still to be investigated. Here we describe FPR2/ALX trafficking in response to LXA(4) and Ac2-26 stimulation. We have transfected cells with HA-tagged FPR2/ALX and studied receptor trafficking in unstimulated, LXA(4) (1-10 nM)- and Ac2-26 (30 μM)-treated cells using multiple approaches that include immunofluorescent confocal microscopy, immunogold labeling of cryosections, and ELISA and investigated receptor trafficking in agonist-stimulated phagocytosis. We conclude that PKC-dependent internalization of FPR2/ALX is required for phagocytosis. Using bone marrow-derived macrophages (BMDMs) from mice in which the FPR2/ALX ortholog Fpr2 had been deleted, we observed the nonredundant function for this receptor in LXA(4) and Ac2-26 stimulated phagocytosis of apoptotic neutrophils. LXA(4) stimulated phagocytosis 1.7-fold above basal (P<0.001) by BMDMs from wild-type mice, whereas no effect was found on BMDMs from Fpr2(-/-) mice. Similarly, Ac2-26 stimulates phagocytosis by BMDMs from wild-type mice 1.5-fold above basal (P<0.05). However, Ac2-26 failed to stimulate phagocytosis by BMDMs isolated from Fpr2(-/-) mice relative to vehicle. These data reveal novel and complex mechanisms of the FPR2/ALX receptor trafficking and functionality in the resolution of inflammation.
    The FASEB Journal 11/2010; 24(11):4240-9. DOI:10.1096/fj.10-159913 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A spatio-temporal mapping of the uptake of silica (SiO(2)) nanoparticles of different sizes by lung epithelial cells has been obtained. Based on high control of nanoparticle dispersion in cell media and cell exposure, one obtains reproducible and quantitative time-resolved data using a combination of flow cytometry, fluorescence and electron microscopies. We are thereby able to give a rather detailed account of the journey of SiO(2) nanoparticles from the early events of uptake to their final sub-cellular localization.
    Molecular BioSystems 09/2010; 7(2):371-8. DOI:10.1039/c0mb00109k · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The small ciliary G protein Arl13b is required for cilium biogenesis and sonic hedgehog signaling and is mutated in patients with Joubert syndrome (JS). In this study, using Caenorhabditis elegans and mammalian cell culture systems, we investigated the poorly understood ciliary and molecular basis of Arl13b function. First, we show that Arl13b/ARL-13 localization is frequently restricted to a proximal ciliary compartment, where it associates with ciliary membranes via palmitoylation modification motifs. Next, we find that loss-of-function C. elegans arl-13 mutants possess defects in cilium morphology and ultrastructure, as well as defects in ciliary protein localization and transport; ciliary transmembrane proteins abnormally accumulate, PKD-2 ciliary abundance is elevated, and anterograde intraflagellar transport (IFT) is destabilized. Finally, we show that arl-13 interacts genetically with other ciliogenic and ciliary transport-associated genes in maintaining cilium structure/morphology and anterograde IFT stability. Together, these data implicate a role for JS-associated Arl13b at ciliary membranes, where it regulates ciliary transmembrane protein localizations and anterograde IFT assembly stability.
    The Journal of Cell Biology 03/2010; 188(6):953-69. DOI:10.1083/jcb.200908133 · 9.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Meckel syndrome (MKS) is a ciliopathy characterized by encephalocele, cystic renal disease, liver fibrosis and polydactyly. An identifying feature of MKS1, one of six MKS-associated proteins, is the presence of a B9 domain of unknown function. Using phylogenetic analyses, we show that this domain occurs exclusively within a family of three proteins distributed widely in ciliated organisms. Consistent with a ciliary role, all Caenorhabditis elegans B9-domain-containing proteins, MKS-1 and MKS-1-related proteins 1 and 2 (MKSR-1, MKSR-2), localize to transition zones/basal bodies of sensory cilia. Their subcellular localization is largely co-dependent, pointing to a functional relationship between the proteins. This localization is evolutionarily conserved, because the human orthologues also localize to basal bodies, as well as cilia. As reported for MKS1, disrupting human MKSR1 or MKSR2 causes ciliogenesis defects. By contrast, single, double and triple C. elegans mks/mksr mutants do not display overt defects in ciliary structure, intraflagellar transport or chemosensation. However, we find genetic interactions between all double mks/mksr mutant combinations, manifesting as an increased lifespan phenotype, which is due to abnormal insulin-IGF-I signaling. Our findings therefore demonstrate functional interactions between a novel family of proteins associated with basal bodies or cilia, providing new insights into the molecular etiology of a pleiotropic human disorder.
