Keun Sang Oh

Korea Institute of Science and Technology, Seoul, Seoul, South Korea

Are you Keun Sang Oh?

Claim your profile

Publications (20)93 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: A method for the sustained delivery of exenatide was proposed using nanoparticles (NPs) with a core/shell structure. The interactions between lipid bilayers and Pluronics were utilized to form various NPs using a layer-by-layer approach. Transmittance electron microscopy and dynamic light scattering were used to examine the morphology of the NPs. The in vitro release pattern was observed as a function of changes in the structure of the NPs, and the structural integrity of exenatide released was examined by SDS-PAGE analysis. Pharmacokinetics and antidiabetic effects were also observed with the structural change of NPs using in vivo animal models. In vitro-in vivo correlation was discussed in relation to manipulation of the NP structures.
    Biomaterials 07/2013; · 7.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Pluronic-based core/shell nanoparticles (NPs) were formed using various strategies such as self-assembly and temperature induced-phase transition. To improve their functionality as a nanomedicine for diagnosis and therapy, the vesicle fusion and layer by layer approach were employed. Because of the hydrophilic nature of the Pluronic shell and the relatively small size, Pluronic-based core/shell NPs were used in order to improve pharmacokinetic behaviors of drugs as well as imaging agents. This review will introduce various types of Pluronic-based core/shell NPs according to their preparation method and formation mechanism. The focus will be on the Pluronic-based core/shell NPs for tumor targeting, stimulated release of proteins, and cancer imaging capabilities.
    Current Medicinal Chemistry 05/2013; · 4.07 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The multilayer nanoparticles (NPs) were prepared for cancer-targeting therapy using the layer by layer approach. When drug-loaded Pluronic NPs were mixed with vesicles (liposomes) in the aqueous medium, Pluronic NPs were incorporated into the vesicles to form the vesicle NPs. Then, the multilayer NPs were formed by freeze-drying the vesicle NPs in a Pluronic aqueous solution. The morphology and size distribution of the multilayer NPs were observed using a TEM and a particle size analyzer. In order to apply the multilayer NPs as a delivery system for docetaxel (DTX), which is a model anticancer drug, the release pattern of the DTX was observed and the tumor growth was monitored by injecting the multilayer NPs into the tail veins of tumor (squamous cell carcinoma)-bearing mice. The cytotoxicity of free DTX (commercial DTX formulation (Taxotere®)) and the multilayer NPs was evaluated using MTT assay. We also evaluated the tumor targeting ability of the multilayer NPs using magnetic resonance imaging. The multilayer NPs showed excellent tumor targetability and antitumor efficacy in tumor-bearing mice, caused by the enhanced permeation and retention (EPR) effect. These results suggest that the multilayer NPs could be a potential drug delivery system for cancer-targeting therapy.
    Journal of Controlled Release 10/2012; · 7.63 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Multifunctional nanoparticles (NPs) were prepared based on temperature-induced phase transition in a molten mixture of Lipiodol(®), Tween 80, paclitaxel (PTX), and Pluronic F-68, wherein the Lipiodol(®)/Tween 80 mixture is used as a solubilizer for PTX, and Pluronic F-68 is used for the stabilization of the molten mixture. The morphology and size distribution of optimized multifunctional NPs were observed using transmittance electron microscopy (TEM) and a particle size analyzer. In the optical imaging of tumor-bearing mice using a near-infrared fluorescence (NIRF) imaging system, the multifunctional NPs were evaluated in terms of a time-dependent excretion profile, in vivo biodistribution and tumor-targeting capability compared to free fluorescence dye. In addition, the prolonged circulation of multifunctional NPs was confirmed by enhancement of the blood-pool in live animals using a micro-CT imaging system, because iodine-containing Lipiodol(®) has an X-ray enhancement property. Finally, the anti-tumor efficacy of multifunctional NPs was monitored by injecting the multifunctional NPs into the tail veins of tumor-bearing mice. The multifunctional NPs showed excellent tumor targetability and anti-tumor efficacy in tumor-bearing mice, caused by the enhanced permeation and retention (EPR) effect.
    International journal of pharmaceutics 08/2012; 437(1-2):192-202. · 2.96 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography.
