Nacksung Kim

Chonnam National University, Gwangju, Gwangju, South Korea

Are you Nacksung Kim?

Claim your profile

Publications (56)334.33 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucosal-associated invariant T (MAIT) cells contribute to protection against certain microorganism infections and play an important role in mucosal immunity. However, the role of MAIT cells remains enigmatic in autoimmune diseases. In this study, we examined the level and function of MAIT cells in patients with rheumatic diseases. MAIT cell, cytokine, and programmed death-1 (PD-1) levels were measured by flow cytometry. Circulating MAIT cell levels were significantly reduced in systemic lupus erythematosus (SLE) and rheumatoid arthritis patients. In particular, this MAIT cell deficiency was more prominent in CD8(+) and double-negative T cell subsets, and significantly correlated with disease activity, such as SLE disease activity index and 28-joint disease activity score. Interestingly, MAIT cell frequency was significantly correlated with NKT cell frequency in SLE patients. IFN-γ production in MAIT cells was impaired in SLE patients, which was due to an intrinsic defect in the Ca(2+)/calcineurin/NFAT1 signaling pathway. In SLE patients, MAIT cells were poorly activated by α-galactosylceramide-stimulated NKT cells, thereby showing the dysfunction between MAIT cells and NKT cells. Notably, an elevated expression of PD-1 in MAIT cells and NKT cells was associated with SLE. In rheumatoid arthritis patients, MAIT cell levels were significantly higher in synovial fluid than in peripheral blood. Our study primarily demonstrates that MAIT cells are numerically and functionally deficient in SLE. In addition, we report a novel finding that this MAIT cell deficiency is associated with NKT cell deficiency and elevated PD-1 expression. These abnormalities possibly contribute to dysregulated mucosal immunity in SLE.
    Journal of immunology (Baltimore, Md. : 1950). 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoblasts not only control bone formation but also support osteoclast differentiation. Here we show the involvement of Kruppel-like factor 4 (KLF4) in the differentiation of osteoclasts and osteoblasts. KLF4 was down-regulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in osteoblasts. Overexpression of KLF4 in osteoblasts attenuated 1,25(OH)2D3-induced osteoclast differentiation in co-culture of mouse bone marrow cells and osteoblasts through the down-regulation of receptor activator of nuclear factor κB ligand (RANKL) expression. Direct binding of KLF4 to the RANKL promoter repressed 1,25(OH)2D3-induced RANKL expression by preventing vitamin D receptor from binding to the RANKL promoter region. In contrast, ectopic overexpression of KLF4 in osteoblasts attenuated osteoblast differentiation and mineralization. KLF4 interacted directly with Runx2 and inhibited the expression of its target genes. Moreover, mice with conditional knockout of KLF4 in osteoblasts showed markedly increased bone mass caused by enhanced bone formation despite increased osteoclast activity. Thus, our data suggest that KLF4 controls bone homeostasis by negatively regulating both osteoclast and osteoblast differentiation.
    The Journal of Cell Biology 03/2014; · 10.82 Impact Factor
  • International journal of cardiology 01/2014; · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2.
    BMB reports 12/2013; · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are endogenous non-coding 21–23 nucleotide RNAs that are involved in post-transcriptional regulation. They control various cellular processes, one of which is tumorigenesis. miRNAs have been implicated in the pathogenesis of hepatocellular carcinoma (HCC), the most common primary liver cancer. To find yet-to-be-identified miRNAs associated with HCC tumorigenesis, we resected HCC and adjacent non-tumor liver tissues from patients and excluded liver tissues harboring fibrosis from further analysis. We then carried out miRNA microarray analysis with miRNAs extracted from the tissues. Sixteen miRNAs displayed a significant change in expression levels between non-tumor and HCC liver tissues. To validate the microarray findings, we transfected HEK293 cells with miR-128 alone or miR-128 and plasmid encoding luciferase fused to the 3′ untranslated region (UTR) of E2F3, a predicted target of miR-128. As expected, miR-128 downregulated luciferase activities of E2F3 3′UTR fused to luciferase, confirming that E2F3 is a target gene of miR-128. Identification of miRNAs dysregulated in non-cirrhotic HCC will further the understanding of the pathogenesis of non-cirrhotic HCC.