    Journal of Cell Science 03/2009; 122(Pt 5):611-24. DOI:10.1242/jcs.028621 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use high content cell analysis, live cell fluorescent imaging, and transmission electron microscopy approaches combined with inhibitors of cellular transport and nuclear import to conduct a systematic study of the mechanism of interaction of nonfunctionalized quantum dots (QDs) with live human blood monocyte-derived primary macrophages and cell lines of phagocytic, epithelial, and endothelial nature. Live human macrophages are shown to be able to rapidly uptake and accumulate QDs in distinct cellular compartment specifically to QDs size and charge. We show that the smallest QDs specifically target histones in cell nuclei and nucleoli by a multistep process involving endocytosis, active cytoplasmic transport, and entering the nucleus via nuclear pore complexes. Treatment of the cells with an anti-microtubule agent nocodazole precludes QDs cytoplasmic transport whereas a nuclear import inhibitor thapsigargin blocks QD import into the nucleus. These results demonstrate that the nonfunctionalized QDs exploit the cell's active transport machineries for delivery to specific intranuclear destinations.
    Nano Letters 12/2007; 7(11):3452-61. DOI:10.1021/nl0719832 · 13.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.
    BMC Developmental Biology 02/2007; 7:114. DOI:10.1186/1471-213X-7-114 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study the pronephros of rainbow trout Oncorhynchus mykiss was explanted and cultured. The morphology of cultured cells suggested they were leukocyte derived. To confirm this, cells were incubated with non-opsonized fluorescent beads and human apoptotic polymorphonuclear leukocytes (PMN) to establish that they were capable of phagocytosis and that they became activated following exposure to apoptotic bodies. The cells were studied using light microscopy, transmission electron microscopy and a live cell observer system. Cells in culture were also stained with phalloidin to identify actin reorganization following activation. Cultured cells ingested the inert beads and apoptotic PMNs and c. 80% of cells became activated following exposure to the apoptotic PMN, evidenced by enhanced filopodial extensions. This methodology may play a role in future studies, in particular, the competence of macrophages following exposure to radiation can now be tested.
    Journal of Fish Biology 08/2006; 69(sa):1 - 19. DOI:10.1111/j.1095-8649.2006.01066.x · 1.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rheology and microstructure of a control imitation cheese were compared with cheeses containing Novelose240 (N240, native resistant starch) or Novelose330 (N330, retrograded resistant starch), as a source of fibre to replace fat. Hardness increased linearly with fibre content and to a greater extent for N330 than for N240. Cohesiveness increased linearly with N240 content but was not influenced by N330. The elastic modulus (G′) and the viscous modulus (G″) increased with increasing contents of both fibres. The crossover temperature (G′=G″) was unaffected by N240, but was increased by N330. Over 50% of the fat content of imitation cheese was replaced with resistant starches without impacting on meltability. The microstructure of imitation cheese was observed by scanning electron microscopy and light microscopy. The latter, a cheaper and simpler technique than that normally used in microstructure studies, facilitated the explanation of the effects of fibre on the rheology of imitation cheese.
    International Dairy Journal 08/2006; 16(8):910-919. DOI:10.1016/j.idairyj.2005.08.008 · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has long been known that the hematopoietic tissue of mammals is one of the most radiosensitive tissues. In vitro studies on prawns have also shown that low doses of radiation have an extremely deleterious effect on cells cultured from this animal's blood-forming tissues. This raises questions about the relative effects of radiation in animals of different species. One of the most important aquatic animals, from both an economic and an ecological point of view, is the fish. With this in mind, primary cultures of the blood-forming tissues of rainbow trout were exposed to radiation followed by a morphological comparison between control and irradiated cultures. The cultured cells were characterized as macrophages after incubation with apoptotic human polymorphonuclear leukocytes and were classified as phagocytotic leukocytes. These cells were found in two morphological forms, stretched and rounded. It was shown that there was a commensurate increase in the number of stretched cells after irradiation. Radiation was also shown to cause a dose-dependent increase in the amounts of apoptosis in these cells over time. The phagocytotic efficacy of these cells was shown to inhibited by the exposure to low doses of radiation.
