Balvin H L Chua

East Tennessee State University, Johnson City, Tennessee, United States

Are you Balvin H L Chua?

Claim your profile

Publications (48)205.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Oligodendrocytes are the predominant cell type in white matter and are highly vulnerable to ischemic injury. The role of oligodendrocyte dysfunction in ischemic brain injury is unknown. In this study, we used a 24-amino acid peptide S14G-Humanin (HNG) to examine oligodendrogenesis and neurological functional recovery in a hypoxic/ischemic (H/I) neonatal model. Intraperitoneal HNG pre-treatment decreased infarct volume following H/I injury. Delayed HNG treatment 24 h after H/I injury did not reduce infarct volume but did decrease neurological deficits and brain atrophy. Delayed HNG treatment did not attenuate axonal demyelination at 48 h after H/I injury. However, at 14 d after H/I injury, delayed HNG treatment increased axonal remyelination, the thickness of corpus callosum at the midline, the number of Olig2+/BrdU+ cells, and levels of brain-derived neurotrophic factor (BDNF). Our results suggest that targeting oligodendrogenesis via delayed HNG treatment may represent a promising approach for the treatment of stroke. © 2014 Wiley Periodicals, Inc.
    Hippocampus 08/2014; · 5.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate, an excitatory neurotransmitter in the central nervous system, plays an important role in neurological disorders. Previous studies have shown that excess glutamate can cause oxidative stress in a hippocampal HT-22 cell line. 7,8-Dihydroxyflavone (7,8-DHF), a member of the flavonoid family, is a selective tyrosine kinase receptor B (TrkB) agonist that has neurotrophic effects in various neurological diseases such as stroke and Parkinson's disease. In this study, we found that there is no TrkB receptor in HT-22 cells. Despite this, our data demonstrate that 7,8-DHF still protects against glutamate-induced toxicity in HT-22 cells in a concentration-dependent manner, indicating that 7,8-DHF prevents cell death through other mechanisms rather than TrkB receptors in this cell model. We further show that 7,8-DHF increases cellular glutathione levels and reduces reactive oxygen species (ROS) production caused by glutamate in HT-22 cells. Finally, our data demonstrate that 7,8-DHF protects against hydrogen peroxide and menadione-induced cell death, suggesting that 7,8-DHF has an antioxidant effect. In summary, although 7,8-DHF is considered as a selective TrkB agonist, our results demonstrate that 7,8-DHF can still confer neuroprotection against glutamate-induced toxicity in HT-22 cells via its antioxidant activity.
    Neuroscience Letters 05/2011; 499(3):181-5. · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since several different pathways are involved in cerebral ischemia/reperfusion injury, combination therapy rather than monotherapy may be required for efficient neuroprotection. In this study, we examined the protective effects of an apoptosis inhibitor Gly(14)-humanin (HNG) and a necroptosis inhibitor necrostatin-1 (Nec-1) on hypoxia/ischemia/reperfusion injury. Cultured mouse primary cortical neurons were incubated with Nec-1, HNG or both in a hypoxia chamber for 60 min. Cell viability was determined by MTS assay at 24h after oxygen-glucose deprivation (OGD) treatment. Mice underwent middle cerebral artery occlusion for 75 min followed by 24h reperfusion. Mice were administered HNG and/or Nec-1 (i.c.v.) at 4h after reperfusion. Neurological deficits were evaluated and the cerebral infarct volume was determined by TTC staining. Nec-1 or HNG alone had protective effects on OGD-induced cell death. Combined treatment with Nec-1 and HNG resulted in more neuroprotection than Nec-1 or HNG alone. Treatment with HNG or Nec-1 reduced cerebral infarct volume from 59.3 ± 2.6% to 47.0 ± 2.3% and 47.1 ± 1.5%, respectively. Combined treatment with HNG and Nec-1 improved neurological scores and decreased infarct volume to 38.6 ± 1.5%. In summary, we demonstrated that the combination treatment of HNG and Nec-1 conferred synergistic neuroprotection on hypoxia/ischemia/reperfusion injury in vitro and in vivo. These findings provide a novel therapeutic strategy for the treatment of stroke by combining anti-apoptosis and anti-necroptosis therapy.
