Yen-Ming Hsu

Biogen Idec, Weston, Massachusetts, United States

Are you Yen-Ming Hsu?

Claim your profile

Publications (17)100.12 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TWEAK, a TNF family ligand with pleiotropic cellular functions, was originally described as capable of inducing tumor cell death in vitro. TWEAK functions by binding its receptor, Fn14, which is up-regulated on many human solid tumors. Herein, we show that intratumoral administration of TWEAK, delivered either by an adenoviral vector or in an immunoglobulin Fc-fusion form, results in significant inhibition of tumor growth in a breast xenograft model. To exploit the TWEAK-Fn14 pathway as a therapeutic target in oncology, we developed an anti-Fn14 agonistic antibody, BIIB036. Studies described herein show that BIIB036 binds specifically to Fn14 but not other members of the TNF receptor family, induces Fn14 signaling, and promotes tumor cell apoptosis in vitro. In vivo, BIIB036 effectively inhibits growth of tumors in multiple xenograft models, including colon (WiDr), breast (MDA-MB-231), and gastric (NCI-N87) tumors, regardless of tumor cell growth inhibition response observed to BIIB036 in vitro. The anti-tumor activity in these cell lines is not TNF-dependent. Increasing the antigen-binding valency of BIB036 significantly enhances its anti-tumor effect, suggesting the contribution of higher order cross-linking of the Fn14 receptor. Full Fc effector function is required for maximal activity of BIIB036 in vivo, likely due to the cross-linking effect and/or ADCC mediated tumor killing activity. Taken together, the anti-tumor properties of BIIB036 validate Fn14 as a promising target in oncology and demonstrate its potential therapeutic utility in multiple solid tumor indications.
    mAbs 07/2011; 3(4):362-75. · 5.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-CD40L immunotherapy in systemic lupus erythematosus patients was associated with thromboembolism of unknown cause. We previously showed that monoclonal anti-CD40L immune complexes (ICs) activated platelets in vitro via the IgG receptor (FcgammaRIIa). In this study, we examined the prothrombotic effects of anti-CD40L ICs in vivo. Because mouse platelets lack FcgammaRIIa, we used FCGR2A transgenic mice. FCGR2A mice were injected i.v. with preformed ICs consisting of either anti-human CD40L mAb (M90) plus human CD40L, or a chimerized anti-mouse CD40L mAb (hMR1) plus mouse CD40L. ICs containing an aglycosylated form of hMR1, which does not bind FcgammaRIIa, were also injected. M90 IC caused shock and thrombocytopenia in FCGR2A but not in wild-type mice. Animals injected with hMR1 IC also experienced these effects, whereas those injected with aglycosylated-hMR1 IC did not, demonstrating that anti-CD40L IC-induced platelet activation in vivo is FcgammaRIIa-dependent. Sequential injections of individual IC components caused similar effects, suggesting that ICs were able to assemble in circulation. Analysis of IC-injected mice revealed pulmonary thrombi consisting of platelet aggregates and fibrin. Mice pretreated with a thrombin inhibitor became moderately thrombocytopenic in response to anti-CD40L ICs and had pulmonary platelet-thrombi devoid of fibrin. In conclusion, we have shown for the first time that anti-CD40L IC-induced thrombosis can be replicated in mice transgenic for FcgammaRIIa. This molecular mechanism may be important for understanding thrombosis associated with CD40L immunotherapy. The FCGR2A mouse model may also be useful for assessing the hemostatic safety of other therapeutic Abs.
