David J Elliot

Khon Kaen University, Khon Kaen, Changwat Khon Kaen, Thailand

Are you David J Elliot?

Claim your profile

Publications (35)95.48 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Formation of morphine-3-β-D-glucuronide (M3G) and morphine-6-β-D-glucuronide (M6G) are major metabolic pathways of morphine in humans. More recently, morphine-3-β-D-glucoside (M-3-glucoside) was identified in the urine of patients treated with morphine. Kinetic and inhibition studies using human liver microsomes (HLM) and recombinant UGTs as the enzyme sources along with molecular modelling were employed here to characterize the relationship between morphine glucuronidation and glucosidation. The M3G to M6G CLint ratio (~5.5) from HLM supplemented with UDP-glucuronic acid (UDP-GlcUA) alone were consistent with the relative formation of these metabolites in humans. The mean CLint values observed for M-3-glucoside by incubations of HLM with UDP-glucose (UDP-Glc) as cofactor were approximately twice those for M6G formation. However, while the M3G to M6G CLint ratio remained close to 5.5 when human liver microsomal kinetic studies were performed in the presence of a 1:1 mixture of cofactors, the mean CLint value for M-3-glucoside formation was less than that of M6G. Studies with UGT enzyme selective inhibitors and recombinant UGT enzymes, along with effects of BSA on morphine glycosidation kinetics, were consistent with a major role of UGT2B7 in both morphine glucuronidation and glucosidation. Molecular modelling identified key amino acids involved in the binding of UDP-GlcUA and UDP-Glc to UGT2B7. Mutagenesis of these residues abolished morphine glucuronidation and glucosidation. Overall, the data indicate that morphine glucuronidation and glucosidation occur as complementary metabolic pathways catalyzed by a common enzyme (UGT2B7). Glucuronidation is the dominant metabolic pathway since the binding affinity of UDP-GlcUA to UGT2B7 is higher than that of UDP-Glc.
    Journal of Pharmacology and Experimental Therapeutics 01/2014; · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long-chain unsaturated fatty acids inhibit several cytochrome P450 and UDP-glucuronosyltransferase (UGT) enzymes involved in drug metabolism, including CYP2C8, CYP2C9, UGT1A9, UGT2B4, and UGT2B7. Bovine serum albumin (BSA) enhances these cytochrome P450 and UGT activities by sequestering fatty acids that are released from membranes, especially with human liver microsomes (HLM) as the enzyme source. Here, we report the effects of BSA on CYP1A2-catalyzed phenacetin (PHEN) O-deethylation and lidocaine (LID) N-deethylation using HLM and Escherichia coli-expressed recombinant human CYP1A2 (rCYP1A2) as the enzyme sources. BSA (2% w/v) reduced (p < 0.05) the K(m) values of the high-affinity components of human liver microsomal PHEN and LID deethylation by approximately 70%, without affecting V(max). The K(m) (or S(50)) values for PHEN and LID deethylation by rCYP1A2 were reduced to a similar extent. A fatty acid mixture, comprising 3 μM concentrations each of oleic acid and linoleic acid plus 1.5 μM arachidonic acid, doubled the K(m) value for PHEN O-deethylation by rCYP1A2. Inhibition was reversed by the addition of BSA. K(i) values for the individual fatty acids ranged from 4.7 to 16.7 μM. Single-point in vitro-in vivo extrapolation (IV-IVE) based on the human liver microsomal kinetic parameters obtained in the presence, but not absence, of BSA predicted in vivo hepatic clearances of PHEN O-deethylation and LID N-deethylation that were comparable to values reported in humans, although in vivo intrinsic clearances were underpredicted. Prediction of the in vivo clearances of the CYP1A2 substrates observed here represents an improvement on other experimental systems used for IV-IVE.