    Science and Technology of Advanced Materials 01/2012; 13(2). · 3.75 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Phthalocyanine-aggregated Pluronic nanoparticles were constructed as a novel type of near-infrared (NIR) absorber for photothermal therapy. Tiny nanoparticles (~ 60 nm, FPc NPs) were prepared by aqueous dispersion of phthalocyanine-aggregated self-assembled nanodomains that were phase-separated from the melt mixture with Pluronic. Under NIR laser irradiation, FPc NPs manifested robust heat generation capability, superior to an individual cyanine dye and cyanine-aggregated nanoparticles. Micro- and macroscopic imaging experiments showed that FPc NPs are capable of internalization into live cancer cells as well as tumor accumulation when intravenously administered into living mice. It is shown here that continuous NIR irradiation of the tumor-targeted FPc NPs can cause phototherapeutic effects in vitro and in vivo through excessive local heating, demonstrating potential of phthalocyanine-aggregated nanoparticles as an all-organic NIR nanoabsorber for hyperthermia.
    Theranostics 01/2012; 2(9):871-9. · 7.81 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: An enhancement of tumor-targeting capability was demonstrated with paclitaxel (PTX)-loaded Pluronic nanoparticles (NPs) with immobilized glycol chitosan and heparin. The PTX-loaded Pluronic NPs were prepared as described in our previous report by means of a temperature-induced phase transition in a mixture of Pluronic F-68 and liquid polyethylene glycol (PEG; molecular weight: 400) containing PTX. The liquid PEG is used as the solubilizer of PTX, and Pluronic F-68 is the polymer that encapsulates the PTX. The glycol chitosan and heparin were immobilized on the surface of the Pluronic NPs in an aqueous medium, and a powdery form of the glycol chitosan/heparin immobilized Pluronic NPs (composite NPs) was obtained by freeze-drying. Field emission scanning electron microscopy and a particle size analyzer were used to observe the morphology and size distribution of the prepared NPs. To apply the composite NPs as a delivery system for the model anticancer drug PTX, the release pattern and pharmacokinetic parameters were observed, and the tumor growth was monitored by injecting the composite NPs into the tail veins of tumor-bearing mice. An enhancement of tumor-targeting capability of NPs was verified by using noninvasive live animal imaging technology to observe the time-dependent excretion profile, the in vivo biodistribution, circulation time, and the tumor-targeting capability of composite NPs.
    Molecular Pharmaceutics 12/2011; 9(2):230-6. · 4.57 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The Pluronic nanoparticles (NPs) composed of Pluronic (F-68) and liquid polyethylene glycol (PEG, molecular wt: 400) containing docetaxel (DTX) were stabilized with the vesicle fusion. When DTX-loaded Pluronic NPs were mixed with vesicles in the aqueous medium, DTX-loaded Pluronic NPs were incorporated into vesicles to form multi-core vesicle NPs. The morphology and size distribution of multi-core vesicle NPs were observed using FE-SEM, cryo-TEM and a particle size analyzer. To apply multi-core vesicle NPs as a delivery system for DTX, a model anti-cancer drug, the release pattern of DTX was observed and the tumor growth was monitored by injecting the DTX-loaded multi-core vesicle NPs into the tail veins of tumor-bearing mice. We also evaluated the time-dependent excretion profile, in vivo biodistribution, circulation time, and tumor targeting capability of multi-core vesicle NPs using a non-invasive live animal imaging technology.
    Biomaterials 11/2011; 32(31):7924-31. · 7.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We described the preparation of the glycol chitosan/heparin immobilized iron oxide nanoparticles (composite NPs) as a magnetic resonance imaging agent with a tumor-targeting characteristic. The iron oxide nanoseeds used clinically as a magnetic resonance imaging agent were immobilized into the glycol chitosan/heparin network to form the composite NPs. To induce the ionic interaction between the iron oxide nanoseeds and glycol chitosan, gold was deposited on the surface of iron oxide nanoseeds. After the immobilization of gold-deposited iron oxide NPs into the glycol chitosan network, the NPs were stabilized with heparin based on the ionic interaction between cationic glycol chitosan and anionic heparin. FE-SEM (field emission-scanning electron microscopy) and a particle size analyzer were used to observe the formation of the stabilized composite NPs, and a Jobin-Yvon Ultima-C inductively coupled plasma-atomic emission spectrometer (ICP-AES) was used to measure the contents (%) of formed iron oxide nanoseeds as a function of reaction temperature and formed gold deposited on the iron oxide nanoparticles. We also evaluated the time-dependent excretion profile, in vivo biodistribution, circulation time, and tumor-targeting ability of the composite NPs using a noninvasive NIR fluorescence imaging technology. To observe the MRI contrast characteristic, the composite NPs were injected into the tail veins of tumor-bearing mice to demonstrate their selective tumoral distribution. The MR images were collected with conventional T(2)-weighted spin echo acquisition parameters.