    The Journal of Immunology 08/2010; 185(3):1577-83. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies in mice and humans have revealed that the T cell, immunoglobulin, mucin (TIM) genes are associated with several atopic diseases. TIM-1 is a type I membrane protein that is expressed on T cells upon stimulation and has been shown to modulate their activation. In addition to a recently described interaction with dendritic cells, TIM-1 has also been identified as a phosphatidylserine recognition molecule, and several protein ligands have been proposed. Our understanding of its activity is complicated by the possibility that TIM-1 possesses multiple and diverse binding partners. In order to delineate the function of TIM-1, we generated monoclonal antibodies directed to a cleft formed within the IgV domain of TIM-1. We have shown here that antibodies that bind to this defined cleft antagonize TIM-1 binding to specific ligands and cells. Notably, these antibodies exhibited therapeutic activity in a humanized SCID model of experimental asthma, ameliorating inflammation, and airway hyperresponsiveness. Further experiments demonstrated that the effects of the TIM-1-specific antibodies were mediated via suppression of Th2 cell proliferation and cytokine production. These results demonstrate that modulation of the TIM-1 pathway can critically influence activated T cells in a humanized disease model, suggesting that TIM-1 antagonists may provide potent therapeutic benefit in asthma and other immune-mediated disorders.
    The Journal of clinical investigation 08/2010; 120(8):2767-81. · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, is a multifunctional cytokine known to regulate cellular functions in contexts of injury and disease through its receptor, fibroblast growth factor-inducible molecule 14 (Fn14). Although many of the processes and downstream signals regulated by the TWEAK/Fn14 pathway have been implicated in the development of cardiac dysfunction, the role of TWEAK in the cardiovascular system is completely unknown. Herein, we demonstrate that mouse and human cardiomyocytes express the TWEAK receptor Fn14. Furthermore, we determine that elevated circulating levels of TWEAK, induced via transgenic or adenoviral-mediated gene expression in mice, result in dilated cardiomyopathy with subsequent severe cardiac dysfunction. This phenotype was mediated exclusively by the Fn14 receptor, independent of tumor necrosis factor-alpha, and was associated with cardiomyocyte elongation and cardiac fibrosis but not cardiomyocyte apoptosis. Moreover, we find that circulating TWEAK levels were differentially upregulated in patients with idiopathic dilated cardiomyopathy compared with other forms of heart disease and normal control subjects. Our data suggest that TWEAK/Fn14 may be important in regulating myocardial structural remodeling and function and may play a role in the pathogenesis of dilated cardiomyopathy.
    Circulation 05/2009; 119(15):2058-68. · 15.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF-kappaB activation and the expression of pro-survival, pro-proliferative and homing receptor genes in the mesenchymal stem cells, suggesting that this pro-inflammatory cytokine may play an important role in controlling progenitor cell biology. We explored this potential using both the established C2C12 cell line and primary mouse muscle myoblasts, and demonstrated that TWEAK promoted their proliferation and inhibited their terminal differentiation. By generating mice deficient in the TWEAK receptor Fn14, we further showed that Fn14-deficient primary myoblasts displayed significantly reduced proliferative capacity and altered myotube formation. Following cardiotoxin injection, a known trigger for satellite cell-driven skeletal muscle regeneration, Fn14-deficient mice exhibited reduced inflammatory response and delayed muscle fiber regeneration compared with wild-type mice. These results indicate that the TWEAK/Fn14 pathway is a novel regulator of skeletal muscle precursor cells and illustrate an important mechanism by which inflammatory cytokines influence tissue regeneration and repair. Coupled with our recent demonstration that TWEAK potentiates liver progenitor cell proliferation, the expression of Fn14 on all mesenchymal lineage progenitor cells supports a broad involvement of this pathway in other tissue injury and disease settings.
    The EMBO Journal 01/2007; 25(24):5826-39. · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cell-activating factor of the tumor necrosis factor family (BAFF/BLys) plays a critical role in B cell survival and immune responses through its three receptors: BAFF receptor (BAFF-R/BR3), transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA). Using specific antibodies, we have investigated the expression of BAFF-R on human tonsillar B cells and their functional roles in naive and germinal center (GC) B cell differentiation. Our studies show that BAFF-R is the dominant receptor on naive B cells. However, three receptors are differentially modulated during in vitro GC-B cell differentiation. BAFF-R expression increased initially and then decreased with a corresponding induction of TACI and BCMA expression during differentiation to plasma cells (PCs). Consistently, blocking of BAFF-R alone with specific mAb inhibited GC-B cell proliferation and PC generation in the early period of their differentiation, whereas depletion of BAFF with TACI-Ig exhibited consistent inhibition throughout the differentiation. Finally, histological and molecular analyses of human tonsil tissue revealed that follicular dendritic cells produce BAFF. In conclusion, BAFF in the GC plays an important role through more than one receptor, and the three known receptors are differentially modulated as GC-B cells differentiate to PCs.