    Drug metabolism and disposition: the biological fate of chemicals 02/2012; 40(5):982-9. · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fluorescence of 1-anilinonaphthalene-8-sulfonate (ANS) in the presence of human liver microsomes (HLMs) is altered by drugs that bind nonspecifically to the lipid bilayer. The present study characterized the relationship between the nonspecific binding (NSB) of drugs to HLMs as measured by equilibrium dialysis and the magnitude of the change in baseline ANS fluorescence. Fraction unbound in incubations of HLMs (f(u(mic))) was determined for 16 drugs (12 bases, 3 acids, and 1 neutral) with log P values in the range 0.1 to 6.7 at three concentrations (100, 200, and 500 μM). Changes in ANS fluorescence induced by each of the drugs in the presence of HLMs were measured by spectrofluorometry. Values of f(u(mic)) determined by equilibrium dialysis ranged from 0.08 to 1.0. Although NSB of the basic drugs tended to increase with increasing log P, exceptions occurred. Basic drugs generally caused an increase in ANS fluorescence, whereas the acidic and neutral drugs resulted in a decrease in ANS fluorescence. There were highly significant (p < 0.001) linear relationships between the modulus (absolute value) of the increment/decrement in ANS fluorescence and both f(u(mic)) (r = 0.90 to 0.96) and log(1 - f(u(mic))/f(u(mic))) (r = 0.85 to 0.92) at the three drug concentrations. Agreement between measured f(u(mic)) and that predicted by ANS fluorescence was very good (<10% variance) for a validation set of six compounds. The ANS fluorescence method provides an accurate measure of the NSB of drugs to HLMs. Physicochemical determinants other than log P and charge type influence the NSB of drugs to HLMs.
    Drug metabolism and disposition: the biological fate of chemicals 05/2011; 39(9):1711-7. · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enzyme selective inhibitors represent the most valuable experimental tool for reaction phenotyping. However, only a limited number of UDP-glucuronosyltransferase (UGT) enzyme-selective inhibitors have been identified to date. This study characterized the UGT enzyme selectivity of niflumic acid (NFA). It was demonstrated that 2.5 μM NFA is a highly selective inhibitor of recombinant and human liver microsomal UGT1A9 activity. Higher NFA concentrations (50-100 μM) inhibited UGT1A1 and UGT2B15 but had little effect on the activities of UGT1A3, UGT1A4, UGT1A6, UGT2B4, UGT2B7, and UGT2B17. NFA inhibited 4-methylumbelliferone and propofol (PRO) glucuronidation by recombinant UGT1A9 and PRO glucuronidation by human liver microsomes (HLM) according to a mixed (competitive-noncompetitive) mechanism, with K(i) values ranging from 0.10 to 0.40 μM. Likewise, NFA was a mixed or noncompetitive inhibitor of recombinant and human liver microsomal UGT1A1 (K(i) range 14-18 μM), whereas competitive inhibition (K(i) 62 μM) was observed with UGT2B15. NFA was subsequently applied to the reaction phenotyping of human liver microsomal acetaminophen (APAP) glucuronidation. Consistent with previous reports, APAP was glucuronidated by recombinant UGT1A1, UGT1A6, UGT1A9, and UGT2B15. NFA concentrations in the range of 2.5 to 100 μM inhibited APAP glucuronidation by UGT1A1, UGT1A9, and UGT2B15 but not by UGT1A6. The mean V(max) for APAP glucuronidation by HLM was reduced by 20, 35, and 40%, respectively, in the presence of 2.5, 50, and 100 μM NFA. Mean K(m) values decreased in parallel with V(max), although the magnitude of the decrease was smaller. Taken together, the NFA inhibition data suggest that UGT1A6 is the major enzyme involved in APAP glucuronidation.
