Ichiro Sora

Kobe University, Kōbe, Hyōgo, Japan

Are you Ichiro Sora?

Claim your profile

Publications (257)895.43 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown that the dysfunction of N-methyl-d-asparate (NMDA) receptors-mediated neurotransmission plays a role in the pathophysiology of schizophrenia. Especially, GluN2B, a subunit of NMDA receptors, associated trafficking complex is altered in the prefrontal cortex of schizophrenia. The kinesin superfamily motor protein 17 (KIF17) is known as a transporter of NR2B.Previous studies showed that a structural variant of KIF17 gene is associated with a schizophrenic phenotype. Therefore, here we investigated KIF17 levels in postmortem prefrontal cortex in schizophrenia and the association of a missense polymorphism (Ile341Val) in KIF17 with schizophrenia. The protein expression of KIF17 in schizophrenic postmortem brains was significantly lower than that in controls. Next, the association of missense polymorphisms (rs631375, rs13375609, rs522496 and rs2296225) of KIF17 gene in 567 schizophrenia and 710 healthy subjects was examined. Both genotypic distribution and allelic frequency of rs2296225 polymorphism were significantly different between the chronic schizophrenia subjects and controls. However, our findings described above were not replicated with the independent subjects (555 schizophrenia and 814 healthy controls). Furthermore, the two alleles of rs2296225 polymorphism did not affect the mRNA expression of KIF17. These results suggest that the dysfunction of KIF17 might be involved in the pathophysiology of schizophrenia.
    09/2015; DOI:10.1016/j.psychres.2015.09.031
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many genetic and environmental factors are involved in the etiology of nicotine dependence. Although several candidate gene variations have been reported by candidate gene studies or genome-wide association studies (GWASs) to be associated with smoking behavior and the vulnerability to nicotine dependence, such studies have been mostly conducted with subjects with European ancestry. However, genetic factors have rarely been investigated for the Japanese population as GWASs. To elucidate genetic factors involved in nicotine dependence in Japanese, the present study comprehensively explored genetic contributors to nicotine dependence by using whole-genome genotyping arrays with more than 200,000 markers in Japanese subjects. The subjects for the GWAS and replication study were 148 and 374 patients, respectively. A two-stage GWAS was conducted using the Fagerström Test for Nicotine Dependence (FTND), Tobacco Dependence Screener (TDS), and number of cigarettes smoked per day (CPD) as indices of nicotine dependence. For the additional association analyses, patients who underwent major abdominal surgery, patients with methamphetamine dependence/psychosis, and healthy subjects with schizotypal personality trait data were recruited. Autopsy specimens with various diseases were also evaluated. After the study of associations between more than 200,000 marker single-nucleotide polymorphisms (SNPs) and the FTND, TDS, and CPD, the nonsynonymous rs2653349 SNP (located on the gene that encodes orexin [hypocretin] receptor 2) was selected as the most notable SNP associated with FTND, with a p value of 0.0005921 in the two-stage GWAS. This possible association was replicated for the remaining 374 samples. This SNP was also associated with postoperative pain, the initiation of methamphetamine use, schizotypal personality traits, and susceptibility to goiter. Although the p value did not reach a conventional genome-wide level of significance in our two-stage GWAS, we obtained significant results in the subsequent analyses that suggest that the rs2653349 SNP (Val308Ile) could be a genetic factor that is related to nicotine dependence and possibly pain, schizotypal personality traits, and goiter in the Japanese population.
