Michael J Garabedian

Duke University, Durham, North Carolina, United States

Are you Michael J Garabedian?

Claim your profile

Publications (96)570.27 Total impact

  • Paul M Levine, Michael J Garabedian, Kent Kirshenbaum
    [Show abstract] [Hide abstract]
    ABSTRACT: The Androgen Receptor (AR) is a major therapeutic target in prostate cancer pharmacology. Progression of prostate cancer has been linked to elevated expression of AR in malignant tissue, suggesting that AR plays a central role in prostate cancer cell biology. Potent therapeutic agents can be precisely crafted to specifically target AR, potentially averting systemic toxicities associated with non-specific chemotherapies. In this review, we describe various strategies to generate steroid conjugates that can selectively engage AR with high potency. Analogies to recent developments in non-steroidal conjugates targeting AR are also evaluated. Particular focus is placed on potential applications in AR pharmacology. The review culminates with a description of future prospects for targeting AR.
    Journal of Medicinal Chemistry 06/2014; · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although great advances have been made in the treatment of pediatric acute lymphoblastic leukemia, up to one out of five patients will relapse and their prognosis thereafter is dismal. We have previously identified recurrent deletions in TBL1XR1, which encodes for an F-box like protein responsible for regulating the nuclear hormone repressor (NCoR) complex stability. Here we model TBL1XR1 deletions in B-precursor ALL cell lines and show TBL1XR1 knockdown results in reduced glucocorticoid receptor recruitment to glucocorticoid responsive genes, and ultimately decreased glucocorticoid signaling caused by increased levels of NCoR1 and HDAC3. Reduction in glucocorticoid signaling in TBL1XR1 depleted lines resulted in resistance to glucocorticoid agonists, but not to other chemotherapeutic agents. Importantly, we show that treatment with the HDAC inhibitor SAHA restores sensitivity to prednisolone in TBL1XR1 depleted cells. Altogether, our data indicates that loss of TBL1XR1 is a novel driver of glucocorticoid-resistance in ALL and that epigenetic therapy may have future application in restoring drug sensitivity at relapse.
    Journal of Biological Chemistry 06/2014; · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Androgen receptor (AR) is the major therapeutic target in aggressive prostate cancer. However, targeting AR alone can result in drug resistance and disease recurrence. Therefore, simultaneous targeting of multiple pathways could in principle be an effective approach to treating prostate cancer. Here we provide proof-of-concept that a small-molecule inhibitor of nuclear β-catenin activity (called C3) can inhibit both the AR and β-catenin-signaling pathways that are often misregulated in prostate cancer. Treatment with C3 ablated prostate cancer cell growth by disruption of both β-catenin/T-cell factor and β-catenin/AR protein interaction, reflecting the fact that T-cell factor and AR have overlapping binding sites on β-catenin. Given that AR interacts with, and is transcriptionally regulated by β-catenin, C3 treatment also resulted in decreased occupancy of β-catenin on the AR promoter and diminished AR and AR/β-catenin target gene expression. Interestingly, C3 treatment resulted in decreased AR binding to target genes accompanied by decreased recruitment of an AR and β-catenin cofactor, coactivator-associated arginine methyltransferase 1 (CARM1), providing insight into the unrecognized function of β-catenin in prostate cancer. Importantly, C3 inhibited tumor growth in an in vivo xenograft model and blocked renewal of bicalutamide-resistant sphere-forming cells, indicating the therapeutic potential of this approach.
    Proceedings of the National Academy of Sciences 09/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal glucocorticoid and neurotrophin signaling have been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a non-phosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF and Dex regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism.
