Daniela Bischof

Indiana University-Purdue University School of Medicine, Indianapolis, IN, United States

Are you Daniela Bischof?

Claim your profile

Publications (5)20.1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although conventional recombinant single-stranded adeno-associated virus serotype 2 (ssAAV2) vectors have been shown to efficiently transduce numerous cells and tissues such as brain and muscle, their ability to transduce primary hematopoietic stem cells (HSCs) has been reported to be controversial. We have previously documented that among the ssAAV serotype 1 through 5 vectors, ssAAV1 vectors are more efficient in transducing primary murine HSCs, but that viral second-strand DNA synthesis continues to be a rate-limiting step. In the present studies, we evaluated the transduction efficiency of several novel serotype vectors (AAV1, AAV7, AAV8, and AAV10) and documented efficient transduction of HSCs in a murine serial bone marrow transplantation model. Self-complementary AAV (scAAV) vectors were found to be more efficient than ssAAV vectors, and the use of hematopoietic cell-specific enhancers/promoters, such as the human beta-globin gene DNase I-hypersensitive site 2 enhancer and promoter (HS2-betap) from the beta-globin locus control region (LCR), and the human parvovirus B19 promoter at map unit 6 (B19p6), allowed sustained transgene expression in an erythroid lineage-restricted manner in both primary and secondary transplant recipient mice. The proviral AAV genomes were stably integrated into progenitor cell chromosomal DNA, and did not lead to any overt hematological abnormalities in mice. These studies demonstrate the feasibility of the use of novel scAAV vectors for achieving high-efficiency transduction of HSCs as well as erythroid lineage-restricted expression of a therapeutic gene for the potential gene therapy of beta-thalassemia and sickle cell disease.
    Human Gene Therapy 05/2008; 19(4):376-83. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic levels of expression of the beta-globin gene have been difficult to achieve with conventional retroviral vectors without the inclusion of DNase I-hypersensitive site (HS2, HS3, and HS4) enhancer elements. We generated recombinant adeno-associated viral (AAV) vectors carrying an antisickling human beta-globin gene under the control of either the beta-globin gene promoter/enhancer or the erythroid cell-specific human parvovirus B19 promoter at map unit 6 (B19p6) without any enhancer, and tested their efficacy in a human erythroid cell line (K-562) and in primary murine hematopoietic progenitor cells (c-kit(+)lin()). We report here that (1) self-complementary AAV serotype 2 (scAAV2)-beta-globin vectors containing only the HS2 enhancer are more efficient than single-stranded AAV (ssAAV2)-beta-globin vectors containing the HS2+HS3+HS4 enhancers; (2) scAAV2-beta-globin vectors recombine with scAAV2-HS2+HS3+HS4 vectors after dual-vector transduction, leading to transgene expression; (3) scAAV2-beta-globin as well as scAAV1-beta-globin vectors containing the B19p6 promoter without the HS2 enhancer element are more efficient than their counterparts containing the HS2 enhancer/beta-globin promoter; and (4) scAAV2-B19p6-beta-globin vectors in K-562 cells, and scAAV1-B19p6-beta-globin vectors in murine c-kit(+)lin() cells, yield efficient expression of the beta-globin protein. Thus, the combined use of scAAV vectors and the parvovirus B19 promoter may lead to expression of therapeutic levels the beta-globin gene in human erythroid cells, which has implications in the use of these vectors in gene therapy of beta-thalassemia and sickle cell disease.
    Human Gene Therapy 05/2008; 19(4):365-75. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that among single-stranded adeno-associated virus (ssAAV) vectors, serotypes 1 through 5, ssAAV1 is the most efficient in transducing murine hematopoietic stem cells (HSCs), but viral second-strand DNA synthesis remains a rate-limiting step. Subsequently, using double-stranded, self-complementary AAV (scAAV) vectors, serotypes 7 through 10, we observed that scAAV7 vectors also transduce murine HSCs efficiently. In the present study, we used scAAV1 and scAAV7 shuttle vectors to transduce HSCs in a murine bone marrow serial transplant model in vivo, which allowed examination of the AAV proviral integration pattern in the mouse genome, as well as recovery and nucleotide sequence analyses of AAV-HSC DNA junction fragments. The proviral genomes were stably integrated, and integration sites were localized to different mouse chromosomes. None of the integration sites was found to be in a transcribed gene, or near a cellular oncogene. None of the animals, monitored for up to 1 year, exhibited pathological abnormalities. Thus, AAV proviral integration-induced risk of oncogenesis was not found in our study, which provides functional confirmation of stable transduction of self-renewing multipotential HSCs by scAAV vectors as well as promise for the use of these vectors in the potential treatment of disorders of the hematopoietic system.