    Molecular Brain 08/2015; 8(1):50. DOI:10.1186/s13041-015-0142-x · 4.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methylone (2-methylamino-1-[3,4-methylenedioxy-phenyl]propan-1-one), an amphetamine analog, has emerged as a popular drug of abuse worldwide. Methylone induces hyperthermia, which is thought to contribute toward the lethal consequences of methylone overdose. Methylone has been assumed to induce hyperthermic effects through inhibition of serotonin and/or dopamine transporters (SERT and DAT, respectively). To examine the roles of each of these proteins in methylone-induced toxic effects, we used SERT and DAT knockout (KO) mice and assessed the hyperthermic and lethal effects caused by a single administration of methylone. Methylone produced higher rates of lethal toxicity compared with other amphetamine analogs in wild-type mice. Compared with wild-type mice, lethality was significantly lower in DAT KO mice, but not in SERT KO mice. By contrast, only a slight diminution in the hyperthermic effects of methylone was observed in DAT KO mice, whereas a slight enhancement of these effects was observed in SERT KO mice. Administration of the selective D1 receptor antagonist SCH 23390 and the D2 receptor antagonist raclopride reduced methylone-induced hyperthermia, but these drugs also had hypothermic effects in saline-treated mice, albeit to a smaller extent than the effects observed in methylone-treated mice. In contradistinction to 3,4-methylenedioxymethamphetamine, which induces its toxicity through SERT and DAT, these data indicate that DAT, but not SERT, is strongly associated with the lethal toxicity produced by methylone, which did not seem to be dependent on the hyperthermic effects of methylone. DAT is therefore a strong candidate molecule for interventions aimed at preventing acute neurotoxic and lethal effects of methylone.
  • Source
    07/2015; 229:627-628. DOI:10.1016/j.psychres.2015.07.016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cadherin13 (CDH13) is a glycosylphosphatidylinositol-anchored cell adhesion molecule that plays a crucial role in morphogenesis and the maintenance of neuronal circuitry. CDH13 has been implicated in the susceptibility to a variety of psychiatric diseases. A recent genome-wide association study using Danish samples showed, for the first time, the involvement of a single nucleotide polymorphism (SNP) of CDH13 (intronic SNP rs8057927) in schizophrenia. Here, we investigated the association between other SNPs of CDH13 and schizophrenia and tried to replicate the association for the SNP of rs8057927, in the Japanese population. Using TaqMan(®) SNP genotyping assays, five tag SNPs (rs12925602, rs7193788, rs736719, rs6565051, and rs7204454) in the promoter region of CDH13 were examined for their association with schizophrenia in two independent samples. The first sample comprised 665 patients and 760 controls, and the second sample comprised 677 patients and 667 controls. One tag SNP for rs8057927 was also examined for the association with schizophrenia in the first sample set. A GACAG haplotype of the five SNPs in the promoter region of CDH13 was significantly associated with schizophrenia in the first sample set (P=0.016 and corrected P=0.098). A combined analysis of the GACAG haplotype with the second sample set enhanced the significance (P=0.0026 and corrected P=0.021). We found no association between rs8057927 and schizophrenia in the first sample set. Our results suggest that CDH13 may contribute to the genetic risk of schizophrenia. Further replication on the association of CDH13 with schizophrenia and functional studies are required to confirm the current findings.
    Neuropsychiatric Disease and Treatment 06/2015; 11:1381-93. DOI:10.2147/NDT.S84736 · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Piccolo (PCLO) inhibits methamphetamine-induced neuropharmacological effects via modulation of dopamine (DA) uptake and regulation of the transport of synaptic vesicles in neuronal cells. Clinical studies have recently suggested that the single nucleotide polymorphism (SNP) rs13438494 in the intron 24 of the PCLO gene is associated with psychiatric disorder, in the meta-analysis of GWAS. Therefore, in this study, we attempted to evaluate the possible role of the PCLO SNP in the mechanisms of uptake of monoamines. To characterize rs13438494 in the PCLO gene, we constructed plasmids carrying either the C or A allele of the SNP and transiently transfected them into SH-SY5Y cells to analyze genetic effects on the splicing of PCLO mRNA. The C and A allele constructs produced different composition of the transcripts, indicating that the intronic SNP does affect the splicing pattern. We also transfected DA and serotonin (5-hydroxytryptamine; 5-HT) transporters into cells and analyzed their uptakes to elucidate the association to psychiatric disorders. In the cells transfected with the C allele, both the DA and 5-HT uptake were enhanced compared to the A allele. We also conducted a clinical study, in order to clarify the genetic associations. PCLO rs13438494 exhibits a relationship with the symptoms of drug dependence or related parameters, such as the age of first exposure to methamphetamine, eating disorders, tobacco dependence and fentanyl requirement. Our findings suggest that rs13438494 is associated with drug abuse and contributes to the pathogenesis of psychiatric disorders via modulation of neurotransmitter turnover.