    Genes & genomics 12/2013; · 0.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucosal-associated invariant T (MAIT) cells have been reported to play an antimicrobial role in infectious diseases. However, little is known about age- and gender-related changes in circulating MAIT cell level and function in healthy population. The purposes of this study were to examine the level and cytokine production of circulating MAIT cells and their subsets in healthy adults and to investigate potential relationships between clinical parameters and MAIT cell levels or their subset levels. One hundred thirty-three healthy subjects were enrolled in this study. MAIT cells, their subset, and cytokine levels were measured by flow cytometry. Circulating MAIT cell levels were found to vary widely (0.19% to 21.7%) in the study subjects and to be significantly lower in elderly subjects (age, 61-92years) than in young subjects (age, 21-40years) (p<0.0005). No significant difference was found in the circulating MAIT cell levels between male and female subjects. A linear regression analysis revealed that circulating MAIT cell levels declined annually by 3.2% among men and 1.8% among women, respectively. Notably, the proportion of CD4+ MAIT cells increased with age, whereas that of CD8+ MAIT cells decreased with age. In addition, the production of interleukin (IL)-4 by MAIT cells was found to be significantly increased in elderly subjects and the ratio of interferon (IFN)-γ/IL-4 was lower as compared with young subjects, showing a Th1 to Th2 shift in cytokine profile in elderly subjects. Our data suggest that aging is associated with a reduction in circulating MAIT cells, accompanied with alterations in subset composition and cytokine profile.
    Experimental gerontology 11/2013; · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RANKL induces the formation of osteoclasts, which are responsible for bone resorption. Herein, we investigated the role of SWAP-70-like adapter of T cells (SLAT) in RANKL-induced osteoclastogenesis. Expression levels of SLAT were reduced during RANKL-induced osteoclastogenesis. Overexpression of SLAT in BMMs inhibited TRAP-positive multinuclear osteoclast formation and attenuated the expression of NFATc1, which is an important modulator in osteoclastogenesis. Furthermore, silencing of SLAT by RNA interference enhanced osteoclast formation as well as NFATc1 expression. In addition, SLAT was involved in RANKL-induced JNK activation in osteoclasts. Taken together, our data suggest that SLAT acts as a negative modulator of RANKL-induced osteoclastogenesis.
    Molecules and Cells 08/2013; · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer T (NKT) cells have been reported to play crucial roles in a variety of diseases, including infectious diseases, autoimmunity, and cancers. Previous studies have reported wide age- and/or sex-related variations in circulating NKT cell levels in healthy subjects, but reported results are discrepant. In this study, the authors examined NKT cell levels in the peripheral blood of healthy Korean subjects and investigated potential relationships between clinical parameters and NKT cells and their subset levels. One hundred and thirty-eight age- and sex-matched healthy subjects were enrolled in this study. NKT cell and NKT subset levels were measured by flow cytometry. Circulating NKT cell levels were found to vary widely (0.01-5.15%) in the study subjects and to be lower in men than in women (P<0.05). Notably, gender-related differences in NKT cell levels were more prominent in elderly subjects (P<0.05). Furthermore, alterations in NKT subset compositions were found in elderly men, in whom the proportion of CD4+ NKT cells was elevated and that of double-negative NKT cells was reduced. Our data suggest that circulating NKT cells and NKT subset levels are affected by age and gender in the Korean population.
