Klaus-Peter Lesch

Russian Academy of Sciences, Moskva, Moscow, Russia

Are you Klaus-Peter Lesch?

Claim your profile

Publications (231)1148.13 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive-and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress-and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. Keywords: chronic stress, insulin receptor, dicholine succinate, phosphorylated glycogen synthase kinase-3beta (pGSK-3beta), NMDA receptor subunits NR2A and NR2B, sleep EEG, aging, hippocampal plasticity
    Frontiers in Behavioral Neuroscience 03/2015; · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2(-/-)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2(-/-) males displayed increased impulsivity and high aggressiveness. Tph2(-/-) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2(-/-) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality.
    Psychopharmacology 02/2015; · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An association between metabolic abnormalities, hypercholesterolemia and affective disorders is now well recognized. Less well understood are the molecular mechanisms, both in brain and in the periphery, that underpin this phenomenon. In addition to hepatic lipid accumulation and inflammation, C57BL/6J mice fed a high-cholesterol diet (0.2%) to induce Non-Alcoholic Fatty Liver Disease (NAFLD), exhibited behavioural despair, anxiogenic changes, and hyperlocomotion under bright light. These abnormalities were accompanied by increased expression of transcript and protein for Toll-like receptor 4, a pathogen-associated molecular pattern (PAMP) receptor, in the prefrontal cortex and the liver. The behavioural changes and Tlr4 expression were reversed ten days after discontinuation of the high-cholesterol diet. Remarkably, the dietary fat content and body mass of experimental mice were unchanged, suggesting a specific role for cholesterol in the molecular and behavioural changes. Expression of Sert and Cox1 were unaltered. Together, our study has demonstrated for the first time that high consumption of cholesterol results in depression- and anxiety-like changes in C57BL/6J mice and that these changes are unexpectedly associated with the increased expression of TLR4, which suggests that TLR4 may have a distinct role in the CNS unrelated to pathogen recognition. Copyright © 2015. Published by Elsevier Inc.
    Brain Behavior and Immunity 02/2015; · 5.61 Impact Factor
  • Dominik P Kiser, Olga Rivero, Klaus-Peter Lesch
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurodevelopmental disorders (NDDs) are defined by a wide variety of behavioural phenotypes, psychopathology and clinically informed categorical classifications. Diagnostic entities include intellectual disability (ID), the autism spectrum (ASD) and attention-deficit/hyperactivity disorder (ADHD). The aetiopathogenesis of these conditions and disorders involves an interaction between both genetic and environmental risk factors on the developmental trajectory. Despite their remarkable genetic heterogeneity and complexity of pathophysiological mechanisms, NDDs display an overlap in their phenotypic features, a considerable degree of comorbidity as well as sharing of genetic and environmental risk factors. This review aims to provide an overview of the genetics and epigenetic of NDDs. Recent evidence suggests a critical role of defined and tightly regulated neurodevelopmental programs running out of control in NDDs, most notably neuronal proliferation and migration, synapse formation and remodelling, as well as neural network configuration resulting in compromised systems connectivity and function. Moreover, the machinery of epigenetic programming, interacting with genetic liability, impacts many of those processes and pathways, thus modifying vulnerability of, and resilience to, NDDs. Consequently, the categorically defined entities of ID, ADHD and ASD are increasingly viewed as disorders on a multidimensional continuum of molecular and cellular deficiencies in neurodevelopment. As such, this range of NDDs displays a broad phenotypic diversity, which may be explained by a combination and interplay of underlying loss- and potential gain-of-function traits. In this overview, we discuss a backbone continuum concept of NDDs by summarizing pertinent findings in genetics and epigenetics. We also provide an appraisal of the genetic overlap versus differences, with a focus on genome-wide screening approaches for (epi)genetic variation. Finally, we conclude with insights from evolutionary psychobiology suggesting positive selection for discrete NDD-associated traits. © 2015 Association for Child and Adolescent Mental Health.