    Drug metabolism and disposition: the biological fate of chemicals 01/2011; 39(4):644-52. · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human UDP glycosyltransferase (UGT) 3A family is one of three families involved in the metabolism of small lipophilic compounds. Members of these families catalyze the addition of sugar residues to chemicals, which enhances their excretion from the body. The UGT1 and UGT2 family members primarily use UDP glucuronic acid to glucuronidate numerous compounds, such as steroids, bile acids, and therapeutic drugs. We showed recently that UGT3A1, the first member of the UGT3 family to be characterized, is unusual in using UDP N-acetylglucosamine as sugar donor, rather than UDP glucuronic acid or other UDP sugar nucleotides (J Biol Chem 283:36205-36210, 2008). Here, we report the cloning, expression, and characterization of UGT3A2, the second member of the UGT3 family. Like UGT3A1, UGT3A2 is inactive with UDP glucuronic acid as sugar donor. However, in contrast to UGT3A1, UGT3A2 uses both UDP glucose and UDP xylose but not UDP N-acetylglucosamine to glycosidate a broad range of substrates including 4-methylumbelliferone, 1-hydroxypyrene, bioflavones, and estrogens. It has low activity toward bile acids and androgens. UGT3A2 transcripts are found in the thymus, testis, and kidney but are barely detectable in the liver and gastrointestinal tract. The low expression of UGT3A2 in the latter, which are the main organs of drug metabolism, suggests that UGT3A2 has a more selective role in protecting the organs in which it is expressed against toxic insult rather than a more generalized role in drug metabolism. The broad substrate and novel UDP sugar specificity of UGT3A2 would be advantageous for such a function.
    Molecular pharmacology 11/2010; 79(3):472-8. · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because codeine (COD) is eliminated primarily via glucuronidation, factors that alter COD glucuronide formation potentially affect the proportion of the dose converted to the pharmacologically active metabolite morphine. Thus, in vitro-in vivo extrapolation approaches were used to identify potential drug-drug interactions arising from inhibition of COD glucuronidation in humans. Initial studies characterized the kinetics of COD-6-glucuronide (C6G) formation by human liver microsomes (HLM) and demonstrated an 88% reduction in the Michaelis constant (K(m)) (0.29 versus 2.32 mM) for incubations performed in the presence of 2% bovine serum albumin (BSA). Of 13 recombinant UDP-glucuronosyltransferase (UGT) enzymes screened for COD glucuronidation activity, only UGT2B4 and UGT2B7 exhibited activity. The respective S(50) values (0.32 and 0.27 mM) generated in the presence of BSA were comparable with the mean K(m) observed in HLM. Known inhibitors of UGT2B7 activity in vitro or in vivo and drugs marketed as compound formulations with COD were investigated for inhibition of C6G formation by HLM. Inhibition screening identified potential interactions with dextropropoxyphene, fluconazole, ketoconazole, and methadone. Inhibitor constant values generated for dextropropoxyphene (3.5 microM), fluconazole (202 microM), ketoconazole (0.66 microM), and methadone (0.32 microM) predicted 1.60- to 3.66-fold increases in the area under the drug plasma concentration-time curve ratio for COD in vivo. Whereas fluconazole and ketoconazole inhibited UGT2B4- and UGT2B7-catalyzed COD glucuronidation to a similar extent, inhibition by dextropropoxyphene and methadone resulted largely from an effect on UGT2B4. Interactions with dextropropoxyphene, fluconazole, ketoconazole, and methadone potentially affect the intensity and duration of COD analgesia.
    Journal of Pharmacology and Experimental Therapeutics 08/2010; 334(2):609-18. · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate zolpidem as a mechanism-based inactivator of human CYP3A in vitro, and to assess its metabolic interaction potential with CYP3A drugs (in vitro-in vivo extrapolation; IV-IVE). A co- vs. pre-incubation strategy was used to quantify time-dependent inhibition of human liver microsomal (HLM) and recombinant CYP3A4 (rCYP3A4) by zolpidem. Experiments involving a 10-fold dilution step were employed to determine the kinetic constants of inactivation (K (I) and k (inact)) and to assess the in vitro mechanism-based inactivation (MBI) criteria. Inactivation data were entered into the Simcyp population-based ADME simulator to predict the increase in the area under the plasma concentration-time curve (AUC) for orally administered midazolam. Consistent with MBI, the inhibitory potency of zolpidem toward CYP3A was increased following pre-incubation. In HLMs, the concentration required for half maximal inactivation (K (I)) was 122 microM and the maximal rate of inactivation (k (inact)) was 0.094 min(-1). In comparison, K (I) and k (inact) values with rCYP3A4 were 50 microM and 0.229 min(-1), respectively. Zolpidem fulfilled all other in vitro MBI criteria, including irreversible inhibition. The mean oral AUC for midazolam in healthy volunteers was predicted to increase 1.1- to 1.7-fold due to the inhibition of metabolic clearance by zolpidem. Elderly subjects were more sensitive to the interaction, with mean increases in midazolam AUC of 1.2- and 2.2-fold for HLM IV-IVE and rCYP3A4 IV-IVE, respectively. Zolpidem is a relatively weak mechanism-based inactivator of human CYP3A in vitro. Zolpidem is unlikely to act as a significant perpetrator of metabolic interactions involving CYP3A.