    Brain research 10/2010; 1355:189-94. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative cell death contributes to neuronal cell death in many neurological diseases such as stroke, brain trauma, and Alzheimer's disease. In this study, we explored the involvement of poly(ADP-ribose)-polymerase (PARP) in oxidative stress-induced necroptosis. We showed that PJ34, a potent and specific inhibitor of PARP, can completely inhibit glutamate-induced necroptosis in HT-22 cells. This protective effect was still observed 8h after glutamate exposure followed by PJ34 treatment. These results suggest that PARP activation plays a critical role in glutamate-induced necroptosis. We also examined the interaction between PARP and a necroptosis inhibitor called necrostatin-1 (Nec-1). Previously, we showed that Nec-1 protects against glutamate-induced oxytosis by inhibiting the translocation of cellular apoptosis-inducing factor (AIF), a downstream target of PARP-1 activation. In this study, Nec-1 reduced PARP activity but had no effect on the expression of PARP-1 in cells treated with glutamate. Nec-1 also did not protect against cell death mediated by the PARP activator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), although PJ34 did protect against MNNG-mediated cell death. These findings suggest that Nec-1 is not a direct PARP inhibitor and that its signaling target is located upstream of PARP.
    Brain research 05/2010; 1343:206-12. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transgenic mice with cardiac specific overexpression of mutated alphaB-crystallin (CryAB(R120G)) display Desmin-related myopathy (DRM) with dilated cardiomyopathy and heart failure. Our previous studies showed the presence of progressive mitochondrial abnormalities and activation of apoptotic cell death in CryAB(R120G) transgenic hearts. However, the role of mitochondrial dysfunction and apoptosis in the overall course of the disease was unclear. We tested the hypothesis that prevention of apoptosis would ameliorate CryAB(R120G) pathology and decrease morbidity. We crossed CryAB(R120G) mice to transgenic mice with cardiac specific overexpression of Bcl-2. Sustained Bcl-2 overexpression in CryAB(R120G) hearts prolonged CryAB(R120G) transgenic mice survival by 20%. This was associated with decreased mitochondrial abnormalities, restoration of cardiac function, prevention of cardiac hypertrophy, and attenuation of apoptosis. CryAB(R120G) misfolded protein aggregation was significantly reduced in the double transgenic. However, inhibition of apoptotic signaling resulted in the upregulation of autophagy and alternative death pathways, the net result being increased necrosis. Although Bcl-2 overexpression prolonged life in this DRM model, in the absence of apoptosis, another death pathway was activated.
    Circulation Research 04/2010; 106(9):1524-32. · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While the cardiotoxicity of doxorubicin (DOX) is known to be partly mediated through the generation of reactive oxygen species (ROS), the biochemical mechanisms by which ROS damage cardiomyocytes remain to be determined. This study investigates whether S-glutathionylation of mitochondrial proteins plays a role in DOX-induced myocardial injury using a line of transgenic mice expressing the human mitochondrial glutaredoxin 2 (Glrx2), a thiotransferase catalyzing the reduction as well as formation of protein-glutathione mixed disulfides, in cardiomyocytes. The total glutaredoxin (Glrx) activity was increased by 76% and 53 fold in homogenates of whole heart and isolated heart mitochondria of Glrx2 transgenic mice, respectively, compared to those of nontransgenic mice. The expression of other antioxidant enzymes, with the exception of glutaredoxin 1, was unaltered. Overexpression of Glrx2 completely prevents DOX-induced decreases in NAD- and FAD-linked state 3 respiration and respiratory control ratio (RCR) in heart mitochondria at days 1 and 5 of treatment. The extent of DOX-induced decline in left ventricular function and release of creatine kinase into circulation at day 5 of treatment was also greatly attenuated in Glrx2 transgenic mice. Further studies revealed that heart mitochondria overexpressing Glrx2 released less cytochrome c than did controls in response to treatment with tBid or a peptide encompassing the BH3 domain of Bid. Development of tolerance to DOX toxicity in transgenic mice is also associated with an increase in protein S-glutathionylation in heart mitochondria. Taken together, these results imply that S-glutathionylation of heart mitochondrial proteins plays a role in preventing DOX-induced cardiac injury.
