Ming-Hui Wei

National Cancer Institute (USA), 베서스다, Maryland, United States

Are you Ming-Hui Wei?

Claim your profile

Publications (12)94.35 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with germline fumarate hydratase (FH) mutation are predisposed to develop aggressive kidney cancer with few treatment options and poor therapeutic outcomes. Activity of the proto-oncogene ABL1 is upregulated in FH-deficient kidney tumors and drives a metabolic and survival signaling network necessary to cope with impaired mitochondrial function and abnormal accumulation of intracellular fumarate. Excess fumarate indirectly stimulates ABL1 activity, while restoration of wild-type FH abrogates both ABL1 activation and the cytotoxicity caused by ABL1 inhibition or knockdown. ABL1 upregulates aerobic glycolysis via the mTOR/HIF1α pathway and neutralizes fumarate-induced proteotoxic stress by promoting nuclear localization of the antioxidant response transcription factor NRF2. Our findings identify ABL1 as a pharmacologically tractable therapeutic target in glycolytically dependent, oxidatively stressed tumors. Copyright © 2014 Elsevier Inc. All rights reserved.
    Cancer Cell 12/2014; 26(6):840-50. DOI:10.1016/j.ccell.2014.10.005 · 23.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fumarate hydratase (FH)-deficient kidney cancer undergoes metabolic remodeling, with changes in mitochondrial respiration, glucose, and glutamine metabolism. These changes represent multiple biochemical adaptations in glucose and fatty acid metabolism that supports malignant proliferation. However, the metabolic linkages between altered mitochondrial function, nucleotide biosynthesis and NADPH production required for proliferation and survival have not been elucidated. To characterize the alterations in glycolysis, the Krebs cycle and the pentose phosphate pathways (PPP) that either generate NADPH (oxidative) or do not (non-oxidative), we utilized [U-(13)C]-glucose, [U-(13)C,(15)N]-glutamine, and [1,2- (13)C2]-glucose tracers with mass spectrometry and NMR detection to track these pathways, and measured the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of growing cell lines. This metabolic reprogramming in the FH null cells was compared to cells in which FH has been restored. The FH null cells showed a substantial metabolic reorganization of their intracellular metabolic fluxes to fulfill their high ATP demand, as observed by a high rate of glucose uptake, increased glucose turnover via glycolysis, high production of glucose-derived lactate, and low entry of glucose carbon into the Krebs cycle. Despite the truncation of the Krebs cycle associated with inactivation of fumarate hydratase, there was a small but persistent level of mitochondrial respiration, which was coupled to ATP production from oxidation of glutamine-derived α-ketoglutarate through to fumarate. [1,2- (13)C2]-glucose tracer experiments demonstrated that the oxidative branch of PPP initiated by glucose-6-phosphate dehydrogenase activity is preferentially utilized for ribose production (56-66%) that produces increased amounts of ribose necessary for growth and NADPH. Increased NADPH is required to drive reductive carboxylation of α-ketoglutarate and fatty acid synthesis for rapid proliferation and is essential for defense against increased oxidative stress. This increased NADPH producing PPP activity was shown to be a strong consistent feature in both fumarate hydratase deficient tumors and cell line models.
    PLoS ONE 08/2013; 8(8):e72179. DOI:10.1371/journal.pone.0072179 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Recently, a new renal cell cancer syndrome has been linked to germline mutation of multiple subunits (SDHB/C/D) of the Krebs cycle enzyme, succinate dehydrogenase. We report our experience with the diagnosis, evaluation and treatment of this novel form of hereditary kidney cancer. MATERIALS AND METHODS: Patients with suspected hereditary kidney cancer were enrolled on a National Cancer Institute institutional review board approved protocol to study inherited forms of kidney cancer. Individuals from families with germline SDHB, SDHC and SDHD mutations, and kidney cancer underwent comprehensive clinical and genetic evaluation. RESULTS: A total of 14 patients from 12 SDHB mutation families were evaluated. Patients presented with renal cell cancer at an early age (33 years, range 15 to 62), metastatic kidney cancer developed in 4 and some families had no manifestation