    Current Molecular Medicine 05/2015; 15(3):265-274. DOI:10.2174/1566524015666150330145722 · 3.62 Impact Factor
  • Y Kasahara · Y Arime · F S Hall · G R Uhl · I Sora
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine transporter (DAT) knockout (KO) mice show numerous behavioral alterations, including hyperlocomotion, cognitive deficits, impulsivity and impairment of prepulse inhibition of the startle reflex (PPI), phenotypes that may be relevant to frontostriatal disorders such as schizophrenia. Dendritic spine changes of pyramidal neurons in the dorsolateral prefrontal cortex (DLPFC) are among the most replicated of findings in postmortem studies of schizophrenia. The mechanisms that account for dendritic changes in the DLPFC in schizophrenia are unclear. Here, we report basal spine density of pyramidal neurons in the medial prefrontal cortex (mPFC), the motor cortex, the CA1 region of the hippocampus, and the basolateral amygdala in DAT KO mice. Pyramidal neurons were visualized using DAT KO mice crossbred with a Thy1-GFP transgenic mouse line. We observed a significant decrease in spine density of pyramidal neurons in the mPFC and the CA1 region of the hippocampus in DAT KO mice compared to that in WT mice. On the other hand, no difference was observed in spine density of pyramidal neurons in the motor cortex or the basolateral amygdala between DAT genotypes. These results suggest that decreased spine density could cause hypofunction of the mPFC and the hippocampus, and contribute to the behavioral abnormalities observed in DAT KO mice, including cognitive deficits. This might suggest that aberrant dopaminergic signaling may trigger dystrophic changes in dendrites of hippocampal and prefrontocortical pyramidal neurons in schizophrenia.
    Current Molecular Medicine 03/2015; 15(3). DOI:10.2174/1566524015666150330143613 · 3.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The symptoms of attention-deficit/hyperactivity disorder (ADHD) are characterized by inattention and hyperactivity-impulsivity. It is a common childhood neurodevelopmental disorder that often persists into adulthood. Improvements in ADHD symptoms using psychostimulants have been recognized as a paradoxical calming effect. The psychostimulant methylphenidate (MPH) is currently used as the first-line medication for the management of ADHD. Recent studies have drawn attention to altered dopamine-mediated neurotransmission in ADHD, particularly reuptake by the dopamine transporter (DAT). This hypothesis is supported by the observation that DAT knockout mice exhibit marked hyperactivity that is responsive to acute MPH treatment. However, other behaviors relevant to ADHD have not been fully clarified. In the present study, we observed learning impairment in shuttle-box avoidance behavior together with hyperactivity in a novel environment in DAT knockout mice. Methylphenidate normalized these behaviors and enhanced escape activity in the tail suspension test. Interestingly, the effective dose of MPH increased extracellular dopamine in the prefrontal cortex but not striatum, suggesting an important role for changes in prefrontal dopamine in ADHD. Research that uses rodent models such as DAT knockout mice may be useful for elucidating the pathophysiology of ADHD.
    Current Molecular Medicine 03/2015; 15(3). DOI:10.2174/1566524015666150330144018 · 3.62 Impact Factor
  • Source
    Frank Scott Hall · Ichiro Sora · René Hen · George R Uhl
    [Show abstract] [Hide abstract]
    ABSTRACT: Knockout (KO) mice that lack the dopamine transporter (SL6A3; DAT) display increased locomotion that can be attenuated, under some circumstances, by administration of drugs that normally produce psychostimulant-like effects, such as amphetamine and methylphenidate. These results have led to suggestions that DAT KO mice may model features of attention deficit hyperactivity disorder (ADHD) and that these drugs may act upon serotonin (5-HT) systems to produce these unusual locomotor decreasing effects. Evidence from patterns of brain expression and initial pharmacologic studies led us to use genetic and pharmacologic approaches to examine the influence of altered 5-HT1B receptor activity on hyperactivity in DAT KO mice. Heterozygous 5-HT1B KO and pharmacologic 5-HT1B antagonism both attenuated locomotor hyperactivity in DAT KO mice. Furthermore, DAT KO mice with reduced, but not eliminated, 5-HT1B receptor expression regained cocaine-stimulated locomotion, which was absent in DAT KO mice with normal levels of 5-HT1B receptor expression. Further experiments demonstrated that the degree of habituation to the testing apparatus determined whether cocaine had no effect on locomotion in DAT KO or reduced locomotion, helping to resolve differences among prior reports. These findings of complementation of the locomotor effects of DAT KO by reducing 5-HT1B receptor activity underscore roles for interactions between specific 5-HT receptors and dopamine (DA) systems in basal and cocaine-stimulated locomotion and support evaluation of 5-HT1B antagonists as potential, non-stimulant ADHD therapeutics.