    Biomacromolecules 06/2011; 12(6):2335-43. · 5.37 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We prepared nanoparticles by a temperature-induced phase transition in a mixture of Pluronic F-68 and liquid PEG (polyethylene glycol, molecular weight: 400) containing paclitaxel (PTX) with a fast, simple, continuous and solvent-free process. The liquid PEG is used as solubilizer of PTX and the polymer for the encapsulation of PTX is composed of Pluronic F-68. At the phase transition temperature, the polymer mixture was changed to the liquid phase, and stirring the liquid 0 °C to form Pluronic nanoparticles. The morphology and size distribution of the prepared Pluronic nanoparticles were observed using FE-SEM and TEM, and a particle size analyzer and cryo-TEM were used to observe the shape of paclitaxel-loaded Pluronic nanoparticles in an aqueous state. To apply Pluronic nanoparticles as a delivery system for cancer therapy, the release pattern of PTX, a model anti-cancer drug, was observed and the tumor growth was monitored by injecting the PTX-loaded Pluronic nanoparticles into the tail veins of tumor-bearing mice. We also evaluated the time-dependent excretion profile, in vivo biodistribution, circulation time, and tumor targeting ability of PTX-loaded Pluronic nanoparticles using non-invasive live animal imaging technology. In the early stage within 7h of release, the loaded PTX was rapidly released and the sustained release was observed for up to 48 h. In vivo studies, PTX-loaded Pluronic nanoparticles were observed with higher anti-tumor efficacy compared with PTX formulated in Cremophor EL.
    Journal of Controlled Release 12/2010; 148(3):344-50. · 7.63 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Core/shell nanoparticles with lipid core were prepared and characterized as pH-sensitive delivery system of anticancer drug. The lipid core is composed of drug-loaded lecithin and the polymeric shell is composed of Pluronics (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) tri-block copolymer, F-127). Based on the preparation method in the previous report by us, the freeze-drying of drug-loaded lecithin was performed in the F-127 aqueous solution containing trehalose used as a cryoprotectant to form stabilized core/shell nanoparticles. For the application of core/shell nanoparticles as a pH-sensitive drug delivery system for anticancer drug, doxorubicin was loaded into the core/shell nanoparticles and the drug loading amount and drug release behavior in response to pH change were observed.
    Journal of Nanoscience and Nanotechnology 10/2010; 10(10):6967-71. · 1.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF)-loaded core/shell nanoparticles were prepared and their gelation behavior in response to temperature was characterized for the regeneration of ischemic heart. The core is composed of lecithin containing VEGF and the shell is composed of Pluronic F-127 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer). When Capryol 90 (propylene glycol monocaprylate) was added to an aqueous solution of the core/shell nanoparticles, a temperature-induced gel composed of core/shell nanoparticles was observed to form at body temperature. This phenomenon was utilized for the stable localization of core/shell nanoparticles at the ischemic area. For an in vivo assessment, VEGF-loaded core/shell nanoparticles with and without inducement of the gel formation were applied to a subacute myocardial infarction model in rats and functional analysis of the heart was monitored by means of a PV catheter four weeks later. The results showed that the VEGF-loaded core/shell nanoparticles and their gel improved the heart functions, particularly with regard to the ejection fraction and cardiac output.
    Journal of Controlled Release 09/2010; 146(2):207-11. · 7.63 Impact Factor
  • Keun Sang Oh, Soon Hong Yuk
    [show abstract] [hide abstract]
    ABSTRACT: Drug delivery systems with molecular imaging capability are usually nanoscopic therapeutic systems that incorporate therapeutic agents and diagnostic imaging probes. ­Polymers (which form hydrogels) and molecular imaging probes used currently were reviewed firstly. ­Polymer-coated molecular imaging probes were also reviewed to introduce the ­basic com­ponent in the preparation of drug delivery systems with molecular imaging capability. Finally, the recent studies on the drug delivery systems with molecular imaging capability were summarized and their prospect was addressed.
    12/2009: pages 179-200;
  • [show abstract] [hide abstract]
    ABSTRACT: Asymmetrical flow field-flow fractionation (AsFlFFF) was used to determine the size distribution of drug-loaded core/shell nanoparticles which have a lipid core of lecithin and a polymeric shell of a Pluronic. AsFlFFF provided separation of the drug-loaded core/shell nanoparticles from smaller coreless polymeric micelles, thus allowing accurate size analysis of the drug-loaded nanoparticles without interference by the coreless micelles. It was found from AsFlFFF that the drug-loaded nanoparticles have broad size distributions ranging from 100 to 600 nm in diameter. It was also found that, after the nanoparticles had been stored for 70 days, they disappeared as a result of self-degradation. Being a separation technique, AsFlFFF seems to be more useful than transmission electron microscopy or dynamic light scattering for size analysis of core/shell nanoparticles, which have broad and bimodal size distributions. [figure: see text]