    Human immunology 08/2012; 73(10):1011-6. · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To examine the levels and functions of natural killer (NK) and natural killer T (NKT) cells, investigate relationships between NK and NKT cells, and determine the clinical relevance of NKT cell levels in patients with adult-onset Still's disease (AOSD). Patients with active untreated AOSD (n = 20) and age- and sex-matched healthy controls (n = 20) were studied. NK and NKT cell levels were measured by flow cytometry. Peripheral blood mononuclear cells were cultured in vitro with α-galactosylceramide (αGalCer). NK cytotoxicity against K562 cells and proliferation indices of NKT cells were estimated by flow cytometry. Percentages and absolute numbers of NKT cells were significantly lower in the peripheral blood of AOSD patients than in that of healthy controls. Proliferative responses of NKT cells to αGalCer were also lower in patients, and this was found to be due to proinflammatory cytokines and NKT cell apoptosis. In addition, NK cytotoxicity was found to be significantly lower in patients than in healthy controls, but NK cell levels were comparable in the 2 groups. Notably, this NKT cell deficiency was found to be correlated with NK cell dysfunction and to reflect active disease status. Furthermore, αGalCer-mediated NK cytotoxicity, showing the interaction between NK and NKT cells, was significantly lower in AOSD patients than in healthy controls. These findings demonstrate that NK and NKT cell functions are defective in AOSD patients and suggest that these abnormalities contribute to innate immune dysfunction in AOSD.
    Arthritis & Rheumatology 05/2012; 64(9):2868-77. · 7.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RANKL induces the formation of osteoclasts, which are responsible for bone resorption. Herein we investigate the role of the transmembrane adaptor proteins in RANKL-induced osteoclastogenesis. LAT positively regulates osteoclast differentiation and is up-regulated by RANKL via c-Fos and NFATc1, whereas LAB and LIME act as negative modulators of osteoclastogenesis. In addition, silencing of LAT by RNA interference or overexpression of a LAT dominant negative in bone marrow-derived macrophage cells attenuates RANKL-induced osteoclast formation. Furthermore, LAT is involved in RANKL-induced PLC(γ) activation and NFATc1 induction. Thus, our data suggest that LAT acts as a positive regulator of RANKL-induced osteoclastogenesis.
    Molecules and Cells 02/2012; 33(4):401-6. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SHIP is an SH2-containing inositol-5-phosphatase expressed in hematopoietic cells. It hydrolyzes the PI3K product PI(3,4,5)P(3) and blunts the PI3K-initiated signaling pathway. Although the PI3K/Akt pathway has been shown to be important for osteoclastogenesis, the molecular events involved in osteoclast differentiation have not been revealed. We demonstrate that Akt induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade. Inhibition of the PI3K by LY294002 reduces formation of osteoclasts and attenuates the expression of NFATc1, but not that of c-Fos. Conversely, overexpression of Akt in bone marrow-derived macrophages (BMMs) strongly induced NFATc1 expression without affecting c-Fos expression, suggesting that PI3K/Akt-mediated NFATc1 induction is independent of c-Fos during RANKL-induced osteoclastogenesis. In addition, we found that overexpression of Akt enhances formation of an inactive form of GSK3β (phospho-GSK3β) and nuclear localization of NFATc1, and that overexpression of a constitutively active form of GSK3β attenuates osteoclast formation through downregulation of NFATc1. Furthermore, BMMs from SHIP knockout mice show the increased expression levels of phospho-Akt and phospho-GSK3β, as well as the enhanced osteoclastogenesis, compared with wild type. However, overexpression of a constitutively active form of GSK3β attenuates RANKL-induced osteoclast differentiation from SHIP-deficient BMMs. Our data suggest that the PI3K/Akt/GSK3β/NFATc1 signaling axis plays an important role in RANKL-induced osteoclastogenesis.
