Anantha Vijay R Santhanam

Mayo Clinic - Rochester, Rochester, Minnesota, United States

Are you Anantha Vijay R Santhanam?

Claim your profile

Publications (18)93.99 Total impact

  • Anantha Vijay R Santhanam, Livius V. d'Uscio, Zvonimir S Katusic
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was designed to determine whether treatment with erythropoietin (EPO) could protect cerebral microvasculature against the pathological consequences of endothelial nitric oxide synthase (eNOS) uncoupling. Wild-type and GTP cyclohydrolase I (GTPCH-I)-deficient hph1 mice were administered EPO (1000 U/kg/day, sc, 3 days). Cerebral microvessels of hph1 mice demonstrated reduced BH4 bioavailability, increased production of superoxide anions and impaired endothelial nitric oxide (NO) signaling. Treatment of hph1 mice with EPO attenuated the levels of 7,8-dihydrobiopterin (7,8-BH2), the oxidized product of BH4, and significantly increased the ratio of BH4 to 7,8-BH2. Moreover, EPO decreased levels of superoxide anions and increased NO bioavailability in cerebral microvessels of hph1 mice. Attenuated oxidation of BH4 and inhibition of eNOS uncoupling were explained by the increased expression of antioxidant proteins, manganese superoxide dismutase and catalase. The protective effects of EPO observed in cerebral microvessels of hph1 mice were also observed in GTPCH-I siRNA-treated human brain microvascular endothelial cells exposed to EPO (1 U/ml or 10 U/ml; 3 days). Our results suggest that EPO might protect the neurovascular unit against oxidative stress by restoring bioavailability of BH4 and endothelial NO in the cerebral microvascular endothelium.This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 07/2014; · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor-delta (PPARδ) is nuclear hormone receptor that is mainly involved in lipid metabolism. Recent studies have suggested that PPARδ agonists exert vascular protective effects. The present study was designed to characterize vascular function in mice with genetic inactivation of PPARδ in endothelium. Mice with vascular endothelial cell-specific deletion of the PPARδ gene (ePPARδ(-/-)were generated by using the loxP/Cre technology. The ePPARδ(-/-) mice were normotensive and did not display any sign of metabolic syndrome. Endothelium-dependent relaxations to acetylcholine and endothelium-independent relaxations to nitric oxide-donor diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA-NONOate) were both significantly impaired in aorta and carotid arteries of ePPARδ(-/-) mice (P<0.05). In ePPARδ(-/-) mice aortas phosphorylation of eNOS at Ser(1177) was significantly decreased (P<0.05). However, basal levels of cGMP were unexpectedly increased (P<0.05). Enzymatic activity of GTP-cyclohydrolase I and tetrahydrobiopterin levels were also enhanced in ePPARδ(-/-) mice (P<0.05). Most notably, endothelium-specific deletion of PPARδ gene significantly decreased protein expressions of catalase and glutathione peroxidase 1 and resulted in increased levels of hydrogen peroxide in the aorta (P<0.05). In contrast, superoxide anion production was unaltered. Moreover, treatment with catalase prevented endothelial dysfunction and elevation of cGMP detected in aortas of ePPARδ(-/-) mice. The findings suggest that increased levels of cGMP caused by hydrogen peroxide impair vasodilator reactivity to endogenous and exogenous nitric oxide. We speculate that chronic elevation of hydrogen peroxide predisposes PPARδ-deficient arteries to oxidative stress and vascular dysfunction.
    AJP Heart and Circulatory Physiology 01/2014; · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aging and the presence of cerebrovascular disease are associated with increased incidence of Alzheimer's disease (AD). A common feature of aging and cerebrovascular disease is decreased endothelial nitric oxide (NO). We studied the effect of a loss of endothelium derived NO on amyloid precursor protein (APP) related phenotype in late middle aged (LMA) (14-15 month) endothelial nitric oxide synthase deficient (eNOS(-/-) ) mice. APP, β-site APP cleaving enzyme (BACE) 1, and amyloid beta (Aβ) levels were significantly higher in the brains of LMA eNOS(-/-) mice as compared to LMA wild type controls. APP and Aβ1-40 were increased in hippocampal tissue of eNOS(-/-) mice as compared to wild type mice. LMA eNOS(-/-) mice displayed an increased inflammatory phenotype as compared to LMA wild type mice. Importantly, LMA eNOS(-/-) mice performed worse in a radial arm maze test of spatial learning and memory as compared to LMA wild type mice. These data suggest that chronic loss of endothelial NO may be an important contributor to both Aβ related pathology and cognitive decline. This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 06/2013; · 3.97 Impact Factor
  • Anantha Vijay R Santhanam, Livius V d'Uscio, Tongrong He, Zvonimir S Katusic
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH(4)) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH(4)-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH(4) and increased the ratio of BH(4) to 7,8-BH(2) (P<0.05, n=6-9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6-9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6-9) and catalase (P<0.05, n=6-8). PPARδ activation increased the total nitrite and nitrate (NO(2)+NO(3)) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH(4)-deficient cerebral circulation.