    Biochimica et Biophysica Acta 12/2008; 1793(2):427-38. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Free-radical generation is one of the primary causes of myocardial ischemia/reperfusion (I/R) injury. Melatonin is an efficient free-radical scavenger and induces the expression of antioxidant enzymes. We have previously shown that melatonin can prevent free-radical-induced myocardial injury. To date, the mechanism underlying melatonin's cardioprotective effect is not clear. In this study, we assessed the ability of melatonin to protect against I/R injury in mice deficient in glutathione peroxidase 1 (Gpx1). Mice hearts were subjected to 40 min of global ischemia in vitro followed by 45 min of reperfusion. Myocardial I/R injury (expressed as % of recovery of left ventricular developed pressure x heart rate) was exacerbated in mice deficient in Gpx1 (51 +/- 3% for Gpx1+/+ mice versus 31 +/- 6% for Gpx1(-/-) mice, P < 0.05). Administration of melatonin for 30 min protected against I/R injury in both Gpx1+/+ mice (72 +/- 4.8%) and Gpx1(-/-) mice (63 +/- 4.7%). This protection was accompanied by a significant improvement in left ventricular end-diastolic pressure and a twofold decrease in lactate dehydrogenase (LDH) level released from melatonin-treated hearts. In another set of experiments, mice were subjected to 50 min of ligation of the left descending anterior coronary artery in vivo followed by 4 hr of reperfusion. The infarct sizes, expressed as the percentage of the area at risk, were significantly larger in Gpx1(-/-) mice than in Gpx1+/+ mice (75 +/- 9% versus 54 +/- 6%, P < 0.05) and were reduced significantly in melatonin-treated mice (31 +/- 3.7% Gpx1(-/-) mice and 33 +/- 6.0% Gpx1+/+ mice). In hearts subjected to 30 min of coronary artery occlusion followed by 3 hr of reperfusion, melatonin-treated hearts had significantly fewer in situ oligo ligation-positive myocytes and less protein nitration. Our results demonstrate that the cardioprotective function of melatonin is independent of Gpx1.
    Journal of Pineal Research 12/2008; 46(2):235-41. · 7.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bifunctional apoptosis regulator (BAR) is an endoplasmic reticulum protein that interacts with both the extrinsic and intrinsic apoptosis pathways. We hypothesize that over-expression of BAR Delta RING prevents apoptosis and injury following ischaemia/reperfusion (I/R) and attenuates doxorubicin (DOX)-induced cardiotoxicity. We generated a line of transgenic mice that carried a human BAR Delta RING transgene under the control of the mouse alpha-myosin heavy chain promoter. The RING domain, which binds ubiquitin conjugating enzymes, was deleted to prevent auto-ubiquitination of BAR and allow accumulation of the BAR protein, which binds apoptosis-regulating proteins. High levels of human BAR Delta RING transcripts and 42 KDa BAR Delta RING protein were expressed in the hearts of transgenic mice. When excised hearts were reperfused ex vivo for 45 min as Langendorff preparations after 45 min of global ischaemia, the functional recovery of the hearts, expressed as left ventricular developed pressure x heart rate, was 23 +/- 1.7% in the non-transgenic hearts compared with 51.5 +/- 4.3% in the transgenic hearts (P < 0.05). For in vivo studies, mice were subjected to 50 min of ligation of the left descending anterior coronary artery followed by 4 h of reperfusion. The infarct sizes following I/R injury, expressed as the percentage of the area at risk, were significantly smaller in the transgenic mice than in the non-transgenic mice (29 +/- 4 vs. 55 +/- 4%, P < 0.05). In hearts of mice subjected to cardiac I/R injury, BAR transgenic hearts had significantly fewer in situ oligo-ligation-positive cardiac cells (5.0 +/- 0.4 vs. 13.4 +/- 0.5%, P < 0.05). Over-expression of BAR Delta RING also significantly attenuated DOX-induced cardiac dysfunction and apoptosis. Our results demonstrate that over-expression of BAR Delta RING renders the heart more resistant to I/R injury and DOX-induced cardiotoxicity, and this protection correlates with reduced cardiomyocyte apoptosis.