    The Journal of Immunology 11/2011; 188(1):163-9. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to analyze the cellular expressions of pro-resorptive cytokines in gouty tophus tissues, to determine the capacity of monosodium urate monohydrate (MSU) crystals to induce these cytokines, and to understand the mechanisms of bone destruction in chronic gout. Fourteen fixed, paraffin-embedded, uninfected tophus samples were analyzed immunohistochemically. Peripheral blood mononuclear cells (PBMCs) were cultured in vitro with MSU crystals, and gene expression was assessed by reverse transcription-polymerase chain reaction. In vitro osteoclastogenesis was performed using PBMCs and synovial fluid mononuclear cells (SFMCs). CD4+ T cells, CD8+ T cells, CD20+ B cells and mast cells infiltrated tophus tissues. Tartrate-resistant acid phosphatase (TRAP)+ osteoclasts were present around tophi and in osteolytic lesions. Interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF)-alpha were produced from infiltrated mononuclear cells, whereas receptor activator of nuclear factor κB ligand (RANKL) was strongly expressed in T cells. However, osteoprotegerin (OPG) was not or was weakly expressed in tophus tissues. MSU crystals induced the expressions of IL-1, IL-6, TNF-alpha and RANKL in PBMCs, but inhibited OPG expression. In addition, the pro-resorptive cytokines were highly expressed in SFMCs of gouty arthritis patients. Furthermore, in vitro osteoclastogenesis was enhanced in SFMC cultures, but inhibited in T cell-depleted SFMC cultures. Our study demonstrates that RANKL-expressing T cells and TRAP+ osteoclasts are present within gouty tophus tissues, and that infiltrating cells express pro-resorptive cytokines. Furthermore, our data show that MSU crystals have the potential to induce pro-resorptive cytokines, and T cells are involved in osteoclastogenesis in chronic gout.
    Arthritis research & therapy 10/2011; 13(5):R164. · 4.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca(2+) oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling.
    Journal of Biological Chemistry 09/2011; 286(45):39043-50. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was designed to examine the frequency of natural killer T (NKT) cells and the response to α-galactosylceramide (α-GalCer) in SLE patients and to investigate the clinical relevance of NKT cell levels. Patients with SLE (n = 128) and age- and sex-matched healthy controls (HCs) (n = 92) were enrolled in the study. NKT cell and CD1d levels were measured by flow cytometry. Gene expression was determined by RT-PCR, and cytokine secretion by multiple cytokine assay. Peripheral blood mononuclear cells (PBMCs) were cultured in vitro with α-GalCer. Proliferation indices of NKT cells were estimated by flow cytometry. Percentages and absolute numbers of NKT cells were significantly lower in the peripheral blood of SLE patients than in that of HCs, whereas CD1d levels in PBMCs were comparable between these two groups. Notably, this NKT cell deficiency was found to be correlated with SLEDAI. NKT cell proliferation was found to be impaired in SLE patients, and cytokine production by NKT cells in response to α-GalCer was diminished. This poor responsiveness to α-GalCer was found to be due to NKT cell dysfunction rather than to an abnormality in CD1d-expressing cells. Our data show that NKT cell levels and functions are defective in SLE patients. Furthermore, these deficiencies were found to reflect disease activity. It would appear that these NKT cell abnormalities could contribute to immune system dysregulation in SLE.
    Rheumatology (Oxford, England) 05/2011; 50(6):1054-63. · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoclasts play an important role in bone metabolism by resorbing the bone matrix. Thus, the compounds inhibiting osteoclasts can treat bone diseases such as osteoporosis. Among the 8 triterpenoids tested, we show that Ilekudinol B isolated from the plant Weigela subsessilis inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner, whereas it has no significant effect on osteoblast differentiation. Furthermore, Ilekudinol B attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression. Our results indicate that Ilekudinol B has the potential to inhibit osteoclast formation by attenuating the signaling cascades associated with RANKL.
    Journal of Medicinal Plants Research. 04/2011; 5:903-909.