    Journal of Child Psychology and Psychiatry 02/2015; · 5.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in more than 500 genes have been associated with intellectual disability (ID) and related disorders of cognitive function, such as autism and schizophrenia. Here we aimed to unravel the molecular epidemiology of non-specific ID in a genetic isolate using a combination of population and molecular genetic approaches. A large multigenerational pedigree was ascertained within a Dagestan Genetic Heritage research program in a genetic isolate of indigenous ethnics. Clinical characteristics of the affected members were based on combining diagnoses from regional psychiatric hospitals with our own clinical assessment, using a Russian translation of the structured psychiatric interviews, the Diagnostic Interview for Genetic Studies and the Family Interview for Genetic Studies, based on DSM-IV criteria. Weber/CHLC 9.0 STRs set was used for multipoint parametric linkage analyses (Simwalk2.91). Next, we checked CNVs and LOH (based on Affymetrix SNP 5.0 data) in the linked with ID genomic regions with the aim to identify candidate genes associated with mutations in linked regions. The number of statistically significant (p ≤ 0.05) suggestive linkage peaks with 1.3 < LOD < 3.0 we detected in a total of 10 genomic regions: 1q41, 2p25.3-p24.2, 3p13-p12.1, 4q13.3, 10p11, 11q23, 12q24.22-q24.31, 17q24.2-q25.1, 21q22.13 and 22q12.3-q13.1. Three significant linkage signals with LOD >3 were obtained at 2p25.3-p24.2 under the dominant model, with a peak at 21 cM flanked by loci D2S2976 and D2S2952; at 12q24.22-q24.31 under the recessive model, with a peak at -120 cM flanked by marker D12S2070 and D12S395 and at 22q12.3 under the dominant model, with a peak at 32 cM flanked by marker D22S683 and D22S445. After a set of genes had been designated as possible candidates in these specific chromosomal regions,we conducted an exploratory search for LOH and CNV based on microarray data to detect structural genomic variants within five ID-linked regions with LOD scores between 2.0 and 3.9. In these selected regions we obtained 173 ROH segments and 98 CN segments. Further analysis of region 2p25.3-p24.2 revealed deletions within genes encoding MYTL, SNTG2 and TPO among five of 21 affected cases at 2p25.3-p24.2. In the ID-linked region at 12q24.22-12q24.31 19 out of 21 ID cases carried segmental CNV and 20 of 21 them displayed ROH segments with mean size lengths for ID cases 2512 kb (500-6,472 kb) and for healthy control 682 kb (531-986 kb), including the genes MED13L, HRK, FBXW8, TESC, CDK2AP1 and SBNO1. Seven of 21 affected pedigree members displayed segmental deletions at 22q12.3 that includes the gene LARGE. Eight affected pedigree members carried ROH segments and 6 CN segments at 10p11.23-p11.21 containing the genes ZEB1, c10orf68 and EPC1. Our linkage and structural genomic variation analyses in a remote highland genetic isolate with aggregation of ID demonstrated that even highly isolated single kindred ID has oligo/polygenic pathogenesis. The results obtained implicate 10 genomic regions linked with ID that contain some of previously reported candidate genes, including HRK, FBXW8, TESC, CDK2AP1 and SBNO1 at 12q24 that were shown in recent studies as associated with brain measures derived from MRI scans.