other than kidney tumors. An additional family with 6 individuals found to have clear cell renal cell cancer that presented at a young average age (47 years, range 40 to 53) was identified with a germline SDHC mutation (R133X) Metastatic disease developed in 2 of these family members. A patient with a history of carotid body paragangliomas and an aggressive form of kidney cancer was evaluated from a family with a germline SDHD mutation. CONCLUSIONS: SDH mutation associated renal cell carcinoma can be an aggressive type of kidney cancer, especially in younger individuals. Although detection and management of early tumors is most often associated with a good outcome, based on our initial experience with these patients and our long-term experience with hereditary leiomyomatosis and renal cell carcinoma, we recommend careful surveillance of patients at risk for SDH mutation associated renal cell carcinoma and wide surgical excision of renal tumors.
    The Journal of urology 10/2012; DOI:10.1016/j.juro.2012.08.030 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In follow-up of a recent genome-wide association study (GWAS) that identified a locus in chromosome 2p21 associated with risk for renal cell carcinoma (RCC), we conducted a fine mapping analysis of a 120 kb region that includes EPAS1. We genotyped 59 tagged common single-nucleotide polymorphisms (SNPs) in 2278 RCC and 3719 controls of European background and observed a novel signal for rs9679290 [P = 5.75 × 10(-8), per-allele odds ratio (OR) = 1.27, 95% confidence interval (CI): 1.17-1.39]. Imputation of common SNPs surrounding rs9679290 using HapMap 3 and 1000 Genomes data yielded two additional signals, rs4953346 (P = 4.09 × 10(-14)) and rs12617313 (P = 7.48 × 10(-12)), both highly correlated with rs9679290 (r(2) > 0.95), but interestingly not correlated with the two SNPs reported in the GWAS: rs11894252 and rs7579899 (r(2) < 0.1 with rs9679290). Genotype analysis of rs12617313 confirmed an association with RCC risk (P = 1.72 × 10(-9), per-allele OR = 1.28, 95% CI: 1.18-1.39) In conclusion, we report that chromosome 2p21 harbors a complex genetic architecture for common RCC risk variants.
    Human Molecular Genetics 11/2011; 21(5):1190-200. DOI:10.1093/hmg/ddr551 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The folliculin gene (FLCN), also known as BHD, is the only known susceptibility gene for Birt-Hogg-Dubé syndrome. BHDS is the autosomal dominant predisposition to the development of follicular hamartomas, lung cysts, spontaneous pneumothorax, and/or kidney neoplasms. To date, 53 unique germline mutations have been reported. FLCN mutation detection rate is 88%. FLCN encodes a predicted 579-amino acid protein, designated folliculin that is highly conserved between humans and homologs in mice, Drosophila, and C. elegans. We developed the first online database detailing all FLCN variants identified in our laboratory and reported in the literature. The FLCN database applies, and assists researchers in applying HGVS nomenclature guidelines. To date, the FCLN database includes 84 variants: 53 unique germline mutations and 31 SNPs. The majority of FLCN germline mutations are predicted to produce a truncated folliculin, resulting in loss of function. The FLCN mutations consist of: 45% (24/53) deletions, 32% (17/53) substitutions (10 putative-splice site, 5 nonsense, and 2 missense), 15% (8/53) duplications, 6% (3/53) insertion/deletions and 2% (1/53) insertions. The database strives to systematically unify current knowledge of FLCN variants and will be useful to geneticists and genetic counselors while also providing a rapid and systematic resource for investigators.
    Human Mutation 09/2009; 30(9):E880-90. DOI:10.1002/humu.21075 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of rare cornification diseases. Germline mutations in TGM1 are the most common cause of ARCI in the United States. TGM1 encodes for the TGase-1 enzyme that functions in the formation of the cornified cell envelope. Structurally defective or attenuated cornified cell envelop have been shown in epidermal scales and appendages of ARCI patients with TGM1 mutations. We review the clinical manifestations as well as the molecular genetics of ARCI. In addition, we characterized 115 TGM1 mutations reported in 234 patients from diverse racial and ethnic backgrounds (Caucasion Americans, Norwegians, Swedish, Finnish, German, Swiss, French, Italian, Dutch, Portuguese, Hispanics, Iranian, Tunisian, Moroccan, Egyptian, Afghani, Hungarian, African