    Brain research 09/2012; 1483:89-95. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. METHODS AND RESULTS: Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser(1177) in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH(4)) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH(4) and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH(4) bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91(phox) and SODs, thereby reducing production of superoxide anion in the aortas. CONCLUSION: Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production.
    Cardiovascular research 08/2012; · 5.81 Impact Factor
  • Source
    Anantha Vijay R Santhanam, Livius V d'Uscio, Leslie A Smith, Zvonimir S Katusic
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we used the GTP cyclohydrolase I-deficient mice, i.e., hyperphenylalaninemic (hph-1) mice, to test the hypothesis that the loss of tetrahydrobiopterin (BH(4)) in cerebral microvessels causes endothelial nitric oxide synthase (eNOS) uncoupling, resulting in increased superoxide anion production and inhibition of endothelial nitric oxide signaling. Both homozygous mutant (hph-1(-/-)) and heterozygous mutant (hph-1(+/-) mice) demonstrated reduction in GTP cyclohydrolase I activity and reduced bioavailability of BH(4). In the cerebral microvessels of hph-1(+/-) and hph-1(-/-) mice, increased superoxide anion production was inhibited by supplementation of BH(4) or NOS inhibitor- L- N(G) -nitro arginine-methyl ester, indicative of eNOS uncoupling. Expression of 3-nitrotyrosine was significantly increased, whereas NO production and cGMP levels were significantly reduced. Expressions of antioxidant enzymes namely copper and zinc superoxide dismutase, manganese superoxide dismutase, and catalase were not affected by uncoupling of eNOS. Reduced levels of BH(4), increased superoxide anion production, as well as inhibition of NO signaling were not different between the microvessels of male and female mice. The results of our study are the first to demonstrate that, regardless of gender, reduced BH(4) bioavailability causes eNOS uncoupling, increases superoxide anion production, inhibits eNOS/cGMP signaling, and imposes significant oxidative stress in the cerebral microvasculature.
    Journal of Neurochemistry 07/2012; 122(6):1211-8. · 3.97 Impact Factor
  • Zvonimir S Katusic, Anantha V Santhanam, Tongrong He
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostacyclin (PGI(2)) is a potent vasodilator that exerts multiple vasoprotective effects in the cardiovascular system. The effects of PGI(2) are mediated by activation of the cell membrane G-protein-coupled PGI(2) receptor (IP receptor). More recently, however, it has been suggested that PGI(2) might also serve as an endogenous ligand and activator of nuclear peroxisome proliferator-activated receptorδ (PPARδ). Consistent with this concept, studies designed to define pharmacological properties of stable PGI(2) analogs revealed that beneficial effects of these compounds appear to be mediated, in part, by activation of PPARδ. This review discusses emerging evidence regarding the contribution of PPARδ activation to vasoprotective and regenerative functions of PGI(2) and stable analogs of PGI(2).