    Cardiovascular Research 09/2008; 81(1):20-7. · 5.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Doxorubicin (DOX)-induced cardiotoxicity is thought to be mediated by the generation of superoxide anion radicals (superoxide) from redox cycling of DOX in cardiomyocyte mitochondria. Reduction of superoxide generates H(2)O(2), which diffuses throughout the cell and potentially contributes to oxidant-mediated cardiac injury. The mitochondrial and cytosolic glutathione peroxidase 1 (Gpx1) primarily functions to eradicate H(2)O(2). In this study, we hypothesize that Gpx1 plays a pivotal role in the clearance of H(2)O(2) generated by DOX. To test this hypothesis, we compared DOX-induced cardiac dysfunction, mitochondrial injury, protein nitration, and apoptosis in Gpx1-deficient and wild type mouse hearts. The Gpx1-deficient hearts showed increased susceptibility to DOX-induced acute functional derangements than wild type hearts, including impaired contractility and diastolic properties, decreased coronary flow rate, and reduced heart rate. In addition, DOX treatment impaired the mitochondrial function of Gpx1-deficient hearts. Specifically, Gpx1-deficient hearts treated with DOX demonstrated an increased rate of NAD-linked state 4 respiration and a decline in the P/O ratio relative to wild type hearts, suggesting that DOX uncouples the electron transfer chain and oxidative phosphorylation in Gpx1-deficient hearts. Finally, apoptosis and protein nitration were significantly increased in Gpx1-deficient mouse hearts compared to wild type hearts. These studies suggest that Gpx1 plays significant roles in protecting DOX-induced mitochondrial impairment and cardiac dysfunction in the acute phase.
    Biochimica et Biophysica Acta 07/2008; 1783(10):2020-9. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humanin (HN) is an anti-apoptotic peptide that suppresses neuronal cell death induced by Alzheimer's disease, prion protein fragments, and serum deprivation. Recently, we demonstrated that Gly14-HN (HNG), a variant of HN in which the 14th amino acid serine is replaced with glycine, can decrease apoptotic neuronal death and reduce infarct volume in a focal cerebral ischemia/reperfusion mouse model. In this study, we postulate that the mechanism of HNG's neuroprotective effect is mediated by the PI3K/Akt pathway. Oxygen-glucose deprivation (OGD) was performed in cultured mouse primary cortical neurons for 60 min. The effect of HNG and PI3K/Akt inhibitors on OGD-induced cell death was examined at 24 h after reperfusion. HNG increased cell viability after OGD in primary cortical neurons, whereas the PI3K/Akt inhibitors wortmannin and Akti-1/2 attenuated the protective effect of HNG. HNG rapidly increased Akt phosphorylation, an effect that was inhibited by wortmannin and Akti-1/2. Mouse brains were injected intraventricularly with HNG before being subjected to middle cerebral artery occlusion (MCAO). HNG treatment significantly elevated p-Akt levels after cerebral I/R injury and decreased infarct volume. The protective effect of HNG on infarct size was attenuated by wortmannin and Akti-1/2. Taken as a whole, these results suggest that PI3K/Akt activation mediates HNG's protective effect against hypoxia/ischemia reperfusion injury.