    Radiation Research 08/2005; 164(1):45-52. DOI:10.1667/RR3386 · 2.45 Impact Factor
  • C. Mothersill · F. Lyng · M. Lyons · D. Cottell
    [Show abstract] [Hide abstract]
    ABSTRACT: Growth and a number of differentiated characteristics of cultured epidermal cells from the rainbow trout Oncorhynchus mykiss were compared using two commercially available serum–free media, a dermal substrate/serum free kit and a serum–containing medium which had been previously optimized for epidermal cell culture. Each medium supported short term growth over 15 days. Only the medium supplied for dermal substrate culture supported longer growth periods. This medium was supplied for use with a collagen/stromal substrate but gave good cultures even without the substrate. Differentiation, measured by examining mucous cells, cytokeratins, epidermal growth factor receptor, gap junction status and ultrastructure showed that serum–free media gave quantitatively and qualitatively superior expression and short term retention of differentiation over serum–containing medium. Epithelial cell growth with expression of differentiated characteristics can be maintained in primary culture in serum–free medium for at least as long as in serum–containing medium. This provides a useful technique for use when serum presence in medium is undesirable or proves toxic to the specialized cell type under investigation.
    Journal of Fish Biology 04/2005; 46(6):1011 - 1025. DOI:10.1111/j.1095-8649.1995.tb01406.x · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fish skin is very vulnerable to damage from physical and chemical pollutants because it is in direct contact with the aquatic environment. In this study, the effect of gamma radiation on primary cultures of rainbow trout skin was investigated. Primary cultures containing two cell types, epidermal cells and goblet mucous cells, were exposed to doses ranging from 0.5-15 Gy 60Co gamma radiation. Expression of PCNA, c-myc and BCL2 was investigated as well as growth and levels of apoptosis and necrosis. Morphological and functional changes were also studied. The irradiated cultures showed evidence of a dose-dependent increase in necrosis and enhanced proliferation as well as morphological damage. In addition, mucous cell area was found to decrease significantly after irradiation. The study shows the value of these primary cultures as in vitro models for studying radiation effects. They provide an effective alternative to whole-animal exposures for radiation risk assessment.
    Radiation Research 09/2004; 162(2):226-32. DOI:10.1667/RR3216 · 2.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial cells of the kidney represent a primary target for hypoxic injury in ischemic acute renal failure (ARF); however, the underlying transcriptional mechanism(s) remain undefined. In this study, human proximal tubular epithelial cells (HK-2) exposed to hypoxia in vitro demonstrated a non-lethal but dysfunctional phenotype, closely reflective of the epithelial pathobiology of ARF. HK-2 cells exposed to hypoxia demonstrated increased paracellular permeability, decreased proliferation, loss of tight junctional integrity, and significant actin disassembly in the absence of cell death. Microarray analysis of transcriptomic changes underlying this response identified a distinct cohort of 48 genes with a closely shared hypoxia-dependent expression profile. Within this hypoxia-sensitive cluster were genes identified previously as hypoxia-inducible factor-1 (HIF-1)-dependent (e.g. vascular endothelial growth factor and adrenomedullin) as well as genes not previously known to be hypoxia-responsive (e.g. stanniocalcin 2). In hypoxia, HIF-1 bound to evolutionarily conserved hypoxia-response elements (HRE) in the promoters of these genes as well as to the HRE consensus motif. A further subset of these genes, not associated with transcriptional regulation by HIF-1, was also present, suggesting alternative HIF-1-independent pathways. Overexpression of HIF-1 alpha in normoxia induced the expression of a significant number of the hypoxia-dependent genes; however, it did not induce the pathophysiologic epithelial response. In summary, hypoxia-elicited alterations in renal proximal tubular epithelial cells in vitro closely resemble the epithelial pathophysiology of ARF. Our data indicate that although this event may rely heavily on HIF-1-dependent gene transcription, it is likely that separate hypoxia-dependent transcriptional regulators also play a role.
    Journal of Biological Chemistry 11/2003; 278(41):40296-304. DOI:10.1074/jbc.M302560200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue factor (TF) is the main activator of the coagulation cascade occurring in physiologic and pathologic conditions. Recent data suggest that human platelets might contain TF that is possibly derived from leukocytes. In this study, we investigated whether intraplatelet TF can be exposed on the membrane by platelet agonists. The modulation of this process by antiplatelet drugs has been evaluated as well. Flow cytometric analysis of unstimulated platelets showed a small amount of membrane-associated immunoreactive TF (irTF) in whole blood, platelet-rich plasma, and washed platelets isolated from healthy subjects. ADP, thrombin receptor-activating peptide, and epinephrine significantly increased functionally active, membrane-associated irTF. ADP induced irTF exposure in a concentration- and time-dependent fashion. Agonist-induced irTF expression was completely inhibited by iloprost but not by aspirin. Interestingly, glycoprotein IIb/IIIa antagonists did not inhibit but rather potentiated the stimulatory effect of ADP on platelet irTF expression. Real-time polymerase chain reaction experiments showed detectable amounts of TF mRNA in unstimulated platelets. These findings indicate that platelet agonists and antiplatelet drugs might modulate platelet-associated irTF expression. Regulated TF expression establishes the potential for a previously unrecognized role for platelets in sustaining thrombus formation and growth via coagulation-mediated mechanisms.