    Journal of neural transmission (Vienna, Austria : 1996). 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past years, certain "vulnerability genes" have been identified that play a key role in the development of mood and anxiety disorders. In particular, a low-expressing variant of the human serotonin transporter (5-HTT) gene has been described that renders individuals more susceptible to adverse experience and hence to the development of psychiatric diseases. However, some authors have recently argued that lower 5-HTT expression not only increases vulnerability to adverse experiences, but also enhances susceptibility to beneficial experiences, thus promoting phenotypic plasticity. The aim of the present study was to assess the effects of 5-HTT expression on susceptibility to beneficial experience in a hypothesis-driven experimental approach. Using a well-established rodent model for the human polymorphism, male heterozygous 5-HTT knockout (HET) and 5-HTT wildtype (WT) mice were either provided with the beneficial experience of cohabitation with a female (mating experience) or kept as naïve controls in single-housing conditions. Following the experimental treatment, they were tested for their anxiety-like behaviour and exploratory locomotion in three widely used behavioural tests. Interestingly, while cohabitation reduced anxiety-like behaviour and increased exploratory locomotion in the open field test in HET mice, it did not affect WT mice, pointing to a genotype-dependent susceptibility to the beneficial experience. Thus, our results might support the view of the low expressing version of the 5-HTT gene as a "plasticity" rather than a "vulnerability" variant. Copyright © 2015. Published by Elsevier B.V.
    Behavioural brain research. 01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Social anxiety disorder (SAD) is a commonly occurring and highly disabling disorder. The neuropeptide oxytocin and its receptor (OXTR) have been implicated in social cognition and behavior. The present study - for the first time applying a multi-level epigenetic approach - investigates the role of OXTR gene methylation in categorical, dimensional and intermediate neuroendocrinological/neural network phenotypes of social anxiety. One-hundred and ten unmedicated patients with SAD and matched 110 controls were analyzed for OXTR methylation by direct sequencing of sodium bisulfite-converted DNA extracted from whole blood. Furthermore, OXTR methylation was investigated regarding SAD-related traits (Social Phobia Scale, SPS; Social Interaction Anxiety Scale, SIAS), salivary cortisol response during the Trier Social Stress Test (TSST) and amygdala responsiveness to social phobia related verbal stimuli using fMRI. Significantly decreased OXTR methylation particularly at CpG Chr3:8 809 437 was associated with (1) the categorical phenotype of SAD (p<0.001, Cohen's d=0.535), (2) increased SPS and SIAS scores (p<0.001), (3) increased cortisol response to the TSST (p=0.02), and (4) increased amygdala responsiveness during social phobia related word processing (right: pcorr<0.001; left: pcorr=0.005). Assuming that decreased OXTR methylation confers increased OXTR expression, the present finding may reflect a compensatory upregulation for pathologically reduced oxytocin levels or a causally relevant increased OXTR activation in SAD and related traits. OXTR methylation patterns might thus serve as peripheral surrogates of oxytocin tone and aid in establishing accessible biomarkers of SAD risk allowing for indicated preventive interventions and personalized treatment approaches targeting the oxytocin system.Neuropsychopharmacology accepted article preview online, 07 January 2015. doi:10.1038/npp.2015.2.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 01/2015; · 8.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Repeated administration of methamphetamine (METH) enhances acute locomotor responses to METH administered in the same context, a phenomenon termed as 'locomotor sensitization'. Although many of the acute effects of METH are mediated by its influences on the compartmentalization of dopamine, serotonin systems have also been suggested to influence the behavioral effects of METH in ways that are not fully understood. The present experiments examined serotonergic roles in METH-induced locomotor sensitization by assessing: (a) the effect of serotonin transporter (SERT; Slc6A4) knockout (KO) on METH-induced locomotor sensitization; (b) extracellular monoamine levels in METH-treated animals as determined by in-vivo microdialysis; and (c) effects of serotonin (5-HT) receptor antagonists on METH-induced behavioral sensitization, with focus on effects of the 5-HT1B receptor antagonist SB 216641 and a comparison with the 5-HT2 receptor antagonist ketanserin. Repeated METH administration failed to induce behavioral sensitization in homozygous SERT KO (SERT-/-) mice under conditions that produced substantial sensitization in wild-type or heterozygous SERT KO (SERT+/-) mice. The selective 5-HT1B antagonist receptor SB 216641 restored METH-induced locomotor sensitization in SERT-/- mice, whereas ketanserin was ineffective. METH-induced increases in extracellular 5-HT (5-HTex) levels were substantially reduced in SERT-/- mice, although SERT genotype had no effect on METH-induced increases in extracellular dopamine. These experiments demonstrate that 5-HT actions, including those at 5-HT1B receptors, contribute to METH-induced locomotor sensitization. Modulation of 5-HT1B receptors might aid therapeutic approaches to the sequelae of chronic METH use.