    Trends in Pharmacological Sciences 06/2012; 33(10):559-64. · 9.25 Impact Factor
  • Source
    Susan A Austin, Anantha V Santhanam, Zvonimir S Katusic
    [Show abstract] [Hide abstract]
    ABSTRACT: the exact etiology of sporadic Alzheimer disease (AD) is unclear, but it is interesting that several cardiovascular risk factors are associated with higher incidence of AD. The link between these risk factors and AD has yet to be identified; however, a common feature is endothelial dysfunction, specifically, decreased bioavailability of nitric oxide (NO). to determine the relationship between endothelial derived NO and the expression and processing of amyloid precursor protein (APP). we used human brain microvascular endothelial cells to examine the role of NO in modulating APP expression and processing in vitro. Inhibition of endothelial nitric oxide synthase (eNOS) with the specific NOS inhibitor L-NAME (N(G)-nitro-l-arginine methyl ester) led to increased APP and BACE1 (β-site APP-cleaving enzyme1) protein levels, as well as increased secretion of the amyloidogenic peptide amyloid β (Aβ) (control 10.93 ± 0.70 pg/mL; L-NAME 168.21 ± 27.38 pg/mL; P<0.001). To examine the role of NO in modulation of APP expression and processing in vivo, we used brain and cerebral microvessels from eNOS-deficient (eNOS(-/-)) mice. Brain tissue from eNOS(-/-) mice had statistically higher APP and BACE1 protein levels, as well as increased BACE1 enzyme activity and Aβ (Aβ(1)(-)(42) wild-type control, 0.737 pg/mg; eNOS(-/-), 1.475 pg/mg; P<0.05), compared with wild-type controls (n=6 to 8 animals per background). Brain microvessels from eNOS(-/-) mice also showed statistically higher BACE1 protein levels as compared with wild-type control. our data suggest that endothelial NO plays an important role in modulating APP expression and processing within the brain and cerebrovasculature. The NO/cGMP pathway may be an important therapeutic target in preventing and treating mild cognitive impairment, as well as AD.
    Circulation Research 12/2010; 107(12):1498-502. · 11.86 Impact Factor
  • Anantha Vijay R Santhanam, Livius V d'Uscio, Zvonimir S Katusic
    [Show abstract] [Hide abstract]
    ABSTRACT: Erythropoietin (EPO) is a therapeutic product of recombinant DNA technology and it has been in clinical use as stimulator of erythropoiesis over the last two decades. Identification of EPO and its receptor (EPOR) in the cardiovascular system expanded understanding of physiological and pathophysiological role of EPO. In experimental models of cardiovascular and cerebrovascular disorders, EPO exerts protection either by preventing apoptosis of cardiac myocytes, smooth muscle cells, and endothelial cells, or by increasing endothelial production of nitric oxide. In addition, EPO stimulates mobilization of progenitor cells from bone marrow thereby accelerating repair of injured endothelium and neovascularization. A novel signal transduction pathway involving EPOR--β-common heteroreceptor is postulated to enhance EPO-mediated tissue protection. A better understanding of the role of β-common receptor signaling as well as development of novel analogs of EPO with enhanced nonhematopoietic protective effects may expand clinical application of EPO in prevention and treatment of cardiovascular and cerebrovascular disorders.
    Advances in pharmacology (San Diego, Calif.) 01/2010; 60:257-85.
  • Source
    Anantha Vijay R Santhanam, Leslie A Smith, Zvonimir S Katusic
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B, in control of cerebral circulation is poorly understood. The present study was designed to investigate the cerebral vascular effects of BDNF in vivo. Replication incompetent adenovirus encoding either rat BDNF (AdBDNF) or green fluorescent protein was injected intracisternally into rabbits. Forty-eight hours later, animals were euthanized. Plasma and cerebrospinal fluid levels of BDNF were measured by enzyme-linked immunosorbent assay, vasomotor function of isolated basilar arteries was studied in organ chambers, protein expression in the basilar arteries was studied by Western blotting, prostanoid levels were measured by enzyme-linked immunosorbent assay, and cyclic adenosine 3',5'-monophosphate levels were measured by radioimmunoassay. The levels of BDNF in the cerebrospinal fluid were significantly elevated in AdBDNF-treated rabbits as compared with adenovirus encoding green fluorescent protein-treated rabbits (37+/-5 ng/mL versus 0.006+/-0.003 ng/mL, respectively; P<0.05; n=14). Western blotting studies revealed that in basilar arteries, AdBDNF increased protein expression of prostacyclin synthase, whereas expression of endothelial nitric oxide synthase and phosphorylated (Ser 1177) endothelial nitric oxide synthase remained unchanged. During incubation with arachidonic acid (1 micromol/L), PGI(2) production and levels of cyclic adenosine 3',5'-monophosphate were significantly elevated only in AdBDNF-treated rabbit basilar arteries (P<0.05, n=6). Relaxations to acetylcholine (10(-9) to 10(-5) mol/L) and arachidonic acid (10(-9) to 10(-5) mol/L) were significantly potentiated in basilar arteries from rabbits injected with AdBDNF. Potentiation of relaxations to acetylcholine in AdBDNF-treated basilar arteries was inhibited by the nonselective cyclooxygenase inhibitor, indomethacin (10(-5) mol/L, P<0.05, n=6) and constitutive phospholipase A(2) inhibitor, AACOCF3 (2x10(-5) mol/L, P<0.05, n=5). Our results demonstrate that in cerebral arteries, BDNF-induced activation of tropomyosin receptor kinase B receptor signaling in vivo promotes prostacyclin biosynthesis. These findings provide novel mechanistic insight into the vascular protective effect of BDNF in cerebral circulation.