Americans, Korean, Japanese and South African). We report 23 novel mutations: 71 (62%) missense; 20 (17%) nonsense; 9 (8%) deletion; 8 (7%) splice-site, and 7 (6%) insertion. The c.877-2A>G was the most commonly reported TGM1 mutation accounting for 34% (147 of 435) of all TGM1 mutant alleles reported to date. It had been shown that this mutation is common among North American and Norwegian patients due to a founder effect. Thirty-one percent (36 of 115) of all mutations and 41% (29 of 71) of missense mutations occurred in arginine residues in TGase-1. Forty-nine percent (35 of 71) of missense mutations were within CpG dinucleotides, and 74% (26/35) of these mutations were C>T or G>A transitions. We constructed a model of human TGase-1 and showed that all mutated arginines that reside in the two beta-barrel domains and two (R142 and R143) in the beta-sandwich are located at domain interfaces. In conclusion, this study expands the TGM1 mutation spectrum and summarizes the current knowledge of TGM1 mutations. The high frequency of mutated arginine codons in TGM1 may be due to the deamination of 5' methylated CpG dinucleotides.
    Human Mutation 04/2009; 30(4):537-47. DOI:10.1002/humu.20952 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Birt-Hogg-Dubé syndrome (BHDS) is an autosomal, dominantly inherited genodermatosis that predisposes to fibrofolliculomas, kidney neoplasms, lung cysts, and spontaneous pneumothorax. We evaluated 198 patients from 89 families with BHDS to characterize the risk factors for pneumothorax and genotype-pulmonary associations. Helical computed tomography scans of the chest were used to screen for pulmonary abnormalities. BHD mutation data were used for genotype-pulmonary associations. We examined the relationship of pneumothorax with categorical parameters (sex, smoking history, and lung cysts) and continuous parameters (number of cysts, lung cyst volume, and largest cyst diameter and volume). Logistic regression analyses were used to identify the risk factors associated with pneumothorax. Twenty-four percent (48/198) of patients with BHDS had a history of pneumothorax. The presence of lung cysts was significantly associated with pneumothorax (p = 0.006). Total lung cyst volume, largest cyst diameter and volume, and every parameter related to the number of lung cysts were significantly associated (p < 0.0001) with pneumothorax. A logistic regression analysis showed that only the total number of cysts in the right parenchymal lower lobe and the total number of cysts located on the pleural surface in the right middle lobe were needed to classify a patient as to whether or not he or she was likely to have a pneumothorax. Exon location of the BHD mutation was associated with the numbers of cysts (p = 0.0002). This study indicates that patients with BHDS have a significant association between lung cysts and spontaneous pneumothorax.
    American Journal of Respiratory and Critical Care Medicine 06/2007; 175(10):1044-53. DOI:10.1164/rccm.200610-1483OC · 11.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic lymphocytic leukemia (CLL) is the most prevalent form of leukemia in adults in western countries. A genome scan of CLL-prone families revealed a lod score of one in band 13q22.1. To investigate this finding, we selected 6 CLL families consisting of 63 individuals (CLL affected, n=19; unaffected, n=44) for fine mapping of a 23-megabase region in 13q14.2-q22.2. Interphase fluorescence in situ hybridization (FISH) revealed 13q14 deletion in 85% (11/13) of CLL patients. Four CLL families shared a 3.68-Mb minimal region in 13q21.33-q22.2. Two asymptomatic siblings who shared the 13q21.33-q22.2 at-risk haplotype exhibited CD5+ monoclonal B-cell lymphocytosis (MBL) on flow cytometry. One of these individuals also had a 13q14 deletion by FISH. These 2 individuals with MBL shared the at-risk haplotype with their CLL-affected relatives, providing further evidence of the relationship between CLL and MBL, as well as of the biologic significance of this novel region. Using direct DNA sequencing analysis, we screened 13 genes for mutations, but no frameshift or nonsense mutations were detected. Our studies revealed that 11 of the 13 genes in the candidate region were expressed in immune tissues, supporting their functional relevance in investigations of familial CLL. In conclusion, we identified a novel candidate region that may predispose to familial CLL.