    Behavioural Pharmacology 12/2014; 26. · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several studies have shown altered levels of nitric oxide (NO) and its stable metabolites (NOx (-)) in blood and cerebrospinal fluid of psychiatric patients. The aim of our study was to replicate previous findings and investigate the influence of the nitrinergic system in bipolar disorder and adult attention-deficit/hyperactivity disorder (aADHD) in particular.
    Journal of Psychopharmacology 10/2014; · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heritability. At least 30% of patients diagnosed in childhood continue to suffer ADHD during adulthood and genetic risk factors may play an essential role in the persistence of the disorder throughout lifespan. To date, Genome-Wide Association Studies (GWAS) of ADHD have been completed in seven independent datasets, six of which were pediatric samples and one on persistent ADHD using a DNA-pooling strategy, but none of them reported genome-wide significant associations. In an attempt to unravel novel genes for the persistence of ADHD into adulthood, we conducted the first two-stage GWAS in adults with ADHD. The discovery sample included 607 ADHD cases and 584 controls. Top signals were subsequently tested for replication in three independent follow-up samples of 2,104 ADHD patients and 1,901 controls. None of the findings exceeded the genome-wide threshold for significance (PGC<5e-08), but we found evidence for the involvement of the FBXO33 gene in combined ADHD in the discovery sample (P=9.02e-07) and in the joint analysis of both stages (P=9.7e-03). Additional evidence for a FBXO33 role in ADHD was found through gene-wise and pathway enrichment analyses in our genomic study. Risk alleles were associated with lower FBXO33 expression in lymphoblastoid cell lines and with reduced frontal grey matter volume in a sample of 1,300 adult subjects. Our findings point for the first time at the ubiquitination machinery as a new disease mechanism for adult ADHD and establish a rationale for searching for additional risk variants in ubiquitination-related genes.Neuropsychopharmacology accepted article preview online, 06 October 2014. doi:10.1038/npp.2014.267.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 10/2014; · 8.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal stress (PS) exposure is known to increase the risk of developing emotional disorders like major depression in later life. However, some individuals do not succumb to adversity following developmental stress exposure, a phenomenon referred to as resilience. To date, the molecular mechanisms explaining why some subjects are vulnerable and others more resilient to PS are far from understood. Recently, we have shown that the serotonin transporter (5-HTT) gene may play a modulating role in rendering individuals susceptible or resilient to PS. However, it is not clear which molecular players are mediating the interaction between PS and the 5-Htt genotype in the context of vulnerability and resilience to PS. For this purpose, we performed a microarray study with the help of Affymetrix GeneChip® Mouse Genome 430 2.0 Array, in which we separated wild-type and heterozygous 5-Htt-deficient (5-Htt+/-) PS offspring into susceptible and resilient offspring according to their performance in the forced swim test. Performance-oriented LIMMA analysis on the mRNA expression microarray data was followed by subsequent Spearman's correlation analysis linking the individual qRT-PCR mRNA expression data to various anxiety- and depression-related behavioral and neuroendocrine measures. Results indicate that, amongst others, Fos-induced growth factor (Figf), galanin receptor 3 (Galr3), growth hormone (Gh) and prolactin (Prl) were differentially expressed specifically in resilient offspring when compared to controls, and that the hippocampal expression of these genes showed several strong correlations with various measures of the hypothalamus-pituitary-adrenal axis (re)activity. In conclusion, there seems to be an intricate interplay between the expression of Figf, Galr3, Gh and Prl and neuroendocrine regulation, which may be critical in mediating resilience to PS exposure. More insight into the exact role of these molecular players may significantly enhance the development of new treatment strategies for stress-related emotional disorders. © 2014 S. Karger AG, Basel.