    Stroke 12/2009; 41(2):350-6. · 6.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to define the ability of erythropoietin (EPO) to mobilize hematopoietic stem cells (c-kit(+)/sca-1(+)/lin-1(-); KSL-cells) and hematopoietic progenitor cells (CD34(+) cells), including vascular endothelial growth factor receptor 2 expressing hematopoietic progenitor cells (CD34(+)/Flk-1(+) cells). We also sought to determine the role of endothelial nitric oxide synthase (eNOS) in EPO-induced mobilization. Wild type (WT) and eNOS(-/-) mice were injected bi-weekly with recombinant erythropoietin (EPO, 1000U/kg, s.c.) for 14 days. EPO increased the number of KSL, CD34(+), CD34(+)/Flk-1(+) cells in circulating blood of wild type mice. These effects of EPO were abolished in eNOS(-/-) mice. Our results demonstrate that, EPO stimulates mobilization of hematopoietic stem and progenitor cells. This effect of EPO is critically dependent on activation of eNOS.
    Peptides 04/2008; 29(8):1451-5. · 2.52 Impact Factor
  • Source
    Anantha Vijay R Santhanam, Shivkumar Viswanathan, Madhu Dikshit
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of agmatine, formed from L-arginine by the enzyme arginine decarboxylase (ADC), to modulate vasomotor function in rat aorta was investigated in the present study. Agmatine-mediated modulation of vasomotor tone was studied in organ chambers, protein expression quantified by Western blot analysis and cyclic guanosine 5'-monophosphate (cGMP) levels measured by radioimmunoassay. Agmatine (10(-10) to 10(-3) M) produced concentration-dependent relaxations (82+/-5%) in phenylephrine-contracted endothelium intact rat aorta. Relaxations to agmatine were diminished on denudation of endothelium and nitric oxide synthase (NOS) inhibition by L-Nomega-nitro arginine or soluble guanylate cyclase inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (P<0.001) abolished agmatine-mediated relaxations, while relaxations were insensitive to inducible NOS inhibition by 1400W. Agmatine-treated aorta demonstrated increased protein expression of phosphorylated S473-Akt and phosphorylated S1177-endothelial nitric oxide synthase (eNOS), and elevated the levels of cyclic GMP (P<0.01). Agmatine-mediated potentiation of relaxations and elevation of cGMP levels was sensitive to phosphatidylinositol 3'-kinase inhibitor, wortmannin. Relaxations to agmatine were also affected by pre-treatment with tetraethylammonium (P<0.01) or apamin (P<0.05), and were not affected by charybdotoxin. Relaxations to agmatine were partially affected by pre-treatment of aortic rings with barium chloride (P<0.05), and glybenclamide (P<0.05). Results obtained suggest that agmatine activates protein kinase B/Akt to phosphorylate eNOS and elevate cyclic GMP levels to produce vasodilatation of aorta. Agmatine-mediated relaxations in rat aorta seems to be mediated mainly by endothelial NO-mediated activation of small conductance Ca2+-activated K+ channels, and partly by ATP-sensitive and inward rectifying K+ channels.