    Blood 03/2007; 109(3):916-25. DOI:10.1182/blood-2006-03-011825 · 10.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant disorder caused by mutations in the fumarate hydratase (FH) gene on chromosome 1q42.3-43. Massive macronodular adrenocortical disease (MMAD) is a heterogeneous condition associated with Cushing syndrome (CS) and bilateral hyperplasia of the adrenal glands. In MMAD, cortisol secretion is often mediated by ectopic, adrenocortical expression of receptors for a variety of substances; however, to date, no consistent genetic defects have been identified. In a patient with HLRCC caused by a germline-inactivating FH mutation, we diagnosed atypical (subclinical) CS due to bilateral, ACTH-independent adrenocortical hyperplasia. A clinical protocol for the detection of ectopic expression of various hormone receptors was employed. Histology was consistent with MMAD. The tumor tissue harbored the germline FH mutation and demonstrated allelic losses of the 1q42.3-43 FH locus. We then searched the National Institutes of Health (NIH) databases of patients with MMAD or HLRCC and found at least three other cases with MMAD that had a history of tumors that could be part of HLRCC; among patients with HLRCC, there were several with some adrenal nodularity noted on computed tomography but none with imaging findings consistent with MMAD. From two of the three MMAD patients, adrenocortical tumor DNA was available and sequenced for coding FH mutations; there were none. We conclude that in a patient with HLRCC, adrenal hyperplasia and CS were due to MMAD. The latter was likely due to the FH germline mutation because in tumor cells, only the mutant allele was retained. However, other patients with MMAD and HLRCC, or HLRCC patients with adrenal imaging findings consistent with MMAD, or MMAD patients with somatic FH mutations were not found among the NIH series. Although a fortuitous association cannot be excluded, HLRCC may be added to the short list of monogenic disorders that have been reported to be associated with the development of adrenal tumors; FH may be considered a candidate gene for MMAD.
    Journal of Clinical Endocrinology &amp Metabolism 07/2005; 90(6):3773-9. DOI:10.1210/jc.2004-2377 · 6.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant disorder characterized by smooth-muscle tumors of the skin and uterus and/or renal cancer. Although the identification of germline mutations in the fumarate hydratase (FH) gene in European families supports it as the susceptibility gene for HLRCC, its role in families in North America has not been studied. We screened for germline mutations in FH in 35 families with cutaneous leiomyomas. Sequence analysis revealed mutations in FH in 31 families (89%). Twenty different mutations in FH were identified, of which 18 were novel. Of these 20 mutations, 2 were insertions, 5 were small deletions that caused frameshifts leading to premature truncation of the protein, and 13 were missense mutations. Eleven unrelated families shared a common mutation: R190H. Eighty-one individuals (47 women and 34 men) had cutaneous leiomyomas. Ninety-eight percent (46/47) of women with cutaneous leiomyomas also had uterine leiomyomas. Eighty-nine percent (41/46) of women with cutaneous and uterine leiomyomas had a total hysterectomy, 44% at age < or =30 years. We identified 13 individuals in 5 families with unilateral and solitary renal tumors. Seven individuals from four families had papillary type II renal cell carcinoma, and another individual from one of these families had collecting duct carcinoma of the kidney. The present study shows that mutations in FH are associated with HLRCC in North America. HLRCC is associated with clinically significant uterine fibroids and aggressive renal tumors. The present study also expands the histologic spectrum of renal tumors and FH mutations associated with HLRCC.
    The American Journal of Human Genetics 07/2003; 73(1):95-106. DOI:10.1086/376435 · 10.99 Impact Factor
  • Human Molecular Genetics 01/1992; 1(6):452-452. DOI:10.1093/hmg/1.6.452-a · 6.68 Impact Factor

Publication Stats

485 Citations
94.35 Total Impact Points

Institutions

  • 2009–2014
    • National Cancer Institute (USA)
      • • Center for Cancer Research
      • • Genetic Epidemiology
      베서스다, Maryland, United States
  • 2007–2013
    • National Institutes of Health
      • • Center for Cancer Research
      • • Branch of Genetic Epidemiology
      베서스다, Maryland, United States