    Human Gene Therapy 04/2008; 19(3):267-78. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conflicting data exist on hematopoietic cell transduction by AAV serotype 2 (AAV2) vectors, and additional AAV serotype vectors have not been evaluated for their efficacy in hematopoietic stem/progenitor cell transduction. We evaluated the efficacy of conventional, single-stranded AAV serotype vectors 1 through 5 in primitive murine hematopoietic stem/progenitor cells in vitro as well as in vivo. In progenitor cell assays using Sca1+ c-kit+ Lin- hematopoietic cells, 9% of the colonies in cultures infected with AAV1 expressed the transgene. Coinfection of AAV1 with self-complementary AAV vectors carrying the gene for T cell protein tyrosine phosphatase (scAAV-TC-PTP) increased the transduction efficiency to 24%, indicating that viral secondstrand DNA synthesis is a rate-limiting step. This was further corroborated by the use of scAAV vectors, which bypass this requirement. In bone marrow transplantation studies involving lethally irradiated syngeneic mice, Sca1+ c-kit+ Lin- cells coinfected with AAV1 +/- scAAV-TC-PTP vectors led to transgene expression in 2 and 7.5% of peripheral blood (PB) cells, respectively, 6 months posttransplantation. In secondary transplantation experiments, 7% of PB cells and 3% of bone marrow (BM) cells expressed the transgene 6 months posttransplantation. Approximately 21% of BM-derived colonies harbored the proviral DNA sequences in integrated forms. These results document that AAV1 is thus far the most efficient vector in transducing primitive murine hematopoietic stem/progenitor cells. Further studies involving scAAV genomes and hematopoietic cell-specific promoters should further augment the transduction efficiency of AAV1 vectors, which should have implications in the optimal use of these vectors in hematopoietic stem cell gene therapy.
    Human Gene Therapy 04/2006; 17(3):321-33. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Controversies abound concerning hematopoietic stem cell transduction by recombinant adeno-associated virus 2 (AAV) vectors. For human hematopoietic cells, we have shown that this problem is related to the extent of expression of the cellular receptor for AAV. At least a small subset of murine hematopoietic cells, on the other hand, does express both the AAV receptor and the coreceptor, yet is transduced poorly. In the present study, we have found that approximately 85% of AAV genomes were present in the cytoplasmic fraction of primary murine c-Kit(+)Lin- hematopoietic cells. However, when mice were injected intraperitoneally with hydroxyurea before isolation of these cells, the extent to which AAV genomes were detected in the cytoplasmic fraction was reduced to approximately 40%, with a corresponding increase to approximately 60% in the nuclear fraction, indicating that hydroxyurea facilitated nuclear transport of AAV. It was apparent, nonetheless, that a significant fraction of the AAV genomes present in the nuclear fraction from cells obtained from hydroxyurea-treated mice was single stranded. We next tested whether the single-stranded AAV genomes were derived from virions that failed to undergo uncoating in the nucleus. A substantial fraction of the signal in the nuclear fraction of hematopoietic cells obtained from hydroxyurea-treated mice was also resistant to DNase I. That AAV particles were intact and biologically active was determined by successful transduction of 293 cells by virions recovered from murine hematopoietic cells 48 hr postinfection. Although hydroxyurea facilitated nuclear transport of AAV, most of the virions failed to undergo uncoating, thereby leading to only a partial improvement in viral second- strand DNA synthesis and transgene expression. A better understanding of the underlying mechanism of viral uncoating has implications in the optimal use of recombinant AAV vectors in hematopoietic stem cell gene therapy.
    Human Gene Therapy 01/2005; 15(12):1207-18. · 4.02 Impact Factor