    European Journal of Pharmacology 11/2007; 572(2-3):189-96. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erythropoietin (EPO) fosters tissue oxygenation by stimulating erythropoiesis. More recently, EPO has been recognized as a tissue-protective cytokine. In this study, we tested the hypothesis that endothelial NO synthase (eNOS) plays a key role in the vascular protective effect of EPO. A murine model of wire-induced injury of carotid artery was used to examine the effect of EPO on endothelial repair and arterial wall architecture. Recombinant human EPO (1000 U/kg, SC, biweekly) was administered for 2 weeks in wild-type and eNOS-deficient mice after which reactivity of isolated carotid arteries was studied in vitro, and the vasculature was histologically assessed. Injured arteries exhibited impairment of endothelium-dependent relaxations to acetylcholine (P<0.05). This was associated with increased medial cross-sectional area (P<0.05). EPO upregulated expression of phosphorylated Ser1177-eNOS and normalized the vasodilator response to acetylcholine (P<0.05). Furthermore, EPO prevented the injury-induced increase in medial cross-sectional area (P<0.05). The vascular protective effects of EPO were abolished in eNOS-deficient mice. Most notably, EPO significantly increased systolic blood pressure and enhanced medial thickening of injured carotid arteries in eNOS-deficient mice (P<0.05). Our results demonstrate that EPO prevents aberrant remodeling of the injured carotid artery. The protective effects of EPO are critically dependent on activation of eNOS.
    Hypertension 06/2007; 49(5):1142-8. · 6.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study we hypothesized that endothelial progenitor cells (EPCs) enhance production of vasoprotective substances in cerebral arteries. Isolated mononuclear cells from rabbit peripheral blood were cultured in endothelial growth medium (EGM-2) for 7 days to yield EPCs. Rabbit basilar arteries were exposed to autologous EPCs ( approximately 5x10(5) cells) in vitro or in vivo. Twenty-four hours after intracisternal delivery of autologous EPCs, basilar arteries were isolated and expression of vasoregulatory proteins, production of prostacyclin (PGI(2)), and cAMP were determined. Arteries transplanted with EPCs demonstrated increased protein expression of cyclooxygenase-2 and PGI(2) in adventitia, media, and endothelium. Furthermore, production of PGI(2) and arterial content of cAMP, second messenger for PGI(2), were significantly augmented after transplantation of EPCs. In contrast, production of thromboxane A(2) was significantly reduced, whereas production of prostaglandin E(2) remained unchanged. The increased production of PGI(2) and arterial content of cAMP were inhibited only by a selective cyclooxygenase-2 inhibitor, NS-398. In vitro or in vivo treatment of basilar artery with conditioned media from EPCs also caused increase in cyclooxygenase-2 and PGI(2) synthase protein expression associated with elevation of cAMP. Our results suggest that in cerebral arteries, paracrine effect of EPCs promotes vasoprotection by increasing PGI(2) production and intracellular concentration of cAMP. This effect appears to be mediated by activation of arachidonic acid metabolism via stimulation of cyclooxygenase-2/PGI(2) synthase pathway.
    Circulation Research 05/2007; 100(9):1379-88. · 11.86 Impact Factor
  • Source
    Anantha Vijay R Santhanam, Zvonimir S Katusic
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral vasospasm after subarachnoid hemorrhage (SAH) is a major clinical problem causing cerebral ischemia and infarction. The pathogenesis of vasospasm is related to a number of pathological processes including endothelial damage and alterations in vasomotor function leading to narrowing of arterial diameter and a subsequent decrease in cerebral blood flow. Discovery of the tissue protective effects of erythropoietin (EPO) stimulated the search for therapeutic application of EPO for the prevention and treatment of cerebrovascular disease. Recent studies have identified the role of EPO in vascular protection mediated by the preservation of endothelial cell integrity and stimulation of angiogenesis. In this review, we discuss the EPO-induced activation of endothelial nitric oxide (NO) synthase and its contribution to the prevention of cerebral vasospasm.
    Acta Pharmacologica Sinica 12/2006; 27(11):1389-94. · 2.35 Impact Factor
  • Anantha Vijay R Santhanam, Leslie A Smith, Karl A Nath, Zvonimir S Katusic
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of tissue protective effects of erythropoietin has stimulated significant interest in erythropoietin (Epo) as a novel therapeutic approach to vascular protection. The present study was designed to determine the cerebral vascular effects of recombinant Epo in vivo. Recombinant adenoviral vectors (10(9) plaque-forming units/animal) encoding genes for human erythropoietin (AdEpo) and beta-galactosidase (AdLacZ) were injected into the cisterna magna of rabbits. After 48 h, basilar arteries were harvested for analysis of vasomotor function, Western blotting, and measurement of cGMP levels. Gene transfer of AdEpo increased the expressions of recombinant Epo and its receptor in the basilar arteries. Arteries exposed to recombinant Epo demonstrated attenuation of contractile responses to histamine (10(-9) to 10(-5) mol/l) (P < 0.05, n = 5). Endothelium-dependent relaxations to acetylcholine (10(-9) to 10(-5) mol/l) were significantly augmented (P < 0.05, n = 5), whereas endothelium-independent relaxations to a nitric oxide (NO) donor 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt remained unchanged in AdEpo-transduced basilar arteries. Transduction with AdEpo increased the protein expression of endothelial NO synthase (eNOS) and phosphorylated the S1177 form of the enzyme. Basal levels of cGMP were significantly elevated in arteries transduced with AdEpo consistent with increased NO production. Our studies suggest that in cerebral circulation, Epo enhances endothelium-dependent vasodilatation mediated by NO. This effect could play an important role in the vascular protective effect of Epo.