  • [Show abstract] [Hide abstract]
    ABSTRACT: NFATc1 (nuclear factor of activated T-cells c1), a key transcription factor, plays a role in regulating expression of osteoclast-specific downstream target genes such as TRAP (tartrate-resistant acid phosphatase) and OSCAR (osteoclast-associated receptor). It has been shown that RANKL [receptor activator of NF-κB (nuclear factor κB) ligand] induces NFATc1 expression during osteoclastogenesis at a transcriptional level. In the present study, we demonstrate that RANKL increases NFATc1 protein levels by post-translational modification. RANKL stimulates NFATc1 acetylation via HATs (histone acetyltransferases), such as p300 and PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor], thereby stabilizing NFATc1 proteins. PCAF physically interacts with NFATc1 and directly induces NFATc1 acetylation and stability, subsequently increasing the transcriptional activity of NFATc1. In addition, RANKL-mediated NFATc1 acetylation is increased by the HDAC (histone deacetylase) inhibitors sodium butyrate and scriptaid. Overexpression of HDAC5 reduces RANKL- or PCAF-mediated NFATc1 acetylation, stability and transactivation activity, suggesting that the balance between HAT and HDAC activities might play a role in the regulation of NFATc1 levels. Furthermore, RANKL and p300 induce PCAF acetylation and stability, thereby enhancing the transcriptional activity of NFATc1. Down-regulation of PCAF by siRNA (small interfering RNA) decreases NFATc1 acetylation and stability, as well as RANKL-induced osteoclastogenesis. Taken together, the results of the present study demonstrate that RANKL induces HAT-mediated NFATc1 acetylation and stability, and subsequently increases the transcriptional activity of NFATc1 during osteoclast differentiation.
    Biochemical Journal 03/2011; 436(2):253-62. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Black tea has been shown to elicit anti-oxidant, anti-carcinogenic, anti-inflammatory and anti-mutagenic properties. In this study, we investigated the impact of black tea extract (BTE) on lipopolysaccharide (LPS)-induced NF-κB signaling in bone marrow derived-macrophages (BMM) and determined the therapeutic efficacy of this extract on colon inflammation. The effect of BTE on LPS-induced NF-κB signaling and pro-inflammatory gene expression was evaluated by RT-PCR, Western blotting, immunofluorescence and electrophoretic mobility shift assay (EMSA). The in vivo efficacy of BTE was assessed in mice with 3% dextran sulfate sodium (DSS)-induced colitis. The severity of colitis was measured by weight loss, colon length and histologic scores. LPS-induced IL-12p40, IL-23p19, IL-6 and IL-1β mRNA expressions were inhibited by BTE. LPS-induced IκBα phosphorylation/degradation and nuclear translocation of NF-κB/p65 were blocked by BTE. BTE treatment blocked LPS-induced DNA-binding activity of NF-κB. BTE-fed, DSS-exposed mice showed the less weight loss, longer colon length and lower histologic score compared to control diet-fed, DSS-exposed mice. DSS-induced IκBα phosphorylation/degradation and phosphorylation of NF-κB/p65 were blocked by BTE. An increase of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) in DSS-exposed mice was blocked by BTE. These results indicate that BTE attenuates colon inflammation through the blockage of NF-κB signaling and apoptosis in DSS-induced experimental colitis model.
    BMC Complementary and Alternative Medicine 01/2011; 11:91. · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pim kinases are emerging as important mediators of cytokine signaling pathways in hematopoietic cells. In this study, we demonstrate that Pim-1 positively regulates RANKL-induced osteoclastogenesis and that Pim-1 expression can be upregulated by RANKL signaling during osteoclast differentiation. The silencing of Pim-1 by RNA interference or overexpression of a dominant negative form of Pim-1 (Pim-1 DN) in bone marrow-derived macrophage cells attenuates RANKL-induced osteoclast formation. Overexpression of Pim-1 DN blocks RANKL-induced activation of TGF-β-activated kinase 1 (TAK1) and NF-κB as well as expression of NFATc1 during osteoclastogenesis. However, we found that overexpression of TAK1 in the presence of Pim-1 DN rescues NF-κB activation. Additionally, Pim-1 interacts with RANK as well as TAK1, indicating that Pim-1 is involved in RANKL-induced NF-κB activation via TAK1. Furthermore, we demonstrate that Pim-1 also regulates NFATc1 transcription activity and subsequently induces osteoclast-associated receptor expression, an osteoclast-specific gene. Taken together, our results reveal that Pim-1 positively regulates RANKL-induced osteoclastogenesis.