    Brain Research 07/2008; 1227:12-8. · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate, a major excitatory neurotransmitter in the CNS, plays a critical role in neurological disorders such as stroke and Parkinson's disease. Recent studies have suggested that glutamate excess can result in a form of cell death called glutamate-induced oxytosis. In this study, we explore the protective effects of necrostatin-1 (Nec-1), an inhibitor of necroptosis, on glutamate-induced oxytosis. We show that Nec-1 inhibits glutamate-induced oxytosis in HT-22 cells through a mechanism that involves an increase in cellular glutathione (GSH) levels as well as a reduction in reactive oxygen species production. However, Nec-1 had no protective effect on free radical-induced cell death caused by hydrogen peroxide or menadione, which suggests that Nec-1 has no antioxidant effects. Interestingly, the protective effect of Nec-1 was still observed when cellular GSH was depleted by buthionine sulfoximine, a specific and irreversible inhibitor of glutamylcysteine synthetase. Our study further demonstrates that Nec-1 significantly blocks the nuclear translocation of apoptosis-inducing factor (a marker of caspase-independent programmed cell death) and inhibits the integration of Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (a pro-death member of the Bcl-2 family) into the mitochondrial membrane. Taken together, these results demonstrate for the first time that Nec-1 prevents glutamate-induced oxytosis in HT-22 cells through GSH related as well as apoptosis-inducing factor and Bcl-2/adenovirus E1B 19 kDa-interacting protein 3-related pathways.
    Journal of Neurochemistry 01/2008; 103(5):2004-14. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the physiological function of glutaredoxin, a thiotransferase catalyzing the reduction of mixed disulfides of protein and glutathione, we generated a line of knockout mice deficient in the cytosolic glutaredoxin 1 (Grx1). To our surprise, mice deficient in Grx1 were not more susceptible to acute oxidative insults in models of heart and lung injury induced by ischemia/reperfusion and hyperoxia, respectively, suggesting that either changes in S-glutathionylation status of cytosolic proteins are not the major cause of such tissue injury or developmental adaptation in the Glrx1-knockout animals alters the response to oxidative insult. In contrast, mouse embryonic fibroblasts (MEFs) isolated from Grx1-deficient mice displayed an increased vulnerability to diquat and paraquat, but they were not more susceptible to cell death induced by hydrogen peroxide (H(2)O(2)) and diamide. A deficiency in Grx1 also sensitized MEFs to protein S-glutathionylation in response to H(2)O(2) treatment and retarded deglutathionylation of the S-glutathionylated proteins, especially for a single prominent protein band. Additional experiments showed that MEFs lacking Grx1 were more tolerant to apoptosis induced by tumor necrosis factor alphaplus actinomycin D. These findings suggest that various oxidants may damage the cells via distinct mechanisms in which the action of Grx1 may or may not be protective and Grx1 may exert its function on specific target proteins.
    Free Radical Biology and Medicine 12/2007; 43(9):1299-312. · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistin, an adipocyte-derived hormone, is thought to represent a link between obesity and insulin-resistant diabetes. The potential role of resistin as a cardioprotective agent has not been explored. Our hypothesis is that resistin has a cardioprotective effect that is mediated by the resistin receptor-coupled activation of PI3K/Akt/PKC/K(ATP) dependent pathways. Our studies demonstrated that pretreatment of mouse hearts with 10 nM resistin for 5 min protected the heart against I/R injury in a mouse heart perfusion model. When mouse hearts were subjected to 60 min of LAD ligation followed by 4 h of reperfusion, resistin pretreatment (33 microg/kg) for 30 min or 24 h before ligation was able to significantly reduce the infarct size/risk area. The protective effect of resistin was abolished by wortmannin, as well as by an Akt inhibitor, triciribine. Resistin's protective effect was absent in Akt kinase-deficient mutant mice. The protective effect was also blocked by chelerythrine, a PKC inhibitor, and epsilonV1-2, a PKCepsilon inhibitor. Finally, the protective effect was blocked by 5-hydroxydecanoate, which blocks the opening of mitoK(ATP) channels. Resistin-induced Akt phosphorylation in HL-1 cells was inhibited by wortmannin and triciribine. Resistin also induced PKCepsilon phosphorylation, which was blocked by triciribine. These studies demonstrate that resistin's cardioprotective effect is mediated by PI3K/Akt/PKC dependent pathways. In addition to cardiomyocytes, resistin also induced Akt phosphorylation in endothelial cells and smooth muscle cells, suggesting that resistin receptors are present in these cells. The effect of resistin on apoptosis was assessed in hearts subjected to 30 min of ischemia and 3 h of reperfusion. There were significantly fewer in situ oligo ligation-positive myocyte nuclei in mice treated with resistin. Our results show that resistin can dramatically reduce apoptosis and infarct size, thus protecting the heart against I/R injury.