    PLoS ONE 12/2014; 9(12):e115009. DOI:10.1371/journal.pone.0115009 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Repeated administration of methamphetamine (METH) enhances acute locomotor responses to METH administered in the same context, a phenomenon termed as 'locomotor sensitization'. Although many of the acute effects of METH are mediated by its influences on the compartmentalization of dopamine, serotonin systems have also been suggested to influence the behavioral effects of METH in ways that are not fully understood. The present experiments examined serotonergic roles in METH-induced locomotor sensitization by assessing: (a) the effect of serotonin transporter (SERT; Slc6A4) knockout (KO) on METH-induced locomotor sensitization; (b) extracellular monoamine levels in METH-treated animals as determined by in-vivo microdialysis; and (c) effects of serotonin (5-HT) receptor antagonists on METH-induced behavioral sensitization, with focus on effects of the 5-HT1B receptor antagonist SB 216641 and a comparison with the 5-HT2 receptor antagonist ketanserin. Repeated METH administration failed to induce behavioral sensitization in homozygous SERT KO (SERT-/-) mice under conditions that produced substantial sensitization in wild-type or heterozygous SERT KO (SERT+/-) mice. The selective 5-HT1B antagonist receptor SB 216641 restored METH-induced locomotor sensitization in SERT-/- mice, whereas ketanserin was ineffective. METH-induced increases in extracellular 5-HT (5-HTex) levels were substantially reduced in SERT-/- mice, although SERT genotype had no effect on METH-induced increases in extracellular dopamine. These experiments demonstrate that 5-HT actions, including those at 5-HT1B receptors, contribute to METH-induced locomotor sensitization. Modulation of 5-HT1B receptors might aid therapeutic approaches to the sequelae of chronic METH use.
    Behavioural Pharmacology 12/2014; 26(1-2). DOI:10.1097/FBP.0000000000000120 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Evidence based on clinical and experimental animal studies indicates that adolescent social deprivation influences alcohol consumption in a sex-dependent manner, perhaps by influencing stress responses. However, the mechanisms underlying the interaction between these phenomena remain to be elucidated. Since the μ-opioid receptor (MOP) has been reported to have key roles in social stress responses as well as the reinforcing/addictive effects of ethanol, MOP is a candidate molecule that may link adolescent social deprivation and subsequent alterations in alcohol consumption. Objectives: To evaluate the involvement of MOP and social isolation-induced changes in alcohol consumption, as well as the effect of sex differences on responses to social isolation, alcohol consumption was assessed using a two-bottle home-cage consumption procedure (8 % ethanol vs. water) in MOP knockout (MOP-KO) and wild type (WT) mice of both sexes exposed to adolescent social deprivation or reared socially. Results: Isolation rearing had no effects upon alcohol consumption of WT mice, whereas it significantly altered alcohol consumption in both male and female MOP-KO mice. Interestingly, social isolation affected ethanol consumption differently in male and female mice. Ethanol consumption was increased in male MOP-KO mice, but decreased in female MOP-KO mice, by isolation rearing. Conclusion: These results indicate that disturbances of MOP function influence the effects of isolation rearing on ethanol consumption in a sex-dependent manner. Consequently, this suggests the possibility that genetic variation that influences MOP function may have differential roles in alcoholism in men and women, and alcoholism treatments that target MOP function may be differentially effective in males and females.