    European Journal of Clinical Pharmacology 12/2009; 66(3):275-83. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To characterize: i) the kinetics of aldosterone (ALDO) 18beta-glucuronidation using human liver and human kidney microsomes and identify the human UGT enzyme(s) responsible for ALDO 18beta-glucuronidation and ii) the inhibition of ALDO 18beta-glucuronidation by non-selective NSAIDs. Using HPLC and LC-MS methods, ALDO 18beta-glucuronidation was characterized using human liver (n= 6), human kidney microsomes (n= 5) and recombinant human UGT 1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B15, 2B17 and 2B28 as the enzyme sources. Inhibition of ALDO 18beta-glucuronidation was investigated using alclofenac, cicloprofen, diclofenac, diflunisal, fenoprofen, R- and S-ibuprofen, indomethacin, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, S-naproxen, pirprofen and tiaprofenic acid. A rank order of inhibition (IC(50)) was established and the mechanism of inhibition investigated using diclofenac, S-ibuprofen, indomethacin, mefenamic acid and S-naproxen. ALDO 18beta-glucuronidation by hepatic and renal microsomes exhibited Michaelis-Menten kinetics. Mean (+/-SD) K(m), V(max) and CL(int) values for HLM and HKCM were 509 +/- 137 and 367 +/- 170 microm, 1075 +/- 429 and 1110 +/- 522 pmol min(-1) mg(-1), and 2.36 +/- 1.12 and 3.91 +/- 2.35 microl min(-1) mg(-1), respectively. Of the UGT proteins, only UGT1A10 and UGT2B7 converted ALDO to its 18beta-glucuronide. All NSAIDs investigated inhibited ALDO 18beta-G formation by HLM, HKCM and UGT2B7. The rank order of inhibition (IC(50)) of renal and hepatic ALDO 18beta-glucuronidation followed the general trend: fenamates > diclofenac > arylpropionates. A NSAID-ALDO interaction in vivo may result in elevated intra-renal concentrations of ALDO that may contribute to the adverse renal effects of NSAIDs and their effects on antihypertensive drug response.
    British Journal of Clinical Pharmacology 09/2009; 68(3):402-12. · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to gain insights into the renal and hepatic glucuronidation of frusemide (FSM), this study: (i) characterised the kinetics of FSM glucuronidation by human liver microsomes (HLM) and human kidney cortical- (HKCM) and medullary- (HKMM) microsomes, and (ii) identified the human UDP-glucuronosyltransferase enzyme(s) involved in this pathway. HLM, HKCM and HLMM efficiently glucuronidated FSM. FSM glucuronide (FSMG) formation followed Michaelis-Menten kinetics in all tissues. While the mean K(m) for FSMG formation by HKMM (386 +/- 68 microM) was lower than the K(m) values for HLM (988 +/- 271 microM) and HKCM (704 +/- 278 microM), mean V(max)/K(m) values were comparable for the three tissues. A panel of recombinant UGT enzymes was screened for the capacity to glucuronidate FSM. UGT 1A1, 1A3, 1A6, 1A7, 1A9, 1A10 and 2B7 metabolised FSM. Of the renally and hepatically expressed enzymes, comparison of kinetic parameters suggests a predominant role of UGT1A9 in FSM glucuronidation, although UGT1A1 may also contribute to FSMG formation by HLM. Consistent with these observations, the UGT1A selective inhibitors phenylbutazone and sulfinpyrazone decreased FSMG formation by HLM, HKCM and HKMM by 60-80%, whereas the UGT2B7 selective inhibitor fluconazole reduced FSM glucuronidation by < or =20%. The ability of HKCM and HKMM to form FSMG supports the proposition that the kidney is the main organ involved in FSM glucuronidation in vivo, although a role for hepatic metabolism remains a possibility in renal dysfunction. The data further demonstrate the potential importance of both the medulla and cortex in renal drug metabolism and detoxification.
