Alexander M Lewis

University of Oxford, Oxford, ENG, United Kingdom

Are you Alexander M Lewis?

Claim your profile

Publications (14)81.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum (ER) and acidic organelles (endo-lysosomes) act as separate Ca2+ stores that release Ca2+ in response to the second messengers IP3 and cADPR (ER) or NAADP (acidic organelles). Typically, trigger Ca2+ released from acidic organelles by NAADP subsequently recruits IP3 or ryanodine receptors on the ER, an anterograde signal important for amplification and Ca2+ oscillations/waves. We therefore investigated whether the ER can signal back to acidic organelles, using organelle pH as a reporter of NAADP action. We show that Ca2+ released from the ER can activate the NAADP pathway in two ways: first, by stimulating Ca2+-dependent NAADP synthesis; second, by activating NAADP-regulated channels. Moreover, the differential effects of EGTA and BAPTA (slow and fast Ca2+ chelators, respectively) suggest that the acidic organelles are preferentially activated by local microdomains of high Ca2+ at junctions between the ER and acidic organelles. Bidirectional organelle communication may have wider implications for endo-lysosomal function as well as the generation of Ca2+ oscillations and waves.
    The Journal of Cell Biology 03/2013; · 10.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evidence suggests that ß-Adrenergic receptor signaling increases heart rate and force through not just cyclic AMP but also the Ca(2+)-releasing second messengers NAADP (nicotinic acid adenine dinucleotide phosphate) and cADPR (cyclic ADP-ribose). Nevertheless, proof of the physiological relevance of these messengers requires direct measurements of their levels in response to receptor stimulation. Here we report that in intact Langendorff-perfused hearts ß-adrenergic stimulation increased both messengers, with NAADP being transient and cADPR being sustained. Both NAADP and cADPR have physiological and therefore pathological relevance by providing alternative drug targets in the ß-adrenergic receptor signaling pathway.
    Biochemical and Biophysical Research Communications 09/2012; 427(2):326-9. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic ADP-ribose (cADPR) is a second messenger that acts on ryanodine receptors to mobilize Ca(2+). cADPR has a net negative charge at physiological pH making it not passively membrane permeant thereby requiring it to be injected, electroporated or loaded via liposomes. Such membrane impermeance of other charged intracellular messengers (including cyclic AMP, inositol 1,4,5-trisphosphate and nicotinic acid adenine dinucleotide phosphate) and fluorescent dyes (including fura-2 and fluorescein) has been overcome by synthesizing masked analogs (prodrugs), which are passively permeant and hydrolyzed to the parent compound inside cells. We now report the synthesis and biological activity of acetoxymethyl (AM) and butoxymethyl (BM) analogs of cADPR. Extracellular addition of cADPR-AM or cADPR-BM to neuronal cells in primary culture or PC12 neuroblastoma cells induced increases in cytosolic Ca(2+). Pre-incubation of PC12 cells with thapsigargin, ryanodine or caffeine eliminated the response to cADPR-AM, whereas the response still occurred in the absence of extracellular Ca(2+). Combined, these data demonstrate that masked cADPR analogs are cell-permeant and biologically active. We hope these cell-permeant tools will facilitate cADPR research and reveal its diverse physiological functions.
    Biochemical and Biophysical Research Communications 02/2012; 418(2):353-8. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.
    Biochemical Journal 10/2011; 441(1):435-42. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular Ca(2+) signals provide astrocytes with a specific form of excitability that enables them to regulate synaptic transmission. In this study, we demonstrate that NAADP-AM, a membrane-permeant analogue of the new second messenger nicotinic acid-adenine dinucleotide phosphate (NAADP), mobilizes Ca(2+) in astrocytes and that the response is blocked by Ned-19, an antagonist of NAADP signalling. We also show that NAADP receptors are expressed in lysosome-related acidic vesicles. Pharmacological disruption of either NAADP or lysosomal signalling reduced Ca(2+) responses induced by ATP and endothelin-1, but not by bradykinin. Furthermore, ATP increased endogenous NAADP levels. Overall, our data provide evidence for NAADP being an intracellular messenger for agonist-mediated calcium signalling in astrocytes.