    Developmental Neuroscience 09/2014; · 3.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives. Methylphenidate (MPH) is a commonly used stimulant medication for treating attention-deficit/hyperactivity disorder (ADHD). Besides inhibiting monoamine reuptake there is evidence that MPH also influences gene expression directly. Methods. We investigated the impact of MPH treatment on gene expression levels of lymphoblastoid cells derived from adult ADHD patients and healthy controls by hypothesis-free, genome-wide microarray analysis. Significant findings were subsequently confirmed by quantitative Real-Time PCR (qRT PCR) analysis. Results. The microarray analysis from pooled samples after correction for multiple testing revealed 138 genes to be marginally significantly regulated due to MPH treatment, and one gene due to diagnosis. By qRT PCR we could confirm that GUCY1B3 expression was differential due to diagnosis. We verified chronic MPH treatment effects on the expression of ATXN1, HEY1, MAP3K8 and GLUT3 in controls as well as acute treatment effects on the expression of NAV2 and ATXN1 specifically in ADHD patients. Conclusions. Our preliminary results demonstrate MPH treatment differences in ADHD patients and healthy controls in a peripheral primary cell model. Our results need to be replicated in larger samples and also using patient-derived neuronal cell models to validate the contribution of those genes to the pathophysiology of ADHD and mode of action of MPH.
    The World Journal of Biological Psychiatry 08/2014; · 3.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive bias, the altered information processing resulting from the background emotional state of an individual, has been suggested as a promising new indicator of animal emotion. Comparable to anxious or depressed humans, animals in a putatively negative emotional state are more likely to judge an ambiguous stimulus as if it predicts a negative event, than those in positive states. The present study aimed to establish a cognitive bias test for mice based on a spatial judgment task and to apply it in a pilot study to serotonin transporter (5-HTT) knockout mice, a well-established mouse model for the study of anxiety- and depression-related behavior. In a first step, we validated that our setup can assess different expectations about the outcome of an ambiguous stimulus: mice having learned to expect something positive within a maze differed significantly in their behavior towards an unfamiliar location than animals having learned to expect something negative. In a second step, the use of spatial location as a discriminatory stimulus was confirmed by showing that mice interpret an ambiguous stimulus depending on its spatial location, with a position exactly midway between a positive and a negative reference point provoking the highest level of ambiguity. Finally, the anxiety- and depression-like phenotype of the 5-HTT knockout mouse model manifested - comparable to human conditions - in a trend for a negatively distorted interpretation of ambiguous information, albeit this effect was not statistically significant. The results suggest that the present cognitive bias test provides a useful basis to study the emotional state in mice, which may not only increase the translational value of animal models in the study of human affective disorders, but which is also a central objective of animal welfare research.
    PLoS ONE 08/2014; 9(8):e105431. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The monoamine oxidase A (MAO-A) gene has been suggested to be involved in the pathogenesis as well as the pharmacological treatment of major depressive disorder. In the present analysis, for the first time a pharmacoepigenetic approach was applied investigating the influence of DNA methylation patterns in the MAO-A regulatory and exon1/intron1 region on antidepressant treatment response. 94 patients of Caucasian descent with major depressive disorder (f = 61; DSM-IV) were analyzed for DNA methylation status at 43 MAO-A CpG sites via direct sequencing of sodium bisulfite treated DNA extracted from blood cells. Patients were also genotyped for the functional MAO-A VNTR. Clinical response to antidepressant treatment with escitalopram was assessed by intra-individual changes of HAM-D-21 scores after 6 weeks of treatment. Apart from two CpG sites, male subjects showed no or only very minor methylation. In female patients, lower methylation at two individual CpG sites in the MAO-A promoter region was nominally associated with impaired response to antidepressant treatment after 6 weeks (GRCh37/hg19: CpG 43.514.063, p = 0.04; CpG 43.514.684, p = 0.009), not, however, withstanding correction for multiple testing. MAO-A VNTR genotypes did not influence MAO-A methylation status. The present pilot data do not suggest a major influence of MAO-A DNA methylation on antidepressant treatment response. However, the presently observed trend towards CpG-specific MAO-A gene hypomethylation-possibly via increased gene expression and consecutively decreased serotonin and/or norepinephrine availability-to potentially drive impaired antidepressant treatment response in female patients might be worthwhile to be followed up in larger pharmacoepigenetic studies.