    Biochemical pharmacology 08/2008; 76(2):249-57. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study characterized the mechanism by which bovine serum albumin (BSA) reduces the K(m) for phenytoin (PHY) hydroxylation and the implications of the "albumin effect" for in vitro-in vivo extrapolation of kinetic data for CYP2C9 substrates. BSA and essentially fatty acid-free human serum albumin (HSA-FAF) reduced the K(m) values for PHY hydroxylation (based on unbound substrate concentration) by human liver microsomes (HLMs) and recombinant CYP2C9 by approximately 75%, with only a minor effect on V(max). In contrast, crude human serum albumin increased the K(m) with both enzyme sources. Mass spectrometric analysis of incubations containing HLMs was consistent with the hypothesis that BSA sequesters long-chain unsaturated acids (arachidonic, linoleic, oleic) released from membranes. A mixture of arachidonic, linoleic and oleic acids, at a concentration corresponding to 1/20 of the content of HLMs, doubled the K(m) for PHY hydroxylation by CYP2C9, without affecting V(max). This effect was reversed by addition of BSA to incubations. K(i) values for arachidonic acid inhibition of human liver microsomal- and CYP2C9-catalyzed PHY hydroxylation were 3.8 and 1.6 microM, respectively. Similar effects were observed with heptadecanoic acid, the most abundant long-chain unsaturated acid present in Escherichia coli membranes. Extrapolation of intrinsic clearance (CL(int)) values for each enzyme source determined in the presence of BSA and HSA-FAF accurately predicted the known CL(int) for PHY hydroxylation in vivo. The results indicate that previously determined in vitro K(m) values for CYP2C9 substrates are almost certainly overestimates, and accurate in vitro-in vivo extrapolation of kinetic data for CYP2C9 substrates is achievable.
    Drug metabolism and disposition: the biological fate of chemicals 06/2008; 36(5):870-7. · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: UGT1A1 coding region mutations, including UGT1A1*6 (G71R), UGT1A1*7 (Y486D), UGT1A1*27 (P229Q) and UGT1A1*62 (F83L), have been linked to Gilbert syndrome in Asian populations, whereas homozygosity for UGT1A1*7 is associated with the Crigler-Najjar syndrome type II. This work compared the effects of (a) the individual UGT1A1 mutations on the glucuronidation kinetics bilirubin, beta-estradiol, 4-methylumbelliferone (4MU) and 1-naphthol (1NP), and (b) the Y486 mutation, which occurs in the conserved carboxyl terminal domain of UGT1A enzymes, on 4MU, 1NP and naproxen glucuronidation by UGT1A3, UGT1A6 and UGT1A10. Mutant UGT1A cDNAs were generated by site-directed mutagenesis and the encoded proteins were expressed in HEK293 cells. The glucuronidation kinetics of each substrate with each enzyme were characterized using specific high-performance liquid chromatography (HPLC) methods. Compared with wild-type UGT1A1, in-vitro clearances for bilirubin, beta-estradiol, 4MU and 1NP glucuronidation by UGT1A1*6 and UGT1A1*27 were reduced by 34-74%, most commonly as a result of a reduction in Vmax. However, the magnitude of the decrease in the in-vitro clearances varied from substrate to substrate with each mutant. The glucuronidation activities of UGT1A1*7 and UGT1A1*62 were reduced by >95%. Introduction of the Y486D mutation essentially abolished UGT1A6 and UGT1A10 activities, and resulted in 60-90% reductions in UGT1A3 in-vitro clearances. The glucuronidation of all UGT1A1 substrates is likely to be impaired in subjects carrying the UGT1A1*6 and UGT1A1*62 alleles, although the reduction in metabolic clearance might vary with the substrate. The Y486D mutation appears to greatly reduce most, but not all, UGT1A activities.