    FEBS letters 06/2011; 585(14):2300-6. · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A variety of endothelial agonist-induced responses are mediated by rises in intracellular Ca(2+), suggesting that different Ca(2+) signatures could fine-tune specific inflammatory and thrombotic activities. In search of new intracellular mechanisms modulating endothelial effector functions, we identified nicotinic acid adenine dinucleotide phosphate (NAADP) as a crucial second messenger in histamine-induced Ca(2+) release via H1 receptors (H1R). NAADP is a potent intracellular messenger mobilizing Ca(2+) from lysosome-like acidic compartments, functionally coupled to the endoplasmic reticulum. Using the human EA.hy926 endothelial cell line and primary human umbilical vein endothelial cells, we show that selective H1R activation increases intracellular NAADP levels and that H1R-induced calcium release involves both acidic organelles and the endoplasmic reticulum. To assess that NAADP links H1R to Ca(2+)-signaling we used both microinjection of self-inactivating concentrations of NAADP and the specific NAADP receptor antagonist, Ned-19, both of which completely abolished H1R-induced but not thrombin-induced Ca(2+) mobilization. Interestingly, H1R-mediated von Willebrand factor (VWF) secretion was completely inhibited by treatment with Ned-19 and by siRNA knockdown of 2-pore channel NAADP receptors, whereas thrombin-induced VWF secretion failed to be affected. These findings demonstrate a novel and specific Ca(2+)-signaling mechanism activated through H1R in human endothelial cells, which reveals an obligatory role of NAADP in the control of VWF secretion.
    Blood 03/2011; 117(18):4968-77. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Before a sperm can fertilize an egg it must undergo a final activation step induced by the egg termed the acrosome reaction. During the acrosome reaction a lysosome-related organelle, the acrosome, fuses with the plasma membrane to release hydrolytic enzymes and expose an egg-binding protein. Because NAADP (nicotinic acid adenine dinucleotide phosphate) releases Ca(2+) from acidic lysosome-related organelles in other cell types, we investigated a possible role for NAADP in mediating the acrosome reaction. We report that NAADP binds with high affinity to permeabilized sea urchin sperm. Moreover, we used Mn(2+) quenching of luminal fura-2 and (45)Ca(2+) to directly demonstrate NAADP regulation of a cation channel on the acrosome. Additionally, we show that NAADP synthesis occurs through base exchange and is driven by an increase in Ca(2+). We propose a new model for acrosome reaction signaling in which Ca(2+) influx initiated by egg jelly stimulates NAADP synthesis and that this NAADP acts on its receptor/channel on the acrosome to release Ca(2+) to drive acrosomal exocytosis.
    Journal of Biological Chemistry 06/2010; 285(24):18262-9. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Before a sperm can fertilize an egg it must undergo a final activation step induced by the egg termed the acrosome reaction. During the acrosome reaction a lysosome-related organelle, the acrosome, fuses with the plasma membrane to release hydrolytic enzymes and expose an egg-binding protein. As NAADP (nicotinic acid adenine dinucleotide phosphate) releases Ca2+ from acidic lysosome-related organelles in other cell types, we investigated a possible role for NAADP in mediating the acrosome reaction. We report that NAADP binds with high affinity to permeabilized sea urchin sperm. Moreover, we used Mn2+ quenching of luminal fura-2 and 45Ca2+ to directly demonstrate NAADP regulation of a cation chanel on the acrosome. Additionally, we show that NAADP synthesis occurs through base-exchange and is driven by an increase in Ca2+. We propose a new model for acrosome-reaction signalling in which Ca2+ influx initiated by egg jelly stimulates NAADP synthesis and that this NAADP acts on its receptor/channel on the acrosome to release Ca2+ to drive acrosomal exocytosis.
    Journal of Biological Chemistry 04/2010; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca(2+)-releasing messenger. Biological data suggest that its receptor has two binding sites: one high-affinity locking site and one low-affinity opening site. To directly address the presence and function of these putative binding sites, we synthesized and tested analogues of the NAADP antagonist Ned-19. Ned-19 itself inhibits both NAADP-mediated Ca(2+) release and NAADP binding. A fluorometry bioassay was used to assess NAADP-mediated Ca(2+) release, whereas a radioreceptor assay was used to assess binding to the NAADP receptor (only at the high-affinity site). In Ned-20, the fluorine is para rather than ortho as in Ned-19. Ned-20 does not inhibit NAADP-mediated Ca(2+) release but inhibits NAADP binding. Conversely, Ned-19.4 (a methyl ester of Ned-19) inhibits NAADP-mediated Ca(2+) release but cannot inhibit NAADP binding. Furthermore, Ned-20 prevents the self-desensitization response characteristic of NAADP in sea urchin eggs, confirming that this response is mediated by a high-affinity allosteric site to which NAADP binds in the radioreceptor assay. Collectively, these data provide the first direct evidence for two binding sites (one high- and one low-affinity) on the NAADP receptor.