    Molecular and Cellular Biology 07/2013; · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Androgen receptor (AR) expression in breast cancers may serve as a prognostic and predictive marker. We examined the expression pattern of AR and its phosphorylated forms, Ser-213 (AR-Ser[P]-213) and Ser-650 (AR-Ser[P]-650), in breast cancer and evaluated their association with clinicopathological parameters. METHODS: Immunohistochemistry was performed on primary and distant metastatic breast cancers and benign breast tissue using antibodies against AR, AR-Ser(P)-213, and AR-Ser(P)-650. The levels of cytoplasmic and nuclear expression were scored semiquantitatively using a histoscore. RESULTS: Nuclear staining of AR was observed in all benign breast tissue and 67% of cancer cases. Nuclear and cytoplasmic AR-Ser(P)-213 was increased in breast cancers 2-fold (P = .0014) and 1.7-fold (P = .05), respectively, compared with benign controls, whereas nuclear and cytoplasmic AR-Ser(P)-650 expression was decreased in tumors by 1.9-fold and 1.7-fold (both P < .0001), respectively. Increased expression of nuclear or cytoplasmic AR-Ser(P)-213 was observed in metastatic breast cancers (1.3-fold, P = .05), ER-negative (2.6-fold, P = .001), and invasive ductal carcinoma (6.8-fold, P = .04). AR-Ser(P)-650 expression was downregulated in lymph node-positive breast cancers (1.4-fold, P = .02) but was upregulated in invasive ductal carcinomas (3.2-fold, P < .0001) and metastases (1.5-fold, P = .003). Moreover, in ER-negative breast cancers, nuclear AR-Ser(P)-650 was decreased (1.4-fold, P = .005), and cytoplasmic AR-Ser(P)-650 was increased (1.4-fold, P = .003). CONCLUSIONS: AR and its phosphorylation at serines 213 and 650 are differentially expressed in breast cancer tumorigenesis and progression. Phosphorylation of AR at serines 213 and 650 is increased in ER-negative breast cancers, ductal carcinomas, and metastases and may have predictive value in breast cancer prognosis. Cancer 2013;000:000-000. © 2013 American Cancer Society.
    Cancer 04/2013; · 5.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The androgen receptor (AR) is a mediator of both androgen-dependent and castration-resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA-approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR-negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.
    Genome Research 02/2013; · 13.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous estrogens that are synthesized in the body impact gene regulation by activating estrogen receptors in diverse cell types. Exogenous compounds that have estrogenic properties can also be found circulating in the blood in both children and adults. The genome-wide impact of these environmental estrogens on gene regulation is unclear. To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq to identify estrogen receptor 1 (ESR1; previously estrogen receptor α) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ESR1 binding sites and >50 gene expression changes, representing a subset of E2-induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ESR1 binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ESR1 binding site but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ESR1 on a genome-wide scale, although with lower potency resulting in less ESR1 binding sites and less gene expression changes compared to the endogenous estrogen, E2.
    Genome Research 09/2012; · 13.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integration of cellular signaling pathways with androgen receptor (AR) signaling can be achieved through phosphorylation of AR by cellular kinases. However, the kinases responsible for phosphorylating the AR at numerous sites and the functional consequences of AR phosphorylation are only partially understood. Bioinformatic analysis revealed AR serine 213 (S213) as a putative substrate for PIM1, a kinase overexpressed in prostate cancer. Therefore, phosphorylation of AR serine 213 by PIM1 was examined using a phosphorylation site-specific antibody. Wild-type PIM1, but not catalytically inactive PIM1, specifically phosphorylated AR but not an AR serine-to-alanine mutant (S213A). In vitro kinase assays confirmed that PIM1 can phosphorylate AR S213 in a ligand-independent manner and cell type-specific phosphorylation was observed in prostate cancer cell lines. Upon PIM1 overexpression, AR phosphorylation was observed in the absence of hormone and was further increased in the presence of hormone in LNCaP, LNCaP-abl and VCaP cells. Moreover, phosphorylation of AR was reduced in the presence of PIM kinase inhibitors. An examination of AR-mediated transcription showed that reporter gene activity was reduced in the presence of PIM1 and wild-type AR, but not S213A mutant AR. Androgen-mediated transcription of endogenous PSA, Nkx3.1 and IGFBP5 was also decreased in the presence of PIM1, whereas IL6, cyclin A1 and caveolin 2 were increased. Immunohistochemical analysis of prostate cancer tissue microarrays showed significant P-AR S213 expression that was associated with hormone refractory prostate cancers, likely identifying cells with catalytically active PIM1. In addition, prostate cancers expressing a high level of P-AR S213 were twice as likely to be from biochemically recurrent cancers. Thus, AR phosphorylation by PIM1 at S213 impacts gene transcription and is highly prevalent in aggressive prostate cancer.Oncogene advance online publication, 17 September 2012; doi:10.1038/onc.2012.412.