    Pharmacogenetics and Genomics 12/2007; 17(12):1017-29. · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite high sequence identity, UGT1A3 and UGT1A4 differ in terms of substrate selectivity. UGT1A3 glucuronidates the planar phenols 1-naphthol (1-NP) and 4-methylumbelliferone (4-MU), whereas UGT1A4 converts the tertiary amines lamotrigine (LTG) and trifluoperazine (TFP) to quaternary ammonium glucuronides. Residues 45 to 154 (which incorporate 21 of the 35 amino acid differences) and 45 to 535 were exchanged between UGT1A3 and UGT1A4 to generate UGT1A3-4((45-535)), UGT1A3-4((45-154))-3, UGT1A4-3((45-535)), and UGT1A4-3((45-154))-4 hybrid proteins. Although differences in kinetic parameters were observed between the parent enzymes and chimeras, UGT1A4-3((45-535)) and UGT1A4-3((45-154))-4 [but not UGT1A3-4((45-535)) and UGT1A3-4((45-154))-3] retained the capacity to glucuronidate LTG and TFP. Likewise, UGT1A3-4((45-535)) and UGT1A3-4((45-154))-3 retained the capacity to glucuronidate 1-NP and 4-MU, but UGT1A4-3((45-535)) and UGT1A4-3((45-154))-4 exhibited low or absent activity. Within the first 44 residues, UGT1A3 and UGT1A4 differ in sequence at positions 36 and 40. "Reciprocal" mutagenesis was performed to generate the UGT1A3(I36T), UGT1A3(H40P), UGT1A4(T36I), and UGT1A4 (P40H) mutants. The T36I and P40H mutations in UGT1A4 reduced in vitro clearances for LTG and TFP glucuronidation by >90%. Conversely, the I36T and H40P mutations in UGT1A3 reduced the in vitro clearances for 1-NP and 4-MU glucuronidation by >90%. Introduction of the single H40P mutation in UGT1A3 conferred LTG and TFP glucuronidation, whereas the single T36I mutation in UGT1A4 conferred 1-NP and 4-MU glucuronidation. Thus, residues 36 and 40 of UGT1A3 and UGT1A4 are pivotal for the respective selectivities of these enzymes toward planar phenols and tertiary amines, although other regions of the proteins influence binding affinity and/or turnover.
    Molecular Pharmacology 11/2007; 72(4):1054-62. · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify the human cytochrome P450 (CYP) enzymes responsible for the formation of the 6beta-hydroxy (6beta-OHGz), 7beta-hydroxy (7beta-OHGz) and hydroxymethyl (MeOH-Gz) metabolites of gliclizide (Gz). 6beta-OHGz, 7beta-OHGz and MeOH-Gz formation by human liver microsomes and a panel of recombinant human P450s was measured using a high-performance liquid chromatography procedure, and the kinetics of metabolite formation was determined for each pathway. Effects of prototypic CYP enzyme selective inhibitors were characterized for each of the microsomal metabolic pathways. Microsomes from six human livers converted Gz to its 6beta-OHGz, 7beta-OHGz, and MeOH-Gz metabolites, with respective mean (+/- SD) K(m) values of 461 +/- 139, 404 +/- 143 and 334 +/- 75 microm and mean V(max) values of 130 +/- 55, 82 +/- 31 and 268 +/- 115 pmol min(-1) mg(-1), respectively. V(max)/K(m) ratios for the microsomal reactions parallelled relative metabolite formation in vivo. Sulfaphenazole inhibited microsomal 6beta-OHGz, 7beta-OHGz and MeOH-Gz formation by 87, 83 and 64%, respectively, whereas S-mephenytoin caused significant inhibition (48%) of only MeOH-Gz formation. Recombinant CYP2C9, CYP2C18 and CYP2C19 catalysed all hydroxylation pathways, whereas CYP2C8 formed only 6beta-OHGz and 7beta-OHGz. Taken together, the results indicate that CYP2C9 is the major contributor to Gz metabolic clearance, although CYP2C19 may also be involved in MeOH-Gz formation (the major metabolic pathway). Factors known to influence CYP2C9 activity will provide the main source of variability in Gz pharmacokinetics.
    British Journal of Clinical Pharmacology 11/2007; 64(4):450-7. · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the important role of UDP-glucuronosyltransferases (UGT) in the metabolism of drugs, environmental chemicals and endogenous compounds, the structural features of these enzymes