    Journal of Biological Chemistry 10/2009; 284(50):34930-4. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NAADP (nicotinic acid-adenine dinucleotide phosphate) is an unusual second messenger thought to mobilize acidic Ca(2+) stores, such as lysosomes or lysosome-like organelles, that are functionally coupled to the ER (endoplasmic reticulum). Although NAADP-sensitive Ca(2+) stores have been described in neurons, the physiological cues that recruit them are not known. Here we show that in both hippocampal neurons and glia, extracellular application of glutamate, in the absence of external Ca(2+), evoked cytosolic Ca(2+) signals that were inhibited by preventing organelle acidification or following osmotic bursting of lysosomes. The sensitivity of both cell types to glutamate correlated well with lysosomal Ca(2+) content. However, interfering with acidic compartments was largely without effect on the Ca(2+) content of the ER or Ca(2+) signals in response to ATP. Glutamate but not ATP elevated cellular NAADP levels. Our results provide evidence for the agonist-specific recruitment of NAADP-sensitive Ca(2+) stores by glutamate. This links the actions of NAADP to a major neurotransmitter in the brain.
    Biochemical Journal 07/2009; 422(3):503-12. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research into the biological role of the Ca(2+)-releasing second messenger NAADP (nicotinic acid adenine dinucleotide phosphate) has been hampered by a lack of chemical probes. To find new chemical probes for exploring NAADP signaling, we turned to virtual screening, which can evaluate millions of molecules rapidly and inexpensively. We used NAADP as the query ligand to screen the chemical library ZINC for compounds with similar three-dimensional shape and electrostatic properties. We tested the top-ranking hits in a sea urchin egg bioassay and found that one hit, Ned-19, blocks NAADP signaling at nanomolar concentrations. In intact cells, Ned-19 blocked NAADP signaling and fluorescently labeled NAADP receptors. Moreover, we show the utility of Ned-19 as a chemical probe by using it to demonstrate that NAADP is a key causal link between glucose sensing and Ca(2+) increases in mouse pancreatic beta cells.
    Nature Chemical Biology 03/2009; 5(4):220-6. · 12.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NAADP (nicotinic acid adenine dinucleotide phosphate) is a recently discovered second messenger, and as such, we have much yet to learn about its functions in health and disease. A bottleneck in this basic research is due to NAADP, like all second messengers, being charged to prevent it from leaking out of cells. This makes for effective biology, but imposes difficulties in experiments, as it must be injected, loaded via liposomes, or electroporated, techniques that are highly technically demanding and are possible only in certain single cell preparations. For the better understood second messenger inositol 1,4,5-trisphosphate, great success has been obtained with cell-permeant derivatives where the charged groups are masked through esterification. We now report NAADP-AM as a cell-permeant analogue of NAADP that is taken up into cells and induces NAADP-mediated Ca(2+) signalling. NAADP-AM is a powerful chemical tool that will be of enormous biological utility in a wide range of systems and will greatly facilitate research into the role of NAADP in health and disease.
    Cell Calcium 07/2008; 43(6):531-8. · 4.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The measurement of changes in nicotinic acid adenine dinucleotide phosphate (NAADP) levels in cells has been, and remains, key to the investigation of the functions of NAADP as a Ca2+ -releasing second messenger. Here we provide details of how to isolate NAADP from cells by extraction with perchloric acid and then measure the NAADP using a radioreceptor assay. We demonstrate that NAADP is neither generated nor broken down during sample processing conditions and that radioreceptor assay is highly selective for the detection of NAADP under cell extract conditions. Furthermore, a number of improvements, such as solid-state detection of the radioactivity, are incorporated to enhance the safety of the procedure. Finally, we have developed a new method to prevent the endogenous metabolism of NAADP by chelating Ca2+ with bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), thereby reducing the difficulty of catching a small transient rise in NAADP levels. In summary, we have refined and improved a method for measuring NAADP levels and presented it in a manner accessible to a wide range of laboratories. It is expected that this will enhance research in the NAADP field.
    Analytical Biochemistry 01/2008; 371(1):26-36. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic adenosine diphosphate ribose (cADPR) were first demonstrated to mobilize Ca2+ in sea urchin eggs. In the absence of direct measurements of these messengers, pharmacological studies alone have implicated these molecules as intracellular second messengers for specific cell surface receptor agonists. We now report that in mouse pancreatic acinar cells, cholecystokinin, but not acetylcholine, evokes rapid and transient increases in NAADP levels in a concentration-dependent manner. In contrast, both cholecystokinin and acetylcholine-mediated production of cADPR followed a very different time course. The rapid and transient production of NAADP evoked by cholecystokinin precedes the onset of the Ca2+ signal and is consistent with a role for NAADP in the initiation of the Ca2+ response. Continued agonist-evoked Ca2+ spiking is maintained by prolonged elevations of cADPR levels through sensitization of Ca2+ -induced Ca2+ -release channels. This study represents the first direct comparison of NAADP and cADPR measurements, and the profound differences observed in their time courses provide evidence in support of distinct roles of these Ca2+ -mobilizing messengers in shaping specific Ca2+ signals during agonist stimulation.
    Current Biology 06/2005; 15(9):874-8. · 9.49 Impact Factor