Theresa Faus-Kessler

Helmholtz Zentrum München, München, Bavaria, Germany

Are you Theresa Faus-Kessler?

Claim your profile

Publications (17)65.39 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.
    PLoS ONE 01/2014; 9(7):e101124. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Alps are affected by high nitrogen deposition, particularly in the fringe of the Northern and Southern Alps. In the framework of a two-year monitoring study performed in 2010 and 2011, we investigated the ammonia and nitrogen dioxide air concentration and ammonium and nitrate deposition at different altitudes between 700 and 1600ma.s.l. in the Garmisch-Partenkirchen district in the Upper Bavaria region (Germany). Four-weekly measurements of deposition collected with bulk open field samplers and under-crown were performed in a profile perpendicular to the axis of the Loisach valley; measurements were conducted at eight sites. Whereas open field deposition ranged from 5 to 11kgha(-1)a(-1), nitrogen throughfall has reached up to 21kgha(-1)a(-1). Data from the valley and the slopes were compared with measurements performed on the platform of the Environmental Research Station Schneefernerhaus (Zugspitze) at an altitude of 2650ma.s.l. For the rough estimation of the total yearly deposition rate of nitrogen, the canopy uptake model was applied. By regarding nitrogen uptake by the trees, total deposition can exceed the throughfall in all sites by up to 50%. Additionally, we estimated the total deposition from the sum of wet and dry deposition. On the one side, the wet deposition could be extrapolated from the open field deposition. On the other side, we used the inferential method to calculate the dry deposition on the basis of NH3 and NO2 air concentrations and their literature based deposition velocities. Since fixed deposition velocities are inappropriate particularly in complex orography, we tried to find correction factors based upon terrain characteristics and meteorological considerations. Temperature monitoring at the eight sites and wind measurements at two sites provided some evidence for the semi-empirical parameterization. Due to numerous imponderabilities, the results of the two methods were not consistent for all sites.
    Science of The Total Environment 11/2013; 470-471C:895-906. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vertical temperature structure in the area of Garmisch‐Partenkirchen between the Loisach river valley and the highest mountain in Germany (Zugspitze, 2962 m a.s.l.) is analysed. Using long time series (1936–2008) of daily mean, minimum and maximum temperatures from two meteorological stations, in the valley floor and on the mountain top, we studied seasonal variations in temperature lapse rates. By using daily data on weather types, significantly different altitudinal temperature lapse rates and daily temperature ranges for low and high pressure weather situations were found. There was no significant influence of snow cover in the valley on the lapse rate. At both stations, there has been an increase in temperature during recent decades. As there was a slight difference between these trends, the lapse rate has tended to become more negative, i.e. the difference between the mountain top and the valley has become more pronounced. In order to investigate the lapse rates in more detail, unpublished temperature data from 1989 to 1990 on slope transects near Garmisch‐Partenkirchen were evaluated. Despite the fact that an exact description of the vertical structure of the atmospheric temperature is possible only from free air measurements, there are some indications that major inversions occur in the first 500 m above the valley ground, depending on season, weather situation and time of day. Copyright © 2012 Royal Meteorological Society
    International Journal of Climatology 03/2013; 33(3):539-555. · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this pilot study we compared for the first time the radiation sensitivity of mouse lens epithelial cells (LECs) and mouse lymphocytes. We freshly prepared LECs and lymphocytes and irradiated them with γ-rays ((137)Cs; doses ranging from 0.25 to 2 Gy). DNA damage and repair were evaluated by alkaline comet assay and γH2AX foci assay. Using the comet assay, we observed a dose-dependent increase in DNA damage in both cell types. The faster formation of single- and double-strand breaks in LECs of C57BL/6 mice at doses below 1 Gy needs to be confirmed in other mouse strains. Immunofluorescence for γH2AX foci showed a higher degree of lesions in LECs from C57BL/6J mice compared to those of JF1 mice and to lymphocytes of both strains. Correspondingly, repair of DNA damage proceeded faster in LECs of C57BL/6J mice compared to LECs of JF1 mice and lymphocytes of both strains. It is obvious that the lymphocytes of both strains repaired DNA lesions more slowly than the corresponding LECs. In conclusion, our results demonstrate that LECs of C57Bl/6 mice show a steeper dose-response than lymphocytes in both types of experiments. It shows that both test systems are able to be used also at doses below 0.25 Gy. The observed difference in DNA repair between the LECs from C57BL/6J mice compared to the LECs from JF1 mice and to the lymphocytes of both strains warrants further experiments to identify the underlying molecular mechanisms.