    International Immunology 07/2005; 17(6):779-88. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the tumor necrosis factor (TNF) superfamily regulate cell survival and proliferation and have been implicated in cancer. Tweak (TNF-related weak inducer of apoptosis) has pleiotropic biological functions including proapoptotic, proangiogenic and proinflammatory activities. We explored a role for Tweak in mammary gland transformation using a three-dimensional model culture system. Tweak stimulates a branching morphogenic phenotype, similar to that induced by pro-oncogenic factors, in Eph4 mammary epithelial cells cultured in matrigel. Increased proliferation and invasiveness are observed, with a concomitant inhibition of functional differentiation. Levels of matrix metalloproteinase-9 (MMP-9) are significantly increased following Tweak treatment. Notably, MMP inhibitors are sufficient to block the branching phenotype induced by Tweak. The capacity to promote proliferation, inhibit differentiation and induce invasion suggests a role for Tweak in mammary gland tumorigenesis. Consistent with this, we have observed elevated protein levels of the Tweak receptor, Fn14, in human breast tumor cell lines and xenograft models as well as in primary human breast tumors. Together, our results suggest that the Tweak/Fn14 pathway may be protumorigenic in human breast cancer.
    Oncogene 05/2005; 24(16):2613-24. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BAFF (B cell activating factor of the TNF family, also known as BlyS and TALL-1), a TNF family cytokine critical for the development and function of B cells, has been reported to bind to three receptors, BCMA (B cell maturation protein), TACI (transmembrane activator and CAML [calcium-modulator and cyclophilin ligand] interactor), and BAFFR (BAFF receptor), but with widely conflicting values for the affinity and selectivity of binding. BCMA and TACI additionally bind APRIL (a proliferation-inducing ligand), the TNF family ligand most homologous to BAFF. Using soluble, monomeric forms of the receptors, we demonstrate that BAFFR binds BAFF with K(D) approximately 16 nM, while BCMA binds with K(D) approximately 1.6 microM, indicating a approximately 100-fold selectivity for binding to BAFFR over BCMA. APRIL shows the opposite selectivity, binding to BCMA with K(D) approximately 16 nM while showing no detectable affinity for BAFFR (K(D) > 3 microM). The binding of BAFF or APRIL to these receptors is highly sensitive to assay-dependent avidity effects, likely explaining the widely ranging affinity values reported in the literature. Binding of BAFF to BCMA-Fc, a bivalent fusion protein consisting of the extracellular domain of BCMA fused to the hinge and CH1 and CH2 domains of human IgG1, in solution or coated onto an ELISA plate gave apparent binding affinities of approximately 0.63 and approximately 0.15 nM, respectively, compared to values of K(D(app)) <or= 30 and approximately 100 pM for the corresponding BAFFR/IgG1 fusion protein, BAFFR-Fc. The high selectivity of BAFF for BAFFR versus BCMA is thus partly obscured in these multivalent assays. The intrinsically high selectivity inferred from the measurements with monomeric receptor correlates well with in vivo data from knockout mice, providing a possible explanation for the observations that interruption of the BAFFR gene in the A/WySnJ mouse produces a phenotype similar to the BAFF knockout mouse, while the BCMA knockout mouse has no discernible B cell phenotype.