    Journal of Molecular and Cellular Cardiology 12/2007; 43(5):601-9. · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of cardiac myocytes in heart failure is thought to occur largely through an apoptotic process. Here we show that heart failure can also be precipitated through myocyte necrosis associated with Ca2+ overload. Inducible transgenic mice with enhanced sarcolemmal L-type Ca2+ channel (LTCC) activity showed progressive myocyte necrosis that led to pump dysfunction and premature death, effects that were dramatically enhanced by acute stimulation of beta-adrenergic receptors. Enhanced Ca2+ influx-induced cellular necrosis and cardiomyopathy was prevented with either LTCC blockers or beta-adrenergic receptor antagonists, demonstrating a proximal relationship among beta-adrenergic receptor function, Ca2+ handling, and heart failure progression through necrotic cell loss. Mechanistically, loss of cyclophilin D, a regulator of the mitochondrial permeability transition pore that underpins necrosis, blocked Ca2+ influx-induced necrosis of myocytes, heart failure, and isoproterenol-induced premature death. In contrast, overexpression of the antiapoptotic factor Bcl-2 was ineffective in mitigating heart failure and death associated with excess Ca2+ influx and acute beta-adrenergic receptor stimulation. This paradigm of mitochondrial- and necrosis-dependent heart failure was also observed in other mouse models of disease, which supports the concept that heart failure is a pleiotropic disorder that involves not only apoptosis, but also necrotic loss of myocytes in association with dysregulated Ca2+ handling and beta-adrenergic receptor signaling.
    Journal of Clinical Investigation 10/2007; 117(9):2431-44. · 12.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitors of apoptosis proteins (IAPs) are key intrinsic regulators of caspases-3 and -7. During ischemia, IAP-2 is upregulated dramatically, while the other IAPs show little or no change. To test whether IAP-2 prevents cardiac apoptosis and injury following ischemia/reperfusion, we generated a line of transgenic mice that carried a mouse IAP-2 transgene. High levels of mouse IAP-2 transcripts and 70 kDa IAP-2 were expressed in the hearts of transgenic mice, whereas IAP-1 and XIAP levels remained the same. Immunohistochemical studies revealed more intense staining of IAP-2 in the myocytes of transgenic mouse hearts. To assess the role of IAP-2 in I/R injury, the transgenic mice were subjected to ligation of the left descending anterior coronary artery ligation followed by reperfusion. The infarct sizes, expressed as the percentage of the area at risk, were significantly smaller in the transgenic mice than in the non-transgenic mice (30+/-2% vs. 44+/-2%, respectively, P<0.05). This protection was accompanied by a decrease of the serum level of troponin I in the transgenic mice. IAP-2 transgenic hearts had significantly fewer TUNEL-positive cardiac cells, which indicated an attenuation of apoptosis. Our results demonstrate that overexpression of IAP-2 renders the heart more resistant to apoptosis and I/R injury.