    Biophysik 01/2013; · 1.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flavonols, phenylalanine-derived secondary metabolites, have protective and regulatory functions in plants. In Arabidopsis thaliana, they are consecutively glycosylated at their 3-OH and 7-OH groups. UGT78D1 and UGT78D2 are the major flavonol 3-O-glycosyltransferases in Arabidopsis leaves. The ugt78d1 ugt78d2 double mutant, which was strongly compromised in the initial 3-O-glycosylation, showed a severe and specific repression of flavonol biosynthesis, retaining only one-third of the wild-type level. This metabolic phenotype was associated with a repressed transcription of several flavonol biosynthetic genes including the committed step chalcone synthase [(CHS) or TRANSPARENT TESTA 4 (TT4)]. Furthermore, the committed step of the upstream, general phenylpropanoid pathway, phenylalanine ammonia-lyase (PAL), was down-regulated in its enzyme activity and in the transcription of the flavonol-related PAL1 and PAL2. However, a complete blocking of flavonoid biosynthesis at CHS released PAL inhibition in a tt4 ugt78d1 ugt78d2 line. PAL activity was even enhanced in the flavonol synthase 1 mutant, which compromises the final formation of flavonol aglycones. The dependence of the PAL feedback inhibition on flavonols was confirmed by chemical complementation of tt4 ugt78d1 ugt78d2 using naringenin, a downstream flavonoid intermediate, which restored the PAL repression. Although aglycones were not analytically detectable, this study provides genetic evidence for a novel, flavonol-dependent feedback inhibition of the flavonol biosynthetic pathway and PAL. It was conditioned by the compromised flavonol-3-O-conjugation and a decrease in flavonol content, yet dependent on a residual, flavonol synthase 1 (FLS1)-related capacity to form flavonol aglycones. Thus, this regulation would not react to a reduced metabolic flux into flavonol biosynthesis, but it might prevent the accumulation of non-glycosylated, toxic flavonols.
    Journal of Experimental Botany 01/2012; 63(7):2465-78. · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants coordinate and tightly regulate pathogen defense by the mostly antagonistic salicylate (SA)- and jasmonate (JA)-mediated signaling pathways. Here, we show that the previously uncharacterized glucosyltransferase UGT76B1 is a novel player in this SA-JA signaling crosstalk. UGT76B1 was selected as the top stress-induced isoform among all 122 members of the Arabidopsis thaliana UGT family. Loss of UGT76B1 function leads to enhanced resistance to the biotrophic pathogen Pseudomonas syringae and accelerated senescence but increased susceptibility toward necrotrophic Alternaria brassicicola. This is accompanied by constitutively elevated SA levels and SA-related marker gene expression, whereas JA-dependent markers are repressed. Conversely, UGT76B1 overexpression has the opposite effect. Thus, UGT76B1 attenuates SA-dependent plant defense in the absence of infection, promotes the JA response, and delays senescence. The ugt76b1 phenotypes were SA dependent, whereas UGT76B1 overexpression indicated that this gene possibly also has a direct effect on the JA pathway. Nontargeted metabolomic analysis of UGT76B1 knockout and overexpression lines using ultra-high-resolution mass spectrometry and activity assays with the recombinant enzyme led to the ab initio identification of isoleucic acid (2-hydroxy-3-methyl-pentanoic acid) as a substrate of UGT76B1. Exogenously applied isoleucic acid increased resistance against P. syringae infection. These findings indicate a novel link between amino acid-related molecules and plant defense that is mediated by small-molecule glucosylation.
    The Plant Cell 11/2011; 23(11):4124-45. · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Behavioral syndromes are suites of two or more behaviors that correlate across environmental contexts. The aggression-boldness syndrome links aggression, boldness, and exploratory activity in a novel environment. Although aggression-boldness has been described in many animals, the mechanism linking its behavioral components is not known. Here we show that mutation of the gene encoding fibroblast growth factor receptor 1a (fgfr1a) simultaneously increases aggression, boldness, and exploration in adult zebrafish. We demonstrate that altered Fgf signaling also results in reduced brain histamine levels in mutants. Pharmacological increase of histamine signaling is sufficient to rescue the behavioral phenotype of fgfr1a mutants. Together, we show that a single genetic locus can underlie the aggression-boldness behavioral syndrome. We also identify one of the neurotransmitter pathways that may mediate clustering of these behaviors.