    Arteriosclerosis Thrombosis and Vascular Biology 10/2003; 23(9):1690-6. DOI:10.1161/01.ATV.0000085629.23209.AA · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipoxins (LX) are eicosanoids with antiinflammatory activity in glomerulonephritis (GN) and inflammatory diseases, hypersensitivity, and ischemia reperfusion injury. It has been demonstrated that LXA(4) stimulates non-phlogistic phagocytosis of apoptotic polymorphonuclear neutrophils (PMN) by monocyte-derived macrophages (Mphi) in vitro, suggesting a role for LX as endogenous pro-resolution lipid mediators. It is here reported that LXA(4), LXB(4), the aspirin-triggered LX (ATL) epimer, 15-epi-LXB(4), and a stable synthetic analogue 15(R/S)-methyl-LXA(4) stimulate phagocytosis of exogenously administered excess apoptotic PMN by macrophages (M phi) in vivo in a classic model of acute inflammation, namely thioglycollate-induced peritonitis. Significant enhancement of phagocytosis in vivo was observed with 15-min exposure to LX and with intraperitoneal doses of LXA(4), LXB(4), 15(R/S)-methyl-LXA(4), and 15-epi-LXB(4) of 2.5 to 10 micro g/kg. Non-phlogistic LX-stimulated phagocytosis by M phi was sensitive to inhibition of PKC and PI 3-kinase and associated with increased production of transforming growth factor-beta(1) (TGF-beta(1)). LX-stimulated phagocytosis was not inhibited by phosphatidylserine receptor (PSR) antisera and was abolished by prior exposure of M phi to beta 1,3-glucan, suggesting a novel M phi-PMN recognition mechanism. Interestingly, the recently described peptide agonists of the LXA(4) receptor (MYFINITL and LESIFRSLLFRVM) stimulated phagocytosis through a process associated with increased TGF-beta(1) release. These data provide the first demonstration that LXA(4), LXB(4), ATL, and LX stable analogues rapidly promote M phi phagocytosis of PMN in vivo and support a role for LX as rapidly acting, pro-resolution signals in inflammation. Engagement of the LXR by LX generated during cell-cell interactions in inflammation and by endogenous LXR peptide agonists released from distressed cells may be an important stimulus for clearance of apoptotic cells and may be amenable to pharmacologic mimicry for therapeutic gain.
    Journal of the American Society of Nephrology 11/2002; 13(10):2497-507. · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipoxins (LXs) are endogenously produced eicosanoids that inhibit neutrophil trafficking and stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. In this study we assessed the effect of LXs on cell ultrastructure and actin reorganization in human leukocytes and investigated the signaling events that subserve LX bioactivity in this context. LXA(4) (10(-9) mol/L), the stable synthetic analogues 15-(R/S)-methyl-LXA(4) and 16-phenoxy-LXA(4) (10(-11) mol/L), but not the LX precursor 15-(S)-HETE, induced marked changes in ultrastructure and rearrangement of actin in monocytes and macrophages. In contrast, LXA(4) did not modify actin distribution in neutrophils under basal conditions and after stimulation with leukotriene B(4). Blockade of Rho kinases by the inhibitor Y-27632 prevented LXA(4)-triggered actin reorganization in macrophages. To investigate the role of the specific small GTPases in LX-induced actin rearrangement we used THP-1 cells differentiated to a macrophage-like phenotype. THP-1 cells stimulated with LXs, but not with 15-(S)-HETE, showed an increase in membrane-associated RhoA and Rac by immunoblotting. Additionally, a twofold increase in Rho activity was seen in response to LXA(4). LX-induced actin rearrangement and RhoA activation were inhibited by the cell permeable cAMP analogue 8-Br-cAMP, whereas Rp-cAMP, an inhibitor of protein kinase A, mimicked the effect of LXA(4). These data demonstrate that LXs stimulate RhoA- and Rac-dependent cytoskeleton reorganization, contributing to the potential role of LXs in the resolution of inflammation.