    Journal of Neural Transmission 05/2014; · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Depression and diabetes are serious diseases with an increasing global prevalence. Intriguingly, recent meta-analyses have highlighted an asymmetrical relationship between the two conditions as depressed patients were found to display a higher risk of developing type 2 diabetes than those individuals suffering from diabetes are to become depressed. Based on recent findings, we favor a hypothesis where by decreased peripheral serotonin (5-HT) transporter (5-HTT) function is a reciprocal risk factor for the co-morbidity of depression and diabetes, as it can trigger inflammatory pathogenetic mechanisms of both conditions. Higher intestinal levels of 5-HT and 5-HT3 receptor stimulation lead to increased intestinal permeability in 5-HTT deficient mice, which is viewed one of the most relevant animal models of depression. We hypothesize that this leakage of bacterial endotoxins can activate both central and peripheral Toll-like receptor 4 (TLR4), which inhibits insulin signaling and IRS1/PI3K/Akt and thus, contribute to the pathogenesis of diabetes and depression that are associated with this pathway. Antidepressant therapies, which also suppress intestinal 5-HTT, may have potentiating effects on the association between depression and diabetes. It is also of interest that high carbohydrate and fat intake ("cafeteria-type diet") increases intestinal 5-HT leading to TLR4 activation. Thus, endotoxaemia and inflammation owing to increased intestinal 5-HT may underpin the depression and diabetes association, where the risk of the latter pathology becomes particularly preeminent after the onset of depression and not vice versa. The evidence presented here shows the further investigation into peripheral mechanisms that linked diabetes to depression is clearly warranted.
    Behavioural brain research 05/2014; · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antioxidant enzymes and lipid peroxidation in the brain are involved in neuropsychiatric pathologies, including depression.14- or 28-day chronic stress model induced a depressive syndrome defined by lowered reward sensitivity in C57BL/6J mice and changed gene expression of peroxidation enzymes as shown in microarray assays. We studied how susceptibility or resilience to anhedonia is related to lipid peroxidation in the prefrontal cortex (PFC). With 14-day stress, a comparison of the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidise(GPX) and accumulation of malondialdehyde (MDA) revealed a decrease of the first two measures in susceptible, but not in resilient animals or in stressed mice chronically dosed with imipramine (7mg/kg/day). Acute stress elevated activity of CAT and SOD and dynamics of MDA accumulation in the PFC that was prevented by imipramine (30mg/kg). 28-day stress evoked anhedonia lasting two but not five weeks while behavioural invigoration was detected at the latter time point in anhedonic but not non-anhedonic mice; enhanced aggressive traits were observed in both groups. After two weeks of a stress-free period, CAT and SOD activity levels in the PFC were reduced in anhedonic animals; after five weeks, only CAT was diminished. Thus, in the present chronic stress depression paradigm, lasting alterations in brain peroxidation occur not only during anhedonia but also in the recovery period and are accompanied by behavioural abnormalities in mice. This mimics behavioural and neurochemical deficits observed in depressed patients during remission which could be used to develop remedies preventing their relapse.