    Journal of Neuroscience 09/2011; 31(39):13796-807. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The balanced proliferation and cell cycle exit of neural progenitors, by generating the appropriate amount of postmitotic progeny at the correct time and in the proper location, is required for the establishment of the highly ordered structure of the adult brain. Little is known about the extrinsic signals regulating these processes, particularly in the midbrain. Fibroblast growth factor (Fgf) 15, the mouse ortholog of FGF19 and member of an atypical Fgf subfamily, is prominently expressed in the dorsolateral midbrain of the midgestational mouse embryo. In the absence of Fgf15, dorsal midbrain neural progenitors fail to exit the cell cycle and to generate the proper amount of postmitotic neurons. We show here that this is due to the altered expression of inhibitory/neurogenic and proneural/neuronal differentiation helix-loop-helix transcription factor (TF) genes. The expression of Id1, Id3, and Hes5 was strongly increased and ectopically expanded, whereas the expression of Ascl1 (Mash1), Neurog1 (Ngn1) and Neurog2 (Ngn2) was strongly decreased and transcription of Neurod1 (NeuroD) was completely abolished in the dorsolateral midbrain of Fgf15(-/-) mice. These abnormalities were not caused by the mis-expression of cell cycle regulatory proteins such as cyclin-dependent kinase inhibitors or retinoblastoma proteins. Furthermore, human FGF19 promotes cell cycle exit of murine dorsal neural progenitors in vitro. Therefore, our data suggest that Fgf15 is a crucial signaling molecule regulating the postmitotic transition of dorsal neural progenitors and thus the initiation and proper progression of dorsal midbrain neurogenesis in the mouse, by controlling the expression of neurogenic and proneural TFs.
    Developmental Biology 02/2011; 350(2):496-510. · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The limited generation of neurons during adulthood is controlled by a balance between quiescence and recruitment of neural stem cells (NSCs). We use here the germinal zone of the zebrafish adult telencephalon to examine how the frequency of NSC divisions is regulated. We show, using several in vivo techniques, that progenitors transit back and forth between the quiescent and dividing state, according to varying levels of Notch activity: Notch induction drives progenitors into quiescence, whereas blocking Notch massively reinitiates NSC division and subsequent commitment toward becoming neurons. Notch activation appears predominantly triggered by newly recruited progenitors onto their neighbors, suggesting an involvement of Notch in a self-limiting mechanism, once neurogenesis is started. These results identify for the first time a lateral inhibition-like mechanism in the context of adult neurogenesis and suggest that the equilibrium between quiescence and neurogenesis in the adult brain is controlled by fluctuations of Notch activity, thereby regulating the amount of adult-born neurons.
    Journal of Neuroscience 06/2010; 30(23):7961-74. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt/beta-catenin signaling controls the proper development of the mid-/hindbrain region (MHR) and of midbrain dopaminergic (mDA) neurons, but the Frizzled (Fzd) receptors transducing these signals are still unknown. Fzd3 is expressed throughout the mouse anterior neural tube, whereas Fzd6 is restricted to the MHR. We show that the MHR is properly established and mDA neurons develop normally in Fzd6(-/-) mutants, but the number of mDA neurons is initially reduced and recovers at later stages in Fzd3(-/-) embryos. Fzd3(-/-); Fzd6(-/-) double mutants exhibit a severe midbrain morphogenesis defect consisting of collapsed brain ventricles, apparent thickening of the neuroepithelium, focal disruption of the ventricular basal lamina and protrusion of individual cells, and increased proliferation at later stages, despite a normal closure of the anterior neural tube and the rescue of the mDA defect in these embryos. Fzd3 and Fzd6 thus control proper midbrain morphogenesis by a yet unknown mechanism in the mouse.
    Developmental Dynamics 10/2009; 239(1):246-60. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Survival and integration of new neurons in the hippocampal circuit are rate-limiting steps in adult hippocampal neurogenesis. Neuronal network activity is a major regulator of these processes, yet little is known about the respective downstream signaling pathways. Here, we investigate the role of cAMP response element-binding protein (CREB) signaling in adult hippocampal neurogenesis. CREB is activated in new granule neurons during a distinct developmental period. Loss of CREB function in a cell-autonomous manner impairs dendritic development, decreases the expression of the neurogenic transcription factor NeuroD and of the neuronal microtubule-associated protein, doublecortin (DCX), and compromises the survival of newborn neurons. In addition, GABA-mediated excitation regulates CREB activation at early developmental stages. Importantly, developmental defects after loss of GABA-mediated excitation can be compensated by enhanced CREB signaling. These results indicate that CREB signaling is a central pathway in adult hippocampal neurogenesis, regulating the development and survival of new hippocampal neurons downstream of GABA-mediated excitation.
    Journal of Neuroscience 07/2009; 29(25):7966-77. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In forest soils along vertical profiles located in different parts of the Alps, concentrations of persistent organic pollutants (POPs), namely organochlorine pesticides (OCPs) like dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCH), heptachlor, aldrin, dieldrin and mirex, were measured. Though local characteristics of the sites are influenced by numerous factors like orographic and meteorological parameters, forest stand characteristics and humus parameters, we ascertained a marked vertical increase of concentrations of some organochlorine compounds in the soil. On the basis of climatological values of each site, we found that the contamination increase with altitude can be ascribed to a certain ‘cold condensation effect’. In addition, the perennial atmospheric deposition of POPs is controlled by precipitation. Other key parameters explaining the accumulation of POPs are the soil organic carbon stocks, the turnover times, the re-volatilisation and degradation processes, which vary with altitude.