    Biochimica et Biophysica Acta 04/2007; 1773(4):577-83. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humanin (HN) is a 24-amino acid peptide best known for its ability to protect neurons from damage caused by Alzheimer disease-related proteins. This study examines the neuroprotective effects of HNG (a potent form of HN) on focal cerebral ischemia/reperfusion injury in mice. Mice underwent middle cerebral artery occlusion for 75 minutes followed by 24-hour reperfusion. Mice were pretreated with 0.1 microg HNG (intracerebroventricularly) 30 minutes before ischemia; posttreated at 0, 2, 4, and 6 hours after ischemia; or pretreated with 1 microg HNG (intraperitoneally) 1 hour before ischemia. Neurological deficits and cerebral infarct volume were evaluated. Neuronal apoptosis and activated poly(ADP-ribose) polymerase expression were measured by TUNEL and Western blot analysis, respectively. Activated ERKs were examined by Western blot analysis. Pretreatment with 0.1 microg HNG (intracerebroventricularly) 30 minutes before ischemia reduced cerebral infarct volume from 56.2+/-3.0% to 26.1+/-1.4% (P<0.01). HNG posttreatment after 4 hours of reperfusion reduced cerebral infarct volume to 45.6+/-2.6% (P<0.05). Pretreatment with 1 microg HNG (intraperitoneally) 1 hour before ischemia or posttreatment after 2 hours of reperfusion reduced cerebral infarct volume significantly. HNG also significantly improved neurological function and inhibited both neuronal apoptosis as well as poly(ADP-ribose) polymerase activation. A significant decrease of phospho-ERK was observed in mice treated with HNG, whereas phospho-JNK and phospho-p38 levels were not altered. Our results demonstrate that HNG protects against cerebral ischemia/reperfusion injury in mice. HNG offers neuroprotection in vivo at least in part by inhibiting ERK activation. These findings suggest a potential therapeutic role for HNG in the treatment of stroke.
    Stroke 11/2006; 37(10):2613-9. · 6.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cardiac toxicity of doxorubicin (DOX), a potent anticancer anthracycline antibiotic, is believed to be mediated through the generation of reactive oxygen species (ROS) in cardiomyocytes. This study aims to determine the function of cellular glutathione peroxidase (Gpx1), which is located in both mitochondria and cytosol, in defense against DOX-induced cardiomyopathy using a line of transgenic mice with cardiac overexpression of Gpx1. The Gpx1-overexpressing hearts were markedly more resistant than nontransgenic hearts to DOX-induced acute functional derangements, including impaired contractility and diastolic properties, decreased coronary flow rate, and reduced heart rate. In addition, DOX treatment impairs mitochondrial function of nontransgenic hearts as evident in a decreased rate of NAD-linked State 3 respiration, presumably a result of inactivation of complex I activity. This is associated with increases in the rates of NAD- and FAD-linked State 4 respiration and declines in P/O ratio, suggesting that the electron transfer and oxidative phosphorylation are uncoupled in these mitochondrial samples. These functional deficits of mitochondria could be largely prevented by Gpx1 overexpression. Taken together, these studies provide new evidence to further support the role of ROS, particularly H(2)O(2) and/or fatty acid hydroperoxides, in causing contractile and mitochondrial dysfunction in mouse hearts acutely exposed to DOX.
    Free Radical Biology and Medicine 08/2006; 41(1):46-55. · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Doxorubicin (Dox) is a chemotherapeutic agent that causes significant cardiotoxicity. We showed previously that Dox activates p53 and induces apoptosis in mouse hearts. This study was designed to elucidate the molecular events that lead to p53 stabilization, to examine the pathways involved in Dox-induced apoptosis, and to evaluate the effectiveness of pifithrin-alpha (PFT-alpha), a p53 inhibitor, in blocking apoptosis of rat H9c2 myoblasts. H9c2 cells that were exposed to 5 muM Dox had elevated levels of p53 and phosphorylated p53 at Ser15. Dox also triggered a transient activation of p38, p42/p44ERK, and p46/p54JNK MAP kinases. Caspase activity assays and Western blot analysis showed that H9c2 cells treated with Dox for 16 h had marked increase in the levels of caspases-2, -3, -8, -9, -12, Fas, and cleaved poly(ADP ribose) polymerase (PARP). There was a concomitant increase in p53 binding activity, cytochrome c release, and apoptosis. These results suggest that Dox can trigger intrinsic, extrinsic, and endoplasmic reticulum-associated apoptotic pathways. Pretreatment of cells with PFT-alpha followed by Dox administration attenuated Dox-induced increases in p53 levels and p53 binding activity and partially blocked the activation of p46/p54JNK and p42/p44ERK. PFT-alpha also led to decreased levels of caspases-2, -3, -8, -9, -12, Fas, PARP, cytochrome c release, and apoptosis. Our results suggest that p53 stabilization is a focal point of Dox-induced apoptosis and that PFT-alpha interferes with multiple steps of Dox-induced apoptosis.