    AJP Heart and Circulatory Physiology 08/2006; 291(2):H781-6. · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, the effect of subarachnoid hemorrhage (SAH) on the phosphorylation of endothelial NO synthase (eNOS) and the ability of recombinant erythropoietin (Epo) to augment this vasodilator mechanism in the spastic arteries were studied. Recombinant adenoviral vectors (10(9) plaque-forming units per animal) encoding genes for human Epo (AdEpo), and beta-galactosidase were injected immediately after injection of autologous arterial blood into the cisterna magna (day 0) of rabbits. Cerebral angiography was performed on day 0 and day 2, and basilar arteries were harvested for Western blots, measurement of cGMP levels, and analysis of vasomotor functions. Injection of autologous arterial blood into cisterna magna resulted in significant vasospasm of the basilar arteries. Despite the narrowing of arterial diameter and reduced expression of eNOS, expressions of phosphorylated protein kinase B (Akt) and phosphorylated eNOS were significantly increased in spastic arteries. Gene transfer of AdEpo reversed the vasospasm. AdEpo-transduced basilar arteries demonstrated significant augmentation of the endothelium-dependent relaxations to acetylcholine, whereas the relaxations to an NO donor, 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt, were not affected. Transduction with AdEpo further increased the expression of phosphorylated Akt and eNOS and elevated basal levels of cGMP in the spastic arteries. Phosphorylation of eNOS appears to be an adaptive mechanism activated during development of vasospasm. The vascular protective effect of Epo against cerebral vasospasm induced by SAH may be mediated in part by phosphorylation of Akt/eNOS.
    Stroke 01/2006; 36(12):2731-7. · 6.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutation of serine 1179 to aspartate on the endothelial NO synthase (eNOS) increases NO production in the absence of stimulation by agonists. The present study was designed to determine the effect of recombinant S1179DeNOS gene expression on the vasomotor function of human pial arteries. Pial arteries were isolated from 28 patients undergoing temporal lobectomy for intractable seizures. Adenoviral vectors (10(10) pfu/mL) encoding beta-galactosidase (AdCMVLacZ) or S1179DeNOS (AdCMVS1179DeNOS) were used for ex vivo gene transfer, and vasomotor function was evaluated in control and transduced arteries. Contractions to cumulative additions of U46619 were not affected by expression of LacZ or S1179DeNOS. Endothelium-dependent relaxations to bradykinin or endothelium-independent relaxations to Diethylaminodiazen-1-ium-1,2-dioate were significantly reduced in arteries expressing S1179DeNOS. A superoxide dismutase mimetic, manganese (III) tetrakis (4-benzoic acid) porphyrin chloride, failed to improve the reduced relaxations to bradykinin. The levels of cGMP were significantly elevated in arteries expressing S1179DeNOS. Our results support the concept that high local production of NO in pial arterial wall causes adaptive reduction of vasodilator reactivity to NO.
    Stroke 02/2005; 36(1):158-60. · 6.16 Impact Factor

Publication Stats

325 Citations
93.99 Total Impact Points

Institutions

  • 2005–2013
    • Mayo Clinic - Rochester
      • • Department of Anesthesiology
      • • Department of Molecular Pharmacology and Experimental Therapeutics
      Rochester, Minnesota, United States
  • 2006–2010
    • Mayo Foundation for Medical Education and Research
      • • Department of Anesthesiology
      • • Department of Molecular Pharmacology and Experimental Therapeutics
      Scottsdale, AZ, United States