    Oncogene 09/2012; · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sustained treatment of prostate cancer with androgen receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology.
    ACS Chemical Biology 08/2012; 7(10):1693-701. · 5.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The GR gene produces GRα and GRβ isoforms by alternative splicing of a C-terminal exon. GRα binds glucocorticoids, modulates transcription in a glucocorticoid dependent manner and has a growth inhibitory role in prostate cells. Due to this role glucocorticoids are often used to treat androgen independent prostate cancer. In contrast, GRβ has intrinsic transcriptional activity and binds mifepristone (RU486) but not glucocorticoids to control gene expression. To our knowledge the role of GRβ in prostate cell proliferation is unknown. We determined GRβ levels in various prostate cancer cell lines by reverse transcriptase-polymerase chain reaction and Western blot. The effect of GRβ on the kinetics of prostate cancer cell growth was determined by cell counting and flow cytometry upon mifepristone and dexamethasone treatment. Cell proliferation was also examined after siRNA mediated knockdown and over expression of GRβ. GRβ mRNA and protein were up-regulated in LNCaP cells that over expressed the androgen receptor co-factor ARA70β. Treatment of LNCaP-ARA70β with mifepristone or siRNA targeting GRβ inhibited proliferation compared to that of parental LNCaP cells. The immortal but nontumorigenic RC165 prostate cell line and the tumorigenic DU145 prostate cell line with endogenous GRβ also showed partial growth reduction upon GRβ depletion but to a lesser extent than LNCaP-ARA70β cells. The growth stimulatory effect of ARA70β on LNCaP cells was partly GRβ dependent, as was the proliferation of RC165 cells and to a lesser extent of DU145 cells. Results suggest that patients with a primary tumor that expresses GRβ and ARA70β may benefit from mifepristone.
    The Journal of urology 07/2012; 188(3):981-8. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids regulate gene expression by binding and activating the glucocorticoid receptor (GR). While ligand affinity determines the global sensitivity of the response, additional proteins act on the genome to tune sensitivity of some genes. However, the genomic extent and specificity of dose-specific glucocorticoid responses are unknown. We show that dose-specific glucocorticoid responses are extraordinarily specific at the genomic scale, able to distinctly express a single gene, the circadian rhythm gene for Period 1 (PER1), at concentrations consistent with the nighttime nadir of human cortisol. We mapped the PER1 response to a single GR binding site. The specific GR binding sequence did not impact sensitivity, and we instead attributed the response to a combination of additional transcription factors and chromatin accessibility acting in the same locus. The PER1 hypersensitive response element is conserved in the mouse, where we found similar upregulation of Per1 in pituitary cells. Targeted and transient overexpression of PER1 led to regulation of additional circadian rhythm genes hours later, suggesting that hypersensitive expression of PER1 impacts circadian gene expression. These findings show that hypersensitive GR binding occurs throughout the genome, drives targeted gene expression, and may be important to endocrine mediation of peripheral circadian rhythms.
    Molecular and Cellular Biology 07/2012; 32(18):3756-67. · 5.04 Impact Factor
  • Paul M Levine, Keren Imberg, Michael J Garabedian, Kent Kirshenbaum
    [Show abstract] [Hide abstract]
    ABSTRACT: We introduce a family of multivalent peptidomimetic conjugates that modulate the activity of the androgen receptor (AR). Bioactive ethisterone ligands were conjugated to a set of sequence-specific peptoid oligomers. Certain multivalent peptoid conjugates enhance AR-mediated transcriptional activation. We identify a linear and a cyclic conjugate that exhibit potent anti-proliferative activity in LNCaP-abl cells, a model of therapy-resistant prostate cancer. The linear conjugate blocks AR action by competing for ligand binding. In contrast, the cyclic conjugate is active despite its inability to compete against endogenous ligand for binding to AR in vitro, suggesting a non-competitive mode of action. These results establish a versatile platform to design competitive and non-competitive AR modulators with potential therapeutic significance.