    Behavioural brain research 04/2014; · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A promoter variant of the serotonin transporter (SERT) gene is known to affect emotional and cognitive regulation. In particular, the "short" allelic variant is implicated in the etiology of multiple neuropsychiatric disorders. Heterozygous (SERT(+/-)) and homozygous (SERT(-/-)) SERT mutant mice are valuable tools for understanding the mechanisms of altered SERT levels. Although these genetic effects are well investigated in adulthood, the developmental trajectory of altered SERT levels for behavior has not been investigated. We assessed anxiety-like and cognitive behaviors in SERT mutant mice in early adolescence and adulthood to examine the developmental consequences of reduced SERT levels. Spine density of pyramidal neurons was also measured in corticolimbic brain regions. Adult SERT(-/-) mice exhibited increased anxiety-like behavior, but these differences were not observed in early adolescent SERT(-/-) mice. Conversely, SERT(+/-) and SERT(-/-) mice did display higher spontaneous alternation during early adolescence and adulthood. SERT(+/-) and SERT(-/-) also exhibited greater neuronal spine densities in the orbitofrontal but not the medial prefrontal cortices. Adult SERT(-/-) mice also showed an increased spine density in the basolateral amygdala. Developmental alterations of the serotonergic system caused by genetic inactivation of SERT can have different influences on anxiety-like and cognitive behaviors through early adolescence into adulthood, which may be associated with changes of spine density in the prefrontal cortex and amygdala. The altered maturation of serotonergic systems may lead to specific age-related vulnerabilities to psychopathologies that develop during adolescence.
    Psychopharmacology 04/2014; · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Variation in the serotonin transporter gene (5-HTT; SERT; SLC6A4) has been suggested to pharmacogenetically drive interindividual differences in antidepressant treatment response. In the present analysis, a 'pharmaco-epigenetic' approach was applied by investigating the influence of DNA methylation patterns in the 5-HTT transcriptional control region on antidepressant treatment response. Ninety-four patients of Caucasian descent with major depressive disorder (MDD) (f = 61) were analysed for DNA methylation status at nine CpG sites in the 5-HTT transcriptional control region upstream of exon 1A via direct sequencing of sodium bisulfite treated DNA extracted from blood cells. Patients were also genotyped for the functional 5-HTTLPR/rs25531 polymorphisms. Clinical response to treatment with escitalopram was assessed by intra-individual changes of HAM-D-21 scores after 6 wk of treatment. Lower average 5-HTT methylation across all nine CpGs was found to be associated with impaired antidepressant treatment response after 6 wk (p = 0.005). This effect was particularly conferred by one individual 5-HTT CpG site (CpG2 (GRCh37 build, NC_000017.10 28.563.102; p = 0.002). 5-HTTLPR/rs25531 haplotype was neither associated with 5-HTT DNA methylation nor treatment response. This analysis suggests that DNA hypomethylation of the 5-HTT transcriptional control region - possibly via increased serotonin transporter expression and consecutively decreased serotonin availability - might impair antidepressant treatment response in Caucasian patients with MDD. This pharmaco-epigenetic approach could eventually aid in establishing epigenetic biomarkers of treatment response and thereby a more personalized treatment of MDD.
    The International Journal of Neuropsychopharmacology 03/2014; · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although there are many studies available investigating internalizing and externalizing behavior in childhood and adolescent manifestations of attention-deficit/hyperactivity disorder, there is limited information about their relevance in adults featuring persistence of the disease. We examined a large sample of 910 adults affected with attention-deficit/hyperactivity disorders (AADHD) for internalizing and externalizing behavior. Regarding correlates of internalizing behavior, AADHD probands showed significantly higher scores of the anxiety- and depression-related personality traits Neuroticism and Harm Avoidance, compared with reference values. The lifetime comorbidity of depressive disorders, anxiety disorders, and anxious or fearful Cluster C personality disorders (PDs) is elevated in AADHD patients compared with general population. Regarding correlates of externalizing behavior, patients affected with AADHD show significantly lower scores of Conscientiousness and significantly higher scores of Novelty Seeking than the published German reference values. Emotional, dramatic, or erratic Cluster B PDs were most frequent in AADHD. Internalizing and externalizing behavior notably affected psychosocial status to a similar extent. The frequency of both internalizing and externalizing behavior in AADHD might reflect an underlying emotional regulation disorder.