    The Journal of Immunology 11/2010; 185(12):7460-6. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor activator of nuclear factor-κB (RANK) and its ligand RANKL, which belong to the tumor necrosis factor (TNF) receptor-ligand family, mediate osteoclastogenesis. The crystal structure of the RANKL ectodomain (eRANKL) in complex with the RANK ectodomain (eRANK) combined with biochemical assays of RANK mutants indicated that three RANK loops (Loop1, Loop2, and Loop3) bind to the interface of a trimeric eRANKL. Loop3 is particularly notable in that it is structurally distinctive from other TNF-family receptors and forms extensive contacts with RANKL. The disulfide bond (C125-C127) at the tip of Loop3 is important for determining the unique topology of Loop3, and docking E126 close to RANKL, which was supported by the inability of C127A or E126A mutants of RANK to bind to RANKL. Inhibitory activity of RANK mutants, which contain loops of osteoprotegerin (OPG), a soluble decoy receptor to RANKL, confirmed that OPG shares the similar binding mode with RANK and OPG. Loop3 plays a key role in RANKL binding. Peptide inhibitors designed to mimic Loop3 blocked the RANKL-induced differentiation of osteoclast precursors, suggesting that they could be developed as therapeutic agents for the treatment of osteoporosis and bone-related diseases. Furthermore, some of the RANK mutations associated with autosomal recessive osteopetrosis (ARO) resulted in reduced RANKL-binding activity and failure to induce osteoclastogenesis. These results, together with structural interpretation of eRANK-eRANKL interaction, provided molecular understanding for pathogenesis of ARO.
    Proceedings of the National Academy of Sciences 11/2010; 107(47):20281-6. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone homeostasis is maintained through the balanced action of bone-forming osteoblasts and bone-resorbing osteoclasts. Under pathological conditions or with age, excessive bone loss is often observed due to increased bone resorption. Since osteoclasts are the primary cells in the body that can resorb bone, molecular understanding of osteoclast fate has important clinical implications. Over the past 20 years, many molecular players that govern osteoclast differentiation during normal development have been identified. However, whether the same molecules regulate bone loss occurring under pathological conditions remains largely unknown. We report here that although ATP6v0d2-deficient (ATP6v0d2 KO) mice exhibit an osteopetrotic phenotype due to inefficient osteoclast maturation, this deficiency fails to protect mice from ovariectomy (OVX)-induced bone loss, a model for post-menopause-associated osteoporosis. Moreover, we show that an OVX-induced increase in the number of colony forming unit-granulocyte/macrophage (CFU-GM) in bone marrow cells and subsequent osteoclast formation in vitro was not affected in the absence of ATP6v0d2. However, even after OVX, formation of large osteoclasts (>100 μm in diameter) with actin rings was still reduced in the absence of ATP6v0d2. Taken together, these findings suggest that the critical role of ATP6v0d2 may be limited to the control of bone homeostasis under normal development, and that OVX-induced bone loss is likely to be governed mostly by the increase in osteoclast precursors rather than increased efficiency of osteoclast maturation.
    Biochemical and Biophysical Research Communications 10/2010; 403(1):73-8. · 2.28 Impact Factor

Publication Stats

2k Citations
334.33 Total Impact Points

Institutions

  • 2005–2014
    • Chonnam National University
      • Department of Pharmacology
      Gwangju, Gwangju, South Korea
  • 2011–2013
    • Chonnam National University Hospital
      Sŏul, Seoul, South Korea
  • 2005–2011
    • Ewha Womans University
      • • Center for Cell Signaling and Drug Discovery Research
      • • Department of Life Sciences
      Sŏul, Seoul, South Korea
  • 2010
    • Chungnam National University
      • Department of Microbiology
      Sŏngnam, Gyeonggi Province, South Korea
  • 2002–2009
    • Hospital of the University of Pennsylvania
      • Department of Pathology and Laboratory Medicine
      Philadelphia, PA, United States