Gerard Minuesa

Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain

Are you Gerard Minuesa?

Claim your profile

Publications (6)29.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND AND PURPOSEInhibitors of DNA-methyltransferases (DNMT), such as azacytidine, decitabine and zebularine, are used for the epigenetic treatment of cancer. Their action may depend upon their translocation across the plasma membrane. The aim of this study was to identify transporter proteins contributing to DNMT inhibitor action.EXPERIMENTAL APPROACHDrug interactions with selected hCNT and hENT proteins were studied in transiently transfected HeLa and MDCK cells. Interaction with hOCT transporters was assessed in transiently transfected HeLa cells and Xenopus laevis oocytes. HEK293 cells stably expressing high allelic frequency hOCT1 variants were used for cytotoxicity assays.KEY RESULTSZebularine uptake was mediated by hCNT1, hCNT3, and hENT2. Decitabine, interacted with but was not translocated by any NT-type transporter. hCNT expression at the apical domain of MDCK cells promoted net vectorial flux of zebularine. hOCT1 and hOCT2 neither could transport decitabine, but both were implicated in the efflux of zebularine, anticipating a role for these proteins as efflux transporters. hOCT1 polymorphic variants known to alter function, decreased zebularine efflux and resulted in increased drug-mediated cytotoxicity when compared to the hOCT1 wild type.CONCLUSIONS AND IMPLICATIONSThis study highlights the role human nucleoside transporters and human organic cation transporters might play in the pharmacokinetics and pharmakodinamics of selected DNMT inhibitors. The fact that hOCTs may also behave as efflux transporters suggests they might contribute either to chemoresistance or to chemosensitivity, depending upon the nature of the drug or combination of drugs being used in cancer therapy.
    British Journal of Pharmacology 04/2014; DOI:10.1111/bph.12748 · 4.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 genotyping is widely accepted as a diagnostic tool to optimize therapy changes in patients whose antiretroviral regimen is failing. Phenotyping can substantially complement the information obtained from genotyping, especially in the presence of complex mutational patterns. However, drug susceptibility tests are laborious and require biosafety facilities. We describe the molecular mechanism of a non-infectious HIV-1 protease phenotypic assay in eukaryotic cells and validate its applicability as a tool for monitoring drug resistance. A cloning vector containing the fusion protein green fluorescent protein-HIV-1 protease (GFP-PR) was modified to facilitate the insertion of HIV-1 protease from infected subjects. Real-time quantitative PCR and western blot analysis were used to establish the molecular mechanism of the new phenotypic assay. The method was validated by analysing HIV-1 protease from 46 clinical isolates. Statistical comparisons were made between values obtained using our assay and those reported from alternative standardized phenotypic assays. The capacity of HIV-1 protease to cleave cellular translation factors, such as the eukaryotic translation initiation factor 4 (eIF4GI) and the poly(A)-binding protein (PABP), led to cyclical accumulation of GFP that varied with the dose of protease inhibitors. Validation and comparison revealed a significant correlation with the Virco TYPE HIV-1 test (P < 0.0001, Spearman's ρ = 0.60), the Antivirogram test (P = 0.0001, Spearman's ρ = 0.60) and the Stanford HIVdb (P < 0.0001, Spearman's ρ = 0.69). This cell-based non-infectious phenotypic method with a well-understood molecular mechanism was highly reliable and comparable to other widely used assays. The method can be used for both phenotyping of HIV-1 viral isolates resistant to protease inhibitors and screening of new protease inhibitors.
    Journal of Antimicrobial Chemotherapy 01/2012; 67(1):32-8. DOI:10.1093/jac/dkr433 · 5.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current treatment of human immunodeficiency virus-1 (HIV-1) infection is effective, although it does not permanently suppress viral replication in all patients. Viral persistence, drug toxicity, and antiretroviral resistance are challenging barriers to successful treatment of HIV-1 infection. It has become increasingly apparent that the balance between drug influx and efflux transporter activity plays a critical role in the overall disposition of anti-HIV drugs in both cells and tissues. Thus, drug transporters directly influence the appearance of drug resistance and toxicity, and could also be related to persistence of HIV-1. We review the role of drug uptake transporters from the solute carrier (SLC) superfamily, their relation with specific antiretroviral drug disposition, and their efficacy in the tissues that absorb, metabolize, and eliminate anti-HIV drugs. Recent studies focusing on the role of drug uptake transporters in immune cells, key sites in the action of antiviral therapy, are highlighted.