    ADHD Attention Deficit and Hyperactivity Disorders 02/2014; 6(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia spectrum disorders and bipolar spectrum disorders are the product of both heritable and non-heritable factors, the impact of which converges at different biological levels. Recent evidence from molecular approaches has provided new insights about how environmental exposures cause persistent alterations in the regulation of gene expression, particularly by so-called epigenetic mechanisms. The aim of this review is to provide an overview of findings of epigenetic studies in psychotic disorders, summarizing findings of human and animal studies on epigenetic alterations due to postnatal environmental exposures associated with psychotic disorders. Electronic and manual literature search of MEDLINE, EMBASE and PSYCHINFO, using a range of search terms around epigenetics, DNA methylation, histone modifications, psychoses, schizophrenia, bipolar disorder and environmental risks associated with psychotic disorders as observed in human and experimental animal studies, complemented by review articles and cross-references. Despite several promising findings of differential epigenetic profiles in individuals with psychotic disorders in the studies published to date, the knowledge of the role of epigenetic processes in psychotic disorder remains very limited, and should be interpreted cautiously given various challenges in this rapidly evolving field of research. Integration of epigenetic findings into biopsychosocial models of the etiology of psychotic disorders eventually may yield important insights into the biological underpinnings of the onset and course of psychotic disorders.
    Social Psychiatry 02/2014; · 2.05 Impact Factor

Publication Stats

7k Citations
1,148.13 Total Impact Points

Institutions

  • 2015
    • Russian Academy of Sciences
      Moskva, Moscow, Russia
  • 1998–2015
    • University of Wuerzburg
      • • Division of Molecular Psychiatry
      • • Department of Psychiatry, Psychosomatics, and Psychotherapy
      • • Department of Psychology
      Würzburg, Bavaria, Germany
  • 2014
    • Maastricht University
      • MHeNS School for Mental Health and Neuroscience
      Maestricht, Limburg, Netherlands
  • 2013
    • Universität Trier
      • Department of Neurobehavioural Genetics
      Trier, Rheinland-Pfalz, Germany
    • Maastricht Universitair Medisch Centrum
      Maestricht, Limburg, Netherlands
  • 2010–2013
    • University of Tartu
      • Estonian Centre of Behavioural and Health Sciences (consortium)
      Tartu, Tartumaa, Estonia
  • 2008–2013
    • Goethe-Universität Frankfurt am Main
      • Institute of Psychology
      Frankfurt, Hesse, Germany
    • University of Milan
      • Department of Neurological Sciences
      Milano, Lombardy, Italy
  • 2004–2013
    • University of Münster
      • Department of Psychiatry
      Münster, North Rhine-Westphalia, Germany
  • 2012
    • University of Tuebingen
      • Department of Psychiatry and Psychotherapy
      Tübingen, Baden-Wuerttemberg, Germany
  • 2009–2012
    • University Hospital Vall d'Hebron
      • Department of Psychiatry
      Barcino, Catalonia, Spain
  • 2003–2012
    • Technische Universität Dresden
      • • Fachrichtung Psychologie
      • • Institut für Pathologie
      Dresden, Saxony, Germany
  • 2011
    • The University of Edinburgh
      • Centre for Cognitive and Neural Systems
      Edinburgh, Scotland, United Kingdom
  • 2007–2011
    • Stony Brook University
      • Department of Psychology
      Stony Brook, NY, United States
  • 2009–2010
    • Radboud University Nijmegen
      • • Department of Cognitive Neuroscience
      • • Department of Human Genetics
      Nijmegen, Provincie Gelderland, Netherlands
  • 2004–2009
    • National Institute of Mental Health (NIMH)
      • Laboratory of Clinical Science
      Maryland, United States
  • 2005–2008
    • National Institutes of Health
      • • Molecular Neurobiology Research Branch
      • • Laboratory of Clinical and Translational Studies
      Bethesda, MD, United States
    • Northern Inyo Hospital
      BIH, California, United States
  • 2006
    • Universität des Saarlandes
      Saarbrücken, Saarland, Germany
  • 1999
    • Ben-Gurion University of the Negev
      Be'er Sheva`, Southern District, Israel