    Biochemistry 02/2005; 44(6):1919-31. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tumor necrosis factor (TNF) family of related receptors and ligands contains a rich collection of molecules that are important players in a broad spectrum of biological systems. While several family members are critical for development and function of the immune system, providing both activation and death signals, other members are involved in nonimmunological functions as diverse as hair follicle formation. TNF homology searches during the past several years have led to the discovery of numerous novel ligands, two of which will be the focus of this review. BAFF, a cytokine responsible for B cell survival, has recently been the subject of intense investigation that has expanded our understanding of mature B cell genesis, and mechanisms involved in developing B cell pathologies. APRIL is a close relative of BAFF and while its biological roles are less well understood, it may have both immune and non-immune functions. Herein we will discuss the discovery, structure, cognate receptors and functions of these two proteins.
    Current directions in autoimmunity 02/2005; 8:206-42.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blockade of the CD154-CD40 co-stimulatory pathway with anti-CD154 mAbs has shown impressive efficacy in models of autoimmunity and allotransplantation. Clinical benefit was also demonstrated in systemic lupus erythematosus (SLE) and idiopathic thrombocytopenia patients with the humanized anti-CD154 mAb, 5C8 (hu5C8). However, thromboembolic complications that occurred during the course of the hu5C8 clinical trials have proven to be a major setback to the field and safe alternative therapeutics targeting the CD154-CD40 pathway are of great interest. Recently, effector mechanisms have been shown to play a part in anti-CD154 mAb-induced transplant acceptance in murine models, while this issue remains unresolved for humoral-mediated models. Herein, aglycosyl anti-CD154 mAbs with reduced binding to FcgammaR and complement were used as a novel means to test the role of effector mechanisms in non-human primate and murine models not amenable to gene knockout technology. While aglycosyl hu5C8 mAb was relatively ineffective in rhesus renal and islet allotransplantation, it inhibited primary and secondary humoral responses to a protein immunogen in cynomolgus monkeys. Moreover, an aglycosyl, chimeric MR1 mAb (muMR1) prolonged survival and inhibited pathogenic auto-antibody production in a murine model of SLE. Thus, the mechanisms required for efficacy of anti-CD154 mAbs depend on the nature of the immune challenge.
    International Immunology 12/2004; 16(11):1583-94. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BAFF is considered a therapeutic target because dysregulated production of BAFF can induce systemic lupus erythematosus-like phenotype in mice, and elevated levels of BAFF are associated with disease severity in systemic lupus erythematosus and rheumatoid arthritis patients. Fc fusion decoy receptors, BCMA-Fc and BAFF-R-Fc, are therapeutic candidates for blocking BAFF. While studying their interactions with BAFF, we found that BAFF-R-Fc is more effective than BCMA-Fc for blocking BAFF binding to its receptors. We also found that a trimeric BAFF can bind more than one BAFF-R-Fc but only one BCMA-Fc. Moreover, we show that, in contrast to monovalent BAFF-R-Fc, monovalent BCMA does not form stable complexes with BAFF. Differences in their interaction with BAFF predict BAFF-R-Fc would be a better inhibitor. Indeed, we show BAFF-R-Fc is 10-fold more efficacious than BCMA-Fc for blocking BAFF-induced B cell proliferation in vitro and for blocking BAFF-mediated survival of mouse splenic B lymphocytes in vivo.
    Journal of Biological Chemistry 09/2003; 278(35):33127-33. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prevailing treatment strategies for autoimmune disorders employ global immunosuppressants that have harmful side effects with long-term use. A new vision for drug development relies on the generation of therapeutics that have specific and narrow targets, such as pathogenic cell populations. The cellular processes that initiate and maintain B cell dysregulation are not well understood and autoimmune disease results, in part, from the survival and activation of self-reactive B cells. Such B cells produce tissue-damaging pathogenic autoantibodies. BAFF (B cell-activating factor belonging to the TNF family), a member of the TNF family of ligands, may play a role in B cell-mediated diseases. BAFF is a survival factor for peripheral B cells. When BAFF is overexpressed in mice, B cell number and immunoglobulin production is increased and an autoimmune-like phenotype is observed. Mouse models of lupus-nephritis have been shown to exhibit increased serum BAFF levels correlating with disease severity, and many autoimmune patients were found to have higher levels of circulating BAFF than healthy volunteers. Thus, modulating the level and activity of BAFF in these patients may alleviate symptoms associated with their disease. Several potential therapeutic inhibitors targeting BAFF are under investigation, including an anti-BAFF antibody and receptor-Fc fusion proteins.