    Journal of the American Chemical Society 04/2012; 134(16):6912-5. · 11.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoid (GC) induction of the tyrosine aminotransferase (TAT) gene by the glucocorticoid receptor (GR) is a classic model used to investigate steroid-regulated gene expression. Classic studies analyzing GC-induction of the TAT gene demonstrated that despite having very high affinity for GR, some steroids cannot induce maximal TAT enzyme activity, but the molecular basis for this phenomenon is unknown. Here, we used RT-PCR and chromatin immunoprecipitation to determine TAT mRNA accumulation and GR recruitment to the TAT promoter (TAT-GRE) in rat hepatoma cells induced by seven GR ligands: dexamethasone (DEX), cortisol (CRT), corticosterone (CCS), 11-deoxycorticosterone (DOC), aldosterone (ALD), progesterone (PRG) and 17-hydroxyprogesterone (17P). As expected, DEX, CRT, CCS and ALD all induced both TAT mRNA and GR recruitment to the TAT-GRE, while PRG and 17P did not. However, while DOC could not induce significant TAT mRNA, it did induce robust GR occupancy of the TAT-GRE. DOC also induced recruitment of the histone acetyltransferase p300 to the TAT-GRE as efficiently as DEX. These DOC-induced effects recapitulated at another GR target gene (sulfonyltransferase 1A1), and DOC also failed to promote the multiple changes in gene expression required for glucocorticoid-dependent 3T3-L1 adipocyte differentiation. Structural simulations and protease sensitivity assays suggest that DOC and DEX induce different conformations in GR. Thus, although steroids that bind GR with high affinity can induce GR and p300 occupancy of target promoters, they may not induce a conformation of GR capable of activating transcription.
    Biochemical and Biophysical Research Communications 03/2012; 420(4):839-44. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.
    Proceedings of the National Academy of Sciences 01/2012; 109(4):1305-10. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a mouse model of atherosclerotic plaque regression in which an atherosclerotic aortic arch from a hyperlipidemic donor is transplanted into a normolipidemic recipient, resulting in rapid elimination of cholesterol and monocyte-derived macrophage cells (CD68+) from transplanted vessel walls. To gain a comprehensive view of the differences in gene expression patterns in macrophages associated with regressing compared with progressing atherosclerotic plaque, we compared mRNA expression patterns in CD68+ macrophages extracted from plaque in aortic aches transplanted into normolipidemic or into hyperlipidemic recipients. In CD68+ cells from regressing plaque we observed that genes associated with the contractile apparatus responsible for cellular movement (e.g. actin and myosin) were up-regulated whereas genes related to cell adhesion (e.g. cadherins, vinculin) were down-regulated. In addition, CD68+ cells from regressing plaque were characterized by enhanced expression of genes associated with an anti-inflammatory M2 macrophage phenotype, including arginase I, CD163 and the C-lectin receptor. Our analysis suggests that in regressing plaque CD68+ cells preferentially express genes that reduce cellular adhesion, enhance cellular motility, and overall act to suppress inflammation.