    Psychopharmacology 11/2014; 232(8). DOI:10.1007/s00213-014-3784-y · 3.88 Impact Factor
  • Source
    Y Moriya · Y Kasahara · F S Hall · G R Uhl · I Sora
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction. Early social experience has been consistently shown increase alcohol consumption, perhaps by influencing stress systems. However, the connection between these effects and alcohol consumption is complex and poorly understood. This experiment was based on the hypothesis that the effects of chronic social isolation on alcohol consumption would be influenced by both sex and the functioning of Mu-opioid receptor (MOP) systems. Method. The present study assessed the effects of isolation-rearing on later ethanol intake using a two-bottle home-cage consumption (ethanol 8% vs. water) paradigm in wild-type and MOP gene knockout (KO) mice. A total of 97 male and female mice were used in this study. Results. Isolation rearing had no effects upon ethanol consumption in WT mice under the conditions used in the present experiments; however, isolation rearing did have effects in both male and female MOP KO mice, but these effects were in the opposite direction, increasing ethanol consumption in male mice, but decreasing ethanol consumption in female mice. Conclusion. These results indicate that MOP influences ethanol consumption, but does so in quite different ways depending on sex and previous social experience during adolescent development.
    Alcohol and alcoholism (Oxford, Oxfordshire). Supplement 09/2014; 49 Suppl 1(suppl 1):i55. DOI:10.1093/alcalc/agu054.11
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evidence indicates that widely prescribed mood stabilizer, lithium (Li), mediates cellular functions of differentiated monocytic cells, including microglial migration, monocyte-derived dendritic cell (MoDC) differentiation, and amelioration of monocytic malfunctions observed in neuropsychiatric diseases. Here, we surveyed molecules which take major roles in regulating these monocytic cellular functions. MoDCs treated with 1 and 5 mM Li, and microglia separated from Li-treated mice were subjected to microarray-based comprehensive gene expression analyses. Findings were validated using multiple experiments, including quantitative PCR, ELISA and immunostaining studies. Differing effects of Li on the two cell types were observed. Inflammation- and chemotaxis-relevant genes were significantly over-represented among Li-induced genes in MoDCs, whereas no specific category of genes was over-represented in microglia. The third component of complement (C3) was the only gene which was significantly induced by a therapeutic concentration of Li in both MoDCs and microglia. C3 production was increased by Li via GSK-3 inhibition. Li-induced C3 production was seen only in differentiated monocytic cells, but not in circulating monocytes. Our findings highlight a link between Li treatment and C3 production in differentiated monocytic cells, and reveal a regulatory role of GSK-3 in C3 production. Induction of microglial C3 production might be a novel neuroprotective mechanism of Li via regulating interactions between microglia and neurons. GLIA 2014
    Glia 08/2014; 63(2). DOI:10.1002/glia.22749 · 6.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: μ Opioid receptor knockout (MOP-KO) mice display several behavioural differences from wild-type (WT) littermates including differential responses to nociceptive stimuli. Brain structural changes have been tied to behavioural alterations noted in transgenic mice with targeting of different genes. Hence, we assess the brain structure of MOP-KO mice. Magnetic resonance imaging (MRI) voxel-based morphometry (VBM) and histological methods were used to identify structural differences between extensively backcrossed MOP-KO mice and WT mice. MOP-KO mice displayed robust increases in regional grey matter volume in olfactory bulb, several hypothalamic nuclei, periaqueductal grey (PAG) and several cerebellar areas, most confirmed by VBM analysis. The largest increases in grey matter volume were detected in the glomerular layer of the olfactory bulb, arcuate nucleus of hypothalamus, ventrolateral PAG (VLPAG) and cerebellar regions including paramedian and cerebellar lobules. Histological analyses confirm several of these results, with increased VLPAG cell numbers and increased thickness of the olfactory bulb granule cell layer and cerebellar molecular and granular cell layers. MOP deletion causes previously undescribed structural changes in specific brain regions, but not in all regions with high MOP receptor densities (e.g. thalamus, nucleus accumbens) or that exhibit adult neurogenesis (e.g. hippocampus). Volume differences in hypothalamus and PAG may reflect behavioural changes including hyperalgesia. Although the precise relationship between volume change and MOP receptor deletion was not determined from this study alone, these findings suggest that levels of MOP receptor expression may influence a broader range of neural structure and function in humans than previously supposed. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2