    AJP Heart and Circulatory Physiology 07/2006; 290(6):H2606-13. · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present experiments were designed to evaluate the effects of pifithrin-alpha (PFT-alpha), which is a p53 inhibitor, on doxorubicin (DOX)-induced apoptosis and cardiac injury. Administration of DOX (22.5 mg/kg ip) in mice upregulated the mRNA levels of Bax and MDM2, whereas PFT-alpha attenuated those levels when administered at a total dose of 4.4 mg/kg at 30 min before and 3 h after DOX challenge. DOX treatment led to an upregulation of p53 protein levels, which was preceded by elevated levels of phosphorylated p53 at Ser15. PFT-alpha had no effect on the level of p53 or its phosphorylated form. The protein levels of Bax and MDM2 were elevated by DOX and attenuated by PFT-alpha. DOX gave rise to increased apoptosis-positive nuclei in cardiac cells, elevated serum creatine phosphokinase, ultrastructural alterations, and cardiac dysfunction. PFT-alpha offered protection against all of the aforementioned changes. Finally, PFT-alpha did not interfere with the antitumor potency of DOX. This study demonstrates that PFT-alpha effectively inhibits DOX-induced cardiomyocyte apoptosis, which suggests that PFT-alpha has the potential to protect cancer patients against DOX-induced cardiac injury.
    AJP Heart and Circulatory Physiology 04/2004; 286(3):H933-9. · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids are widely used as anti-inflammatory and chemotherapeutic agents. However, prolonged use of glucocorticoids leads to osteoporosis. This study was designed to examine the mechanism of dexamethasone (DEX)-induced apoptosis in murine osteoblastic MC3T3-E1 cells. Total RNA was extracted from MC3T3-E1 cells treated with 10(-7) M DEX for 6 h. DEX exerted a variety of effects on apoptotic gene expression in osteoblasts. Ribonuclease protection assays (RPA) revealed that DEX upregulated mRNA levels of caspases-1, -3, -6, -8, -11, -12, and bcl-XL. Western blot analysis showed enhanced processing of these caspases, with the appearance of their activated enzymes 8 h after DEX treatment. In addition, DEX also induced the activation of caspase-9. DEX elevated the levels of cleaved poly(ADP-ribose) polymerase and lamin A, a caspase-3 and a caspase-6 substrate, respectively. Expression of bcl-XL protein level was upregulated by DEX. Cytochrome c release was detected in the cytosol of DEX-treated cells. Furthermore, caspase-3 enzyme activity was elevated by 2-fold after DEX treatment for 7 h. Finally, early apoptotic cells were detected in cells treated with DEX for 3 h. Our results demonstrate that DEX-induced apoptosis involves gene activation of a number of caspases.
    Biochimica et Biophysica Acta 10/2003; 1642(1-2):79-85. · 4.66 Impact Factor

Publication Stats

2k Citations
205.27 Total Impact Points

Institutions

  • 1996–2011
    • East Tennessee State University
      Johnson City, Tennessee, United States
  • 2010
    • Soochow University (PRC)
      Wu-hsien, Jiangsu Sheng, China
  • 2008
    • Tennessee State University
      Nashville, Tennessee, United States
  • 2002
    • University of Miami Miller School of Medicine
      • Division of Clinical Pharmacology
      Miami, FL, United States
  • 1997–2001
    • Saint James School Of Medicine
      Park Ridge, Illinois, United States
  • 1989–1994
    • Wayne State University
      • • Department of Pathology
      • • Department of Immunology and Microbiology
      Detroit, MI, United States