    Analytical and Bioanalytical Chemistry 05/2008; 390(8):2183-8. · 3.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Heparin-immobilized Pluronic (F-68)/Polyvinylalcohol (PVA) composite microparticles were designed and characterized for the sustained drug delivery of ionic drug. Venlafaxine, antidepressant medication, was used as a model drug. For the efficient loading of ionic drug, heparin was immobilized into F-68/PVA composite microparticles. Differential scanning calorimetry (DSC) was used to understand the intra/intermolecular interactions in the heparin-immobilized F-68/PVA composite gels containing model drug. For the application as a sustained drug delivery system, the loading amount and release pattern of loaded drug were measured using high performance liquid chromatography (HPLC).
    Journal of Microencapsulation 04/2008; 25(2):106-10. · 1.57 Impact Factor
  • Journal of Applied Polymer Science - J APPL POLYM SCI. 01/2008; 108(5):3239-3244.
  • [show abstract] [hide abstract]
    ABSTRACT: Core/shell nanoparticles with lipid core, were prepared and characterized as a sustained delivery system for protein. The lipid core is composed of protein-loaded lecithin and the polymeric shell is composed of Pluronics (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127). Based on the preparation method in the previous report by us, the freeze-drying of protein-loaded lecithin was performed in the F-127 aqueous solution containing trehalose used as a cryoprotectant to form stabilized core/shell nanoparticles. Cryo-TEM (transmittance electron microscopy) and a particle size analyzer were used to observe the formation of stabilized core/shell nanoparticles. For the application of core/shell nanoparticles as a protein drug carrier, lysozyme and vascular endothelial growth factor (VEGF) were loaded into the core/shell nanoparticles by electrostatic interaction, and the drug release pattern was observed by manipulating the polymeric shell.
    Biomacromolecules 09/2006; 7(8):2362-7. · 5.37 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A novel preparation method for core/shell nanoparticles with a drug-loaded lipid core was designed and characterized. The lipid core is composed of lecithin and a drug, and the polymeric shell is composed of Pluronics (poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127). For the formation of stabilized core/shell nanoparticles, freeze-drying was performed in the presence of trehalose used as a cryoprotectant. Cryogenic transmittance electron microscopy (cryo-TEM), differential scanning calorimetry (DSC), and a particle size analyzer were used to observe the formation of the stabilized core/shell nanoparticles. For the application of the core/shell nanoparticles as a drug carrier, paclitaxel, a potent anticancer drug, was loaded into the core/shell nanoparticles, and the drug loading amount and the drug release pattern were observed.
    Biomacromolecules 02/2005; 6(2):1062-7. · 5.37 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The mixture of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer (F-68) and poly vinyl alcohol (PVA) forms a polymer complex gel by intra/intermolecular interaction via hydrogen bonding in water, which is verified by differential scanning calorimetry. With 30 wt% F-68 aqueous solution and 15 wt% PVA aqueous solution, F-68/PVA complex gel was prepared and its swelling transition was observed at approximately 37 degrees C. Based on the temperature-sensitivity of hydrogen bondings in F-68/PVA complex gel, temperature sensitive drug delivery system has been designed and characterized. For the stability in the aqueous media, F-68/PVA complex gel was prepared with a form of polymeric bead, followed by the encapsulation with poly(lactide-co-glycolide) membrane. With changing the ratio of F-68/PVA, the swelling transition of polymer complex gel was manipulated and pulsatile release of acetoaminophen, used as a model drug, was demonstrated in response to pulsatile change of temperature between 35 degrees C and 40 degrees C.
    Biomaterials 06/2004; 25(12):2393-8. · 7.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The Pluronic/poly(ethylene glycol) composite nanoparticles (NPs) composed of Pluronic F-68, liquid poly(ethylene glycol) (PEG; molecular weight, 400) and human growth hormone (hGH) were stabilized with the vesicle fusion. When hGH-loaded Pluronic/PEG composite NPs were mixed with vesicles in the aqueous medium, hGH-loaded Pluronic/PEG composite NPs were incorporated into vesicles to form multi-core vesicle NPs. The morphology and size distribution of multi-core vesicle NPs were observed using field emission scanning electron microscopy, cryo-transmission electron microscopy, and a particle size analyzer. When multi-core vesicle NPs were applied as a delivery system for the protein drug, a sustained release pattern of hGH was observed.
    Macromolecular Research 20(3). · 1.64 Impact Factor

Publication Stats

104 Citations
4 Downloads
1k Views
93.00 Total Impact Points

Institutions

  • 2011–2012
    • Korea Institute of Science and Technology
      • Center for Theragnosis
      Seoul, Seoul, South Korea
  • 2004–2010
    • Hannam University
      • • Department of Advanced Materials
      • • Department of Polymer Science and Engineering
      Daiden, Daejeon, South Korea