    Pharmacology [?] Therapeutics 07/2011; 132(3):268-79. DOI:10.1016/j.pharmthera.2011.06.007 · 7.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleoside reverse transcriptase inhibitors (NRTIs) need to enter cells to act against the HIV-1. Human organic cation transporters (hOCT1-3) are expressed and active in CD4+ T cells, the main target of HIV-1, and have been associated with antiviral uptake in different tissues. In this study, we examined whether NRTIs interact and are substrates of hOCT in cells stably expressing these transporters. Using [(3)H]N-methyl-4-phenylpyridinium, we found a high-affinity interaction among abacavir [[(1S,4R)-4-[2-amino-6-(cyclopropylamino)purin-9-yl]-cyclopent-2-enyl]methanol sulfate] (ABC); <0.08 nM], azidothymidine [3'-azido-3'-deoxythymidine (AZT); <0.4 nM], tenofovir disoproxil fumarate (<1.0 nM), and emtricitabine (<2.5 nM) and hOCTs. Using a wide range of concentrations of lamivudine [(-)-beta-L-2',3'-dideoxy-3'-thiacyitidine (3TC)], we determined two different binding sites for hOCTs: a high-affinity site (K(d1) = 12.3-15.4 pM) and a low-affinity site (K(d2) = 1.9-3.4 mM). Measuring direct uptake of [(3)H]3TC and inhibition with hOCT substrates, we identified 3TC as a novel substrate for hOCT1, 2, and 3, with hOCT1 as the most efficient transporter (K(m) = 1.25 +/- 0.1 mM; V(max) = 10.40 +/- 0.32 nmol/mg protein/min; V(max)/K(m) = 8.32 +/- 0.40 microl/mg protein/min). In drug-drug interaction experiments, we analyzed cis-inhibition of [(3)H]3TC uptake by ABC and AZT and found that 40 to 50% was inhibited at low concentrations of the drugs (K(i) = 22-500 pM). These data reveal that NRTIs experience a high-affinity interaction with hOCTs, suggesting a putative role for these drugs as modulators of hOCT activity. Finally, 3TC is a novel substrate for hOCTs and the inhibition of its uptake at low concentrations of ABC and AZT could have implications for the pharmacokinetics of 3TC.
    Journal of Pharmacology and Experimental Therapeutics 03/2009; 329(1):252-61. DOI:10.1124/jpet.108.146225 · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Almost all drugs used in anti-human immunodeficiency virus (HIV)-1 and anticancer therapies require membrane proteins to get into the cell to develop their proper activity. Nevertheless, little is known regarding the expression and activity of specific carriers involved in the uptake of these drugs in immune cells. Here, we assessed the mRNA levels, protein expression profile, and activity of the gene families SLC28 (coding for concentrative nucleoside transporters, hCNT1-3), SLC29 (equilibrative nucleoside transporters, hENT1-2), and SLC22 (organic cation transporters, hOCT1-3 and hOCTN1-2). Both hENTs and hCNT2 were abundant in primary lymphocytes, with a preferential activity of hENT1. A significant up-regulation in hENTs expression (100-fold) and activity (30-fold) was seen under stimulation of primary T lymphocytes. In contrast, monocytes, monocyte-derived macrophages (MDMs), and immature monocyte-derived dendritic cells predominantly expressed hCNT3, a functional transporter in MDMs. Finally, in immune cells, hOCTs showed a more heterogeneous expression profile and a lower activity than human nucleoside transporters (hNTs), although up-regulation of hOCTs also occurred upon lymphocyte activation. Overall, the expression and activity of most of the studied transporters emphasize their relevance in relation to anti-HIV and anticancer therapies. The identification of the transporter involved in each specific drug uptake in immune cells could help to optimize pharmacological therapeutic responses.
    Journal of Pharmacology and Experimental Therapeutics 03/2008; 324(2):558-67. DOI:10.1124/jpet.107.131482 · 3.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nucleoside reverse transcriptase inhibitors (NRTIs) make up a family of antiretroviral drugs widely used in the treatment of HIV-1 infection. Human concentrative nucleoside transporters and equilibrative nucleoside transporters, encoded by SLC28 and SLC29 gene families, respectively, are known to be involved in the uptake of a variety of nucleoside analogues used in anticancer treatment. We therefore examined whether SLC28- and SLC29-encoded proteins contribute to the entry of these NRTls into the human leukaemic T-cell line Molt-4. Cis-inhibition experiments demonstrated that nucleoside transporters have a negligible role in antiviral drug uptake. Moreover, the previously identified 3'-azido-2',3'-dideoxythymidine (zidovudine; AZT) carriers, organic anion transporters (organic anion transporter [hOATs], members of the SLC22 gene family) have not been detected in T cells, either functionally or at the mRNA level, thus ruling out a role for hOATs in antiviral drug uptake in these cells. Nevertheless, the data provided here argue against the hypothesis of simple diffusion across the plasma membrane as the unique mechanism of AZT uptake. Actually, this pyrimidine derivative seems to have a temperature-sensitive route of entrance, a finding that, along with the evidence that, AZT inhibits its own uptake and its transport into phytohaemagglutinin-stimulated peripheral blood mononuclear cells is upregulated, strongly support the idea that AZT uptake into T-cells is associated with a mediated and regulated, transport mechanism.
    Antiviral therapy 02/2006; 11(6):803-11. · 3.14 Impact Factor