    British Journal of Pharmacology 06/2014; 172(2). DOI:10.1111/bph.12807 · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Psychological stress is associated with the aggravation of asthma symptoms. Glucocorticoids (GC), which are stress hormones released upon exposure to stress, have the potential to shift immune responses towards a predominant Th2 response by priming antigen-presenting cells to produce lower levels of IL-12 as well as reducing the development of regulatory T cells. However, the involvement of GC in psychological stress-induced exacerbations of allergic asthma has not yet been clarified. Methods: Sensitized mice were exposed to restraint stress followed by forced swimming stress, during which a GC receptor antagonist or a GC synthesis inhibitor was administered, and then antigen was inhaled. Corticosterone levels in the blood were measured in stressed and nonstressed mice. After antigen inhalation, the airway responses to aerosolized methacholine, epithelial mucus secretion and airway inflammation were evaluated, and the IL-13 contents in bronchoalveolar lavage fluid were measured. Results: The exposure to stress significantly increased corticosterone levels. Allergic airway responses and the increase of IL-13 contents evoked by antigen inhalation were significantly higher in stressed mice than in nonstressed mice. The administration of a GC receptor antagonist and a GC synthesis inhibitor during stress exposure significantly reduced the exacerbation of the airway responses and the increase of IL-13 contents in stressed mice challenged with antigen. Conclusions: These results indicate that the increased release of GC upon exposure to stress has a priming effect on the aggravation of allergic airway responses following the exposure, suggesting a pathophysiological role for the neuroendocrine axis in linking psychological stress to asthma exacerbations.
    International Archives of Allergy and Immunology 04/2014; 163(4):297-306. DOI:10.1159/000360577 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A promoter variant of the serotonin transporter (SERT) gene is known to affect emotional and cognitive regulation. In particular, the "short" allelic variant is implicated in the etiology of multiple neuropsychiatric disorders. Heterozygous (SERT(+/-)) and homozygous (SERT(-/-)) SERT mutant mice are valuable tools for understanding the mechanisms of altered SERT levels. Although these genetic effects are well investigated in adulthood, the developmental trajectory of altered SERT levels for behavior has not been investigated. We assessed anxiety-like and cognitive behaviors in SERT mutant mice in early adolescence and adulthood to examine the developmental consequences of reduced SERT levels. Spine density of pyramidal neurons was also measured in corticolimbic brain regions. Adult SERT(-/-) mice exhibited increased anxiety-like behavior, but these differences were not observed in early adolescent SERT(-/-) mice. Conversely, SERT(+/-) and SERT(-/-) mice did display higher spontaneous alternation during early adolescence and adulthood. SERT(+/-) and SERT(-/-) also exhibited greater neuronal spine densities in the orbitofrontal but not the medial prefrontal cortices. Adult SERT(-/-) mice also showed an increased spine density in the basolateral amygdala. Developmental alterations of the serotonergic system caused by genetic inactivation of SERT can have different influences on anxiety-like and cognitive behaviors through early adolescence into adulthood, which may be associated with changes of spine density in the prefrontal cortex and amygdala. The altered maturation of serotonergic systems may lead to specific age-related vulnerabilities to psychopathologies that develop during adolescence.
    Psychopharmacology 04/2014; 231(21). DOI:10.1007/s00213-014-3554-x · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of mu-opioid receptor (MOR) disinhibits dopaminergic neurons in the ventral tegmental area (VTA) through inhibition of γ-aminobutyric acid (GABA)ergic neurons. This mechanism is thought to play a pivotal role in mediating reward behaviors. Here, we characterised VTA-projecting enkephalinergic neurons in the anterior division of the bed nucleus of the stria terminalis (BST) and investigated their targets by examining MOR expression in the VTA. In the BST, neurons expressing preproenkephalin mRNA were exclusively GABAergic, and constituted 37.2% of the total GABAergic neurons. Using retrograde tracer injected into the VTA, 21.6% of VTA-projecting BST neurons were shown to express preproenkephalin mRNA. Enkephalinergic projections from the BST exclusively formed symmetrical synapses onto the dendrites of VTA neurons. In the VTA, 74.1% of MOR mRNA-expressing neurons were GABAergic, with the rest being glutamatergic neurons expressing type-2 vesicular glutamate transporter mRNA. However, MOR mRNA was below the detection threshold in dopaminergic neurons. By immunohistochemistry, MOR was highly expressed on the extrasynaptic membranes of dendrites in GABAergic VTA neurons, including dendrites innervated by BST-VTA projection terminals. MOR was also expressed weakly on GABAergic and glutamatergic terminals in the VTA. Given that GABAA α1 is expressed at GABAergic BST-VTA synapses on dendrites of GABAergic neurons [T. Kudo et al. (2012) J. Neurosci., 32, 18035-18046], our results collectively indicate that the BST sends dual inhibitory outputs targeting GABAergic VTA neurons; GABAergic inhibition via 'wired' transmission, and enkephalinergic inhibition via 'volume' transmission. This dual inhibitory system provides the neural substrate underlying the potent disinhibitory control over dopaminergic VTA neurons exerted by the BST.