    PLoS ONE 01/2012; 7(6):e39790. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p23 is a chaperone with multiple heat shock protein 90 dependent and independent cellular functions, including stabilizing unliganded steroid receptors and modulating receptor-DNA dynamics. p23 protein is also up-regulated in several cancers, notably breast cancer. We previously demonstrated that higher expression of p23 in the estrogen-dependent breast cancer line MCF-7 (MCF-7+p23) selectively increased estrogen receptor (ER) target gene transcription and ER recruitment to regulatory elements, promoted cell invasion, and predicted a poor prognosis in breast cancer patients. To probe the impact of p23 on ER binding throughout the human genome, we compared ER occupancy in MCF-7+p23 cells relative to MCF-7-control cells by using chromatin immunoprecipitation followed by ultrahigh-throughput DNA sequencing in the absence and presence of 17β-estradiol (E2) treatment. We found that increased expression of p23 resulted in a 230% increase in the number of E2-induced ER-binding sites throughout the genome compared with control cells and also increased ER binding under basal conditions. Motif analysis indicated that ER binds to a similar DNA sequence regardless of p23 status. We also observed that ER tends to bind closer to genes that were induced, rather than repressed by either E2 treatment or p23 overexpression. Interestingly, we also found that the increased invasion of MCF-7+p23 cells was not only p23 dependent but also ER dependent. Thus, a small increase in the expression of p23 amplifies ER-binding genome wide and, in combination with ER, elicits an invasive phenotype. This makes p23 an attractive target for combating tumor cell metastasis in breast cancer patients.
    Molecular Endocrinology 11/2011; 26(1):194-202. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Androgen receptor (AR)-mediated transcription is modulated by interaction with coregulatory proteins. We demonstrate that the unconventional prefoldin RPB5 interactor (URI) is a new regulator of AR transcription and is critical for antagonist (bicalutamide) action. URI is phosphorylated upon androgen treatment, suggesting communication between the URI and AR signaling pathways. Whereas depletion of URI enhances AR-mediated gene transcription, overexpression of URI suppresses AR transcriptional activation and anchorage-independent prostate cancer cell growth. Repression of AR-mediated transcription is achieved, in part, by URI binding and regulation of androgen receptor trapped clone 27 (Art-27), a previously characterized AR corepressor. Consistent with this idea, genome-wide expression profiling in prostate cancer cells upon depletion of URI or Art-27 reveals substantially overlapping patterns of gene expression. Further, depletion of URI increases the expression of the AR target gene NKX-3.1, decreases the recruitment of Art-27, and increases AR occupancy at the NKX-3.1 promoter. While Art-27 can bind AR directly, URI is bound to chromatin prior to hormone-dependent recruitment of AR, suggesting a role for URI in modulating AR recruitment to target genes.
    Molecular and Cellular Biology 09/2011; 31(17):3639-52. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of liver X receptors (LXRs) inhibits the progression of atherosclerosis and promotes regression of existing lesions. In addition, LXRα levels are high in regressive plaques. Macrophage arginase 1 (Arg1) expression is inversely correlated with atherosclerosis progression and is markedly decreased in foam cells within the lesion. To investigate LXRα regulation of Arg1 expression in cultured macrophages and atherosclerotic regressive lesions. We found that Arg1 expression is enhanced in CD68+ cells from regressive versus progressive lesions in a murine aortic arch transplant model. In cultured macrophages, ligand-activated LXRα markedly enhances basal and interleukin-4-induced Arg1 mRNA and protein expression as well as promoter activity. This LXRα-enhanced Arg1 expression correlates with a reduction in nitric oxide levels. Moreover, Arg1 expression within regressive atherosclerotic plaques is LXRα-dependent, as enhanced expression of Arg1 in regressive lesions is impaired in LXRα-deficient CD68+ cells. LXRα does not bind to the Arg1 promoter but instead promotes the interaction between PU.1 and interferon regulatory factor (IRF)8 transcription factors and induces their binding of a novel composite element. Accordingly, knockdown of either IRF8 or PU.1 strongly impairs LXRα regulation of Arg1 expression in macrophage cells. Finally, we demonstrate that LXRα binds the IRF8 locus and its activation increases IRF8 mRNA and protein levels in these cells. This work implicates Arg1 in atherosclerosis regression and identifies LXRα as a novel regulator of Arg1 and IRF8 in macrophages. Furthermore, it provides a unique molecular mechanism by which LXRα regulates macrophage target gene expression through PU.1 and IRF8.