    Environmental Pollution 01/2009; · 3.73 Impact Factor
  • Theresa Faus-Kessler, Manfred Kirchner, Gert Jakobi
    [Show abstract] [Hide abstract]
    ABSTRACT: Passive sampler concentration measurements of nitrogen dioxide (NO2) and ammonia (NH3) were performed in the framework of a transect study to investigate the impact of vehicle emissions on ecosystems dissected by highways. The concentrations of both gases decrease markedly with distance from highway to regional background pollution values.Modelling the functional form of the decay is of interest for reducing the amount of measurements, for exposure assessment, and for predicting background concentrations. Three modelling approaches are compared: the exponential decay function, the shifted power-law function, and the linear-logarithmic function. The models were fitted to four compound- and year-specific data sets from one transect, applying mixed-effects models for repeated-measurement designs. The goodness-of-fit did not differ consistently between the model classes. Combined data from four transects with different characteristics were analysed with the exponential decay model, allowing for transect-specific random coefficients.From the empirical point of view, none of the three model classes is consistently superior to the others. But for prediction beyond the observed distance range it is essential to consider a model with meaningful parameters. The final choice of a model depends on the amount of data and on the characteristics to be represented by the model.
    Atmospheric Environment 01/2008; 42(19):4589-4600. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Housing conditions are known to influence laboratory animal behavior. However, it is not known whether housing mice in individually ventilated cages (IVCs) to maintain optimal hygienic conditions alters behavioral baselines established in conventional housing. This issue is important with regard to comparability and reproducibility of data. Therefore, we investigated the impact of IVC housing on emotionality and fear learning in male C3HeB/FeJ (C3H) and C57BL/6J (B6J) mice housed singly either in conventional type II cages with wire bar lids (Conventional), or in IVCs of the same size, but with smooth, untextured lids (IVC classic), thus acoustically attenuated from external stimuli and with limited climbing facilities compared to Conventional. To evaluate the role of climbing, additional mice were kept in IVCs with lids having wire bars ("grid") added to the inner surface (IVC grid). Spontaneous behavior, sensorimotor behavior, and fear learning were measured. IVC housing reduced activity and enhanced anxiety-related behavior in both strains, whereas grooming latency was reduced in B6J only. IVC housing increased Acoustic Startle Response in C3H but not in B6J mice. The "grid" did not compensate for these IVC housing effects. In contrast, B6J mice in IVC grid performed best in fear potentiated startle while B6J mice in IVC classic performed the worst, suggesting that climbing facilities combined with IVC housing facilitate FPS performance in singly-housed B6J males. Our data show that IVC housing can affect behavioral performance and can modulate behavioral parameters in a general and a strain-specific manner, thus having an impact on mouse functional genomics.
    Mammalian Genome 04/2007; 18(3):173-86. · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurological and psychiatric disorders are among the most common and most serious health problems in developed countries. Transgenic mouse models mimicking human neurological diseases have provided new insights into development and function of the nervous system. One of the prominent goals of the German National Genome Research Network is the understanding of the in vivo function of single genes and the pathophysiological and clinical consequences of respective mutations. The German Mouse Clinic (GMC) offers a high-throughput primary screen of genetically modified mouse models as well as an in-depth analysis in secondary and tertiary screens covering various fields of mouse physiology. Here we describe the phenotyping methods of the Neurological Screen in the GMC, exemplified in the four inbred mouse lines C57BL/6J, C3HeB/FeJ, BALB/cByJ, and 129S2/SvPas. For our primary screen, we generated "standard operating procedures" that were validated between different laboratories. The phenotyping of inbred strains already showed significant differences in various parameters, thus being a prerequisite for the examination of mutant mouse lines.
    Journal of Neuroscience Methods 11/2006; 157(1):82-90. · 2.11 Impact Factor
  • S. Stuebner, T. Faus-Kessler, T. Fischer, W Wurst, N Prakash
    Developmental Dynamics, v.239, 246-260 (2010).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The eye lens is usually considered as a radiation-sensitive tissue, and it is known for a long time that ionizing radiation causes opacification of the lens (cataracts). This concept of a particular radiation sensitivity of the ocular lens is based primarily upon its unique cellular architecture: the life-long dividing lens epithelial cells (LECs) at the anterior part, and the terminally differentiated fiber cells persisting for the entire life (Fig. 1). Fig. 1: The lens: cell types and differentiation.