    European Journal of Neuroscience 03/2014; 39(11). DOI:10.1111/ejn.12503 · 3.18 Impact Factor
  • 01/2014; 3:1-6. DOI:10.4303/jdar/235792
  • 12/2013; 215(3). DOI:10.1016/j.psychres.2013.12.029
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) and gene expression analyses have revealed that single nucleotide polymorphisms (SNPs) associated with multifactorial diseases, such as schizophrenia, are significantly more likely to be associated with expression quantitative trait loci (eQTL). It was recently suggested that an immune system imbalance plays an important role in the pathogenesis of schizophrenia. Interleukin-19 is a novel cytokine that may play multiple roles in immune regulation and various diseases. We selected eight tag SNPs in the eQTL of the IL-19 gene. Seven of the SNPs are putative cis-acting SNPs. Then, we conducted a case-control study using two independent samples. The first sample comprised 567 schizophrenia patients and 710 controls, and the second sample comprised 677 schizophrenia patients and 667 controls. We identified the TGAA haplotype as being significantly associated with schizophrenia (p=0.0036 and corrected p=0.0264), although a combined analysis of the TGAA haplotype with the replication samples exhibited a nominally significant difference (p=0.022 and corrected p=0.235). These results suggest that the IL-19 gene might slightly contribute to the genetic risk of schizophrenia. Thus, further research on the association of eQTL SNPs with schizophrenia is warranted.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 12/2013; 50. DOI:10.1016/j.pnpbp.2013.12.006 · 3.69 Impact Factor

Publication Stats

7k Citations
895.43 Total Impact Points


  • 2013–2015
    • Kobe University
      • • Graduate School of Medicine
      • • Department of Psychiatry
      Kōbe, Hyōgo, Japan
    • Japan Science and Technology Agency (JST)
      Edo, Tōkyō, Japan
  • 2012–2015
    • Tokyo Metropolitan Institute of Medical Science
      Edo, Tōkyō, Japan
  • 2004–2014
    • Tohoku University
      • • Department of Biological Psychiatry
      • • Department of Medical Genetics
      • • Graduate School of Medicine
    • Medical College of Wisconsin
      • Department of Anesthesiology
      Milwaukee, WI, United States
  • 2000–2011
    • National Institute on Drug Abuse
      Роквилл, Maryland, United States
  • 2010
    • Hiroshima International University
      • Faculty of Pharmaceutical Science
      Hirosima, Hiroshima, Japan
    • Hokkaido University
      • Graduate School of Pharmaceutical Sciences
      Sapporo-shi, Hokkaido, Japan
  • 2009
    • Sendai University
      Sendai, Kagoshima, Japan
  • 2008
    • Internet Initiative Japan
      Edo, Tōkyō, Japan
  • 2006
    • Kurume University
      • Department of Neuropsychiatry
      Куруме, Fukuoka, Japan
  • 1986–2006
    • Okayama University
      • Department of Neuropsychiatry
      Okayama, Okayama, Japan
  • 2005
    • Osaka City University
      Ōsaka, Ōsaka, Japan
  • 2000–2004
    • Johns Hopkins University
      • • Department of Anesthesiology and Critical Care Medicine
      • • Department of Neuroscience
      Baltimore, MD, United States
  • 2001
    • Northern Inyo Hospital
      BIH, California, United States
    • National Institutes of Health
      • Molecular Neurobiology Research Branch
      베서스다, Maryland, United States