    Circulation Research 08/2011; 109(5):492-501. · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In parallel with evolutionary developments, the Hsp90 molecular chaperone system shifted from a simple prokaryotic factor into an expansive network that includes a variety of cochaperones. We have taken high-throughput genomic and proteomic approaches to better understand the abundant yeast p23 cochaperone Sba1. Our work revealed an unexpected p23 network that displayed considerable independence from known Hsp90 clients. Additionally, our data uncovered a broad nuclear role for p23, contrasting with the historical dogma of restricted cytosolic activities for molecular chaperones. Validation studies demonstrated that yeast p23 was required for proper Golgi function and ribosome biogenesis, and was necessary for efficient DNA repair from a wide range of mutagens. Notably, mammalian p23 had conserved roles in these pathways as well as being necessary for proper cell mobility. Taken together, our work demonstrates that the p23 chaperone serves a broad physiological network and functions both in conjunction with and sovereign to Hsp90.
    Molecular cell 07/2011; 43(2):229-41. · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HDL cholesterol (HDL-C) plasma levels are inversely related to cardiovascular disease risk. Previous studies have shown in animals and humans that HDL promotes regression of atherosclerosis. We hypothesized that this was related to an ability to promote the loss of monocyte-derived cells (CD68(+), primarily macrophages and macrophage foam cells) from plaques. To test this hypothesis, we used an established model of atherosclerosis regression in which plaque-bearing aortic arches from apolipoprotein E-deficient (apoE(-/-)) mice (low HDL-C, high non-HDL-C) were transplanted into recipient mice with differing levels of HDL-C and non-HDL-C: C57BL6 mice (normal HDL-C, low non-HDL-C), apoAI(-/-) mice (low HDL-C, low non-HDL-C), or apoE(-/-) mice transgenic for human apoAI (hAI/apoE(-/-); normal HDL-C, high non-HDL-C). Remarkably, despite persistent elevated non-HDL-C in hAI/apoE(-/-) recipients, plaque CD68(+) cell content decreased by >50% by 1 wk after transplantation, whereas there was little change in apoAI(-/-) recipient mice despite hypolipidemia. The decreased content of plaque CD68(+) cells after HDL-C normalization was associated with their emigration and induction of their chemokine receptor CCR7. Furthermore, in CD68(+) cells laser-captured from the plaques, normalization of HDL-C led to decreased expression of inflammatory factors and enrichment of markers of the M2 (tissue repair) macrophage state. Again, none of these beneficial changes were observed in the apoAI(-/-) recipients, suggesting a major requirement for reverse cholesterol transport for the beneficial effects of HDL. Overall, these results establish HDL as a regulator in vivo of the migratory and inflammatory properties of monocyte-derived cells in mouse atherosclerotic plaques, and highlight the phenotypic plasticity of these cells.
    Proceedings of the National Academy of Sciences 04/2011; 108(17):7166-71. · 9.81 Impact Factor

Publication Stats

4k Citations
570.27 Total Impact Points


  • 2012
    • Duke University
      Durham, North Carolina, United States
  • 2009–2012
    • HudsonAlpha Institute for Biotechnology
      Huntsville, Alabama, United States
  • 2001–2012
    • New York University
      • • Department of Chemistry
      • • Department of Pathology
      • • Department of Urology
      New York City, NY, United States
  • 1999–2011
    • NYU Langone Medical Center
      • Department of Microbiology
      New York City, New York, United States
    • Emory University
      • Department of Epidemiology
      Atlanta, GA, United States
  • 2008
    • Polytechnic Institute of New York University
      Brooklyn, New York, United States
  • 1998–2007
    • State University of New York Downstate Medical Center
      • • Department of Microbiology and Immunology
      • • Department of Physiology and Pharmacology
      Brooklyn, NY, United States
  • 2006
    • Hospital for Special Surgery
      New York City, New York, United States
  • 1998–2002
    • Comprehensive Cancer Centers of Nevada
      Las Vegas, Nevada, United States
  • 1992–1999
    • University of California, San Francisco
      • Department of Biochemistry and Biophysics
      San Francisco, California, United States