Yi Hou

China Medical University (PRC), Shenyang, Liaoning, China

Are you Yi Hou?

Claim your profile

Publications (3)7.79 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Iodine is essential for the synthesis of triiodothyronine (T₃) and thyroxine (T₄). Iodine deficiency leads to inadequate thyroid hormone. Hypothyroidism induced by iodine deficiency during gestation and postnatal period leads to cognitive deficits in learning and memory. However, the mechanism underlying these deficits is unclear. Calcium-dependent calmodulin kinase II (CaMKII) known as a potential memory molecule regulates important neuronal functions including learning and memory. Recent studies have shown that hypothyroidism alters phosphorylation of CaMKII in hippocampus or even in sympathetic ganglia of rats. Though the entorhinal cortex (EC) is an important functional structure within the neuronal network responsible for learning and memory, little is known about the effect of hypothyroidism on phosphorylation of CaMKII in the EC. Here, we report that iodine deficiency and propylthiouracil treatment through gestation and lactation reduce phosphorylation of CaMKII in the EC of pups. The increase of calcineurin, as well as reduction of neurogranin and calmodulin, may account for the reduced phosphorylation of CaMKII induced by developmental iodine deficiency and hypothyroidism. These findings in the EC may contribute to understanding the mechanisms that underlie impairment of learning and memory induced by developmental iodine deficiency and hypothyroidism.
    Biological trace element research 12/2010; 137(3):353-63. · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developmental iodine deficiency (ID) leads to inadequate thyroid hormone that impairs learning and memory with an unclear mechanism. Here, we show that hippocampal extracellular signal-regulated kinase (ERK1/2) and cAMP response element-binding protein (CREB) are implicated in the impaired learning and memory in lactational and adolescent rat hippocampus following developmental ID and hypothyroidism. Three developmental rat models were created by administrating dam rats with either iodine-deficient diet or propylthiouracil (PTU, 5 ppm or 15 ppm)-added drinking water from gestational day (GD) 6 till postnatal day (PN) 28. Then, the total and phorsporylated ERK1/2 and total and phorsporylated CREB in the hippocampus were detected with western blot on PN14, PN21, PN28 and PN42. The iodine-deficient and hypothyroid pups showed lower serum FT3 and FT4 levels, smaller body size, and delayed eyes opening. The mean number of surviving cells in the hippocampus of the iodine-deficient and 15 ppm PTU-treated rats was significantly reduced compared to controls (P < 0.05). Iodine-deficient and 15 ppm PTU-treatment groups demonstrated significantly lower level of total and phosphorylated ERK1/2 and CREB than the controls on PN14, PN21 and PN28 (P < 0.05, respectively). The reduction of ERK1/2 and CREB was not reversible with the restoration of serum thyroid hormone concentrations on PN42. Developmental ID and hypothyroidism down-regulate hippocampal ERK1/2 and CREB in lactational and adolescent rats.
    BMC Neuroscience 12/2009; 10:149. · 3.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Developmental iodine deficiency (ID) leads to inadequate thyroid hormone that impairs learning and memory with an unclear mechanism. Here, we show that hippocampal calcium/calmodulin-dependent protein kinase II (CaMKII), calmodulin and calcineurin are implicated in the impaired spatial memory in adolescent rats following developmental ID and hypothyroidism. Three developmental rat models were created by administrating dam rats with either iodine-deficient diet or propylthiouracil (PTU, 5 or 15 ppm)-added drinking water from gestational day (GD) 6 till postnatal day (PN) 28. Then, the spatial memory to a water maze test was studied in pups before PN42. After testing periods, the latency to platform and the number of error in iodine-deficient and 15 ppm PTU-treatment groups were significantly higher than those in the controls (P < 0.05). Total and phosphorylated CaMKII, calmodulin, and calcineurin in the hippocampus were detected with both the immunohistochemistry and western blotting. Without going through water maze test, iodine-deficient and 15 ppm PTU-treatment groups showed significantly lower CaMKII and calmodulin and significantly higher calcineurin than the controls in hippocampal CA1 and CA3 regions (P < 0.05). After trials of water maze task, however, CaMKII and calmodulin were up-regulated and calcineurin was down-regulated in control group (P < 0.05), but not in iodine-deficient and 15 ppm PTU-treatment groups. Data indicate that hippocampal CaMKII, calmodulin, and calcineurin are involved in the impaired spatial memory induced by developmental ID and hypothyroidism.
    Neurotoxicity Research 12/2009; 19(1):81-93. · 2.87 Impact Factor

Publication Stats

16 Citations
7.79 Total Impact Points

Institutions

  • 2009–2010
    • China Medical University (PRC)
      • Department of Occupational & Environmental Health
      Shenyang, Liaoning, China