    American Journal Of Pathology 07/2002; 160(6):2275-83. DOI:10.1016/S0002-9440(10)61175-3 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipoxins (LXs) are lipoxygenase-derived eicosanoids and putative endogenous braking signals for inflammation in the gastrointestinal tract and other organs. Aspirin triggers the production of 15-epimers during cell-cell interaction in a cytokine-primed milieu, and aspirin-triggered 15-epi-5(S),6(R),15(S)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid (15-epi-LXA(4)) may contribute to the bioactivity profile of this prototype nonsteroidal anti-inflammatory drug in vivo. We determined the effect of LXA(4), 15-(R/S)-methyl-11,12-dehydro-LXA(4) methyl ester (15-(R/S)-methyl-LXA(4)), and stable analogs of LXA(4) on TNF-alpha-stimulated neutrophil-enterocyte interaction in vitro and TNF-alpha-stimulated chemokine release, changes in mucosal architecture, and enterocyte apoptosis in cytokine-activated intact human colonic mucosa ex vivo. LXA(4), 15-(R/S)-epi-LXA(4), and 16-phenoxy-11,12-dehydro-17,18,19,20-tetranor-LXA(4) methyl ester (16-phenoxy-LXA(4)) inhibited TNF-alpha-stimulated neutrophil adherence to epithelial monolayers at nanomolar concentrations. In parallel experiments involving human colonic mucosa ex vivo, LXA(4)potently attenuated TNF-alpha-stimulated release of the C-X-C chemokine IL-8, and the C-C chemokines monocyte-chemoattractant protein-1 (MCP-1) and RANTES. Exposure of strips of normal human colonic mucosa to TNF-alpha induced disruption of mucosa architecture and enhanced colonocyte apoptosis via a caspase-3-independent mechanism. Prior exposure of the mucosa strips to 15-(R/S)-methyl-LXA(4) attenuated TNF-alpha-stimulated colonocyte apoptosis and protected the mucosa against TNF-alpha-induced mucosal damage. In aggregate, our data demonstrate that lipoxins and aspirin-triggered 15-epi-LXA(4) are potent antagonists of TNF-alpha-mediated neutrophil-enterocyte interactions in vitro, attenuate TNF-alpha-triggered chemokine release and colonocyte apoptosis, and are protective against TNF-alpha-induced morphological disruption in human colonic strips ex vivo. Our observations further expand the anti-inflammatory profile of these lipoxygenase-derived eicosanoids and suggest new therapeutic approaches for the treatment of inflammatory bowel disease.
    The Journal of Immunology 10/2001; 167(5):2772-80. DOI:10.4049/jimmunol.167.5.2772 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Explant cultures from the hematopoietic tissue of the Dublin Bay prawn, Nephrops norvegicus, were exposed to low doses of (60)Co gamma radiation. Cells growing from the explants were examined 7 days after irradiation using light and transmission electron microscopy and were also tested for their ability to produce signals indicative of a bystander effect. The exposed cultures displayed pronounced damage and were orders of magnitude more sensitive than the data in the literature would suggest for arthropod cells. The cultures were also more sensitive than mammalian cells that were exposed to similar doses. Cellular abnormalities included damage to cytoplasmic organelles, particularly the cytoskeleton. Abnormal mitochondria were also prominent. At low doses (0.5 Gy), nuclear damage was not apparent in the cultures, but there was evidence of a dose-dependent increase in apoptosis. The irradiated cultures released a factor into the medium that was capable of inducing apoptosis and cell death in unirradiated fish and human cells. This bystander effect was of a similar magnitude to that reported for mammalian cell systems. It is suggested that these crustaceans may be highly sensitive to radiation, unlike terrestrial arthropods and certain other invertebrates, which are generally considered to be radioresistant.
    Radiation Research 10/2001; 156(3):241-50. DOI:10.1667/0033-7587(2001)156[0241:EOLDOI]2.0.CO;2 · 2.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipoxins (LXs) are lipoxygenase-derived eicosanoids and putative endogenous braking signals for inflammation in the gastrointestinal tract and other organs. Aspirin triggers the production of 15-epimers during cell-cell interaction in a cytokine-primed milieu, and aspirin-triggered 15-epi-5(S),6(R),15(S)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid (15-epi-LXA4) may contribute to the bioactivity profile of this prototype nonsteroidal anti-inflammatory drug in vivo. We determined the effect of LXA4, 15-(R/S)-methyl-11,12-dehydro-LXA4 methyl ester (15-(R/S)-methyl-LXA4), and stable analogs of LXA4 on TNF-α-stimulated neutrophil-enterocyte interaction in vitro and TNF-α-stimulated chemokine release, changes in mucosal architecture, and enterocyte apoptosis in cytokine-activated intact human colonic mucosa ex vivo. LXA4, 15-(R/S)-epi-LXA4, and 16-phenoxy-11,12-dehydro-17,18,19,20-tetranor-LXA4 methyl ester (16-phenoxy-LXA4) inhibited TNF-α-stimulated neutrophil adherence to epithelial monolayers at nanomolar concentrations. In parallel experiments involving human colonic mucosa ex vivo, LXA4potently attenuated TNF-α-stimulated release of the C-X-C chemokine IL-8, and the C-C chemokines monocyte-chemoattractant protein-1 (MCP-1) and RANTES. Exposure of strips of normal human colonic mucosa to TNF-α induced disruption of mucosa architecture and enhanced colonocyte apoptosis via a caspase-3-independent mechanism. Prior exposure of the mucosa strips to 15-(R/S)-methyl-LXA4 attenuated TNF-α-stimulated colonocyte apoptosis and protected the mucosa against TNF-α-induced mucosal damage. In aggregate, our data demonstrate that lipoxins and aspirin-triggered 15-epi-LXA4 are potent antagonists of TNF-α-mediated neutrophil-enterocyte interactions in vitro, attenuate TNF-α-triggered chemokine release and colonocyte apoptosis, and are protective against TNF-α-induced morphological disruption in human colonic strips ex vivo. Our observations further expand the anti-inflammatory profile of these lipoxygenase-derived eicosanoids and suggest new therapeutic approaches for the treatment of inflammatory bowel disease.
    The Journal of Immunology 09/2001; 167(5):2772-2780. · 5.36 Impact Factor
  • T Fair · P Lonergan · A Dinnyes · D C Cottell · P Hyttel · F.A. Ward · M P Boland
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to describe the ultrastructure of blastocysts derived by in vivo and in vitro methods and to investigate how the morphology is affected by exposure to cryoprotectant (10% glycerol) or cryopreservation by conventional slow freezing. In vivo derived blastocysts were characterized by a narrow perivitelline space (PvS), a continuous cover of numerous stacked microvilli (MV) on the plasma membrane, a well-defined system of cell-to-cell coupling and a large population of round or elongated mitochondria with numerous transverse cristae. Exposure of these blastocysts to cryoprotectant was manifested by shrinkage of the blastocysts and swelling of the mitochondria. Cryopreservation resulted in further shrinkage, damage to the MV, and accumulation of cellular debris. In comparison, the in vitro matured (IVM)/in vitro fertilized (IVF) in vivo cultured blastocysts displayed a wider PvS; they appeared to possess less MV and all blastocysts displayed some cellular debris in their PvS. There was also a decrease in the number of junctional contacts between the trophoblastic cells. The reaction of these blastocysts to exposure to cryoprotectant was similar to that of the in vivo derived blastocysts. However, they appeared to be more susceptible to cryopreservation. The totally in vitro produced (IVP) blastocysts displayed a wider PvS, no stacking of the MV, increased numbers of lipid droplets and a further reduction in the junctional contacts between trophoblastic cells. The IVP blastocysts sustained breakage of the zona pellucida on exposure to cryoprotectant and were extremely sensitive to cryopreservation, losing all cell structure and organization. The findings of the present study indicate that in vivo derived blastocysts possess certain structural characteristics that confer a greater tolerance on them to exposure to cryoprotectant and cryopreservation.
    Molecular Reproduction and Development 02/2001; 58(2):186-95. DOI:10.1002/1098-2795(200102)58:2<186::AID-MRD8>3.0.CO;2-N · 2.68 Impact Factor

Publication Stats

1k Citations
120.42 Total Impact Points

Institutions

  • 1994–2011
    • University College Dublin
      • • School of Biomolecular and Biomedical Science
      • • Conway Institute of Biomolecular & Biomedical Research
      • • School of Chemistry and Chemical Biology
      Dublin, Leinster, Ireland
  • 2001–2002
    • Mater Misericordiae University Hospital
      Dublin, Leinster, Ireland
  • 1984
    • St. Vincent’s Hospital, Fairview
      Dublin, Leinster, Ireland