    Expert Opinion on Therapeutic Targets 03/2003; 7(1):115-23. · 4.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event.
    Journal of Biological Chemistry 03/2003; 278(7):5444-54. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cell surface co-stimulatory protein CD154 (CD40L) is a target for monoclonal antibody (mAb) inhibitors of T-cell mediated immune diseases. This protein, like most other members of the TNF ligand family, forms homotrimeric complexes on the cell surface and in solution, with a three-fold axis of symmetry. We find that several different anti-CD154 monoclonal antibodies form distinctive complexes with soluble CD154. These soluble complexes have been analyzed using size exclusion chromatography, static and dynamic light scattering, and electron microscopy and shown to consist of caged structures of various geometries. The cell surface complexes have been analyzed by confocal microscopy and, depending on the mAb, remain as small, separate complexes or form large aggregates. The formation of these complexes in solution is likely to have an impact on measures of affinity, while the cell surface complexes could affect binding potency and provoke other biological effects.
    Molecular Immunology 10/2002; 39(1-2):77-84. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human monocytes displayed increased expression of CD40 following infection with virulent Mycobacterium tuberculosis. Nevertheless, soluble CD40 ligand (CD40L; also designated CD154) had no effect on the intracellular growth of the organism. Restriction of the intracellular growth of M. tuberculosis by peripheral blood lymphocytes and antigen-specific CD4+ T-cell lines likewise was not reduced by blocking anti-CD40L monoclonal antibody 5c8.
    Infection and Immunity 09/2002; 70(8):4716-20. · 4.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: B cell activating factor (BAFF), a ligand belonging to the tumor necrosis factor (TNF) family, plays a critical role in regulating survival and activation of peripheral B cell populations and has been associated with autoimmune disease. BAFF is known to interact with three receptors, BCMA, TACI and BAFF-R, that have distant similarities with other receptors of the TNF family. We have determined the crystal structure of the TNF-homologous domain of BAFF at 2.8 A resolution. The structure reveals significant differences when compared to other TNF family members, including an unusually long D-E loop that participates in the formation of a deep, concave and negatively charged region in the putative receptor binding site. The BAFF structure was further used to generate a homology model of APRIL, a closely related TNF family ligand that also binds to BCMA and TACI, but not BAFF-R. Analysis of the putative receptor binding sites of BAFF and APRIL suggests that differences in the D-E loop structure and electrostatic surface potentials may be important for determining binding specificities for BCMA, TACI and BAFF-R.
    Journal of Molecular Biology 03/2002; 315(5):1145-54. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenic regulators modulate endothelial cell functions, including proliferation, migration, secretion, and adhesion, through their action on endothelial cells or other cell types. TWEAK, a novel member of the tumor necrosis factor family, appears to be a pro-angiogenic agent on the basis of previous studies demonstrating its ability to induce interleukin-8 production by epithelial tumor lines, stimulate proliferation of human vascular cell types and neovascularization in rat corneas. Here, we further characterized the angiogenic potential of TWEAK, revealing a dual role for TWEAK as an angiogenic regulator. We demonstrate that TWEAK is a potent inducer of endothelial cell survival and cooperates with basic fibroblast growth factor to induce the proliferation and migration of human endothelial cells and morphogenesis of capillary lumens. In contrast, TWEAK antagonizes the morphogenic response of endothelial cells to vascular endothelial growth factor (VEGF) without inhibiting VEGF-induced survival or proliferation. Thus, our observations suggest that TWEAK may differentially regulate microvascular growth, remodeling and/or maintenance in vivo, depending upon the angiogenic context.
    Journal of Cell Science 02/2002; 115(Pt 2):267-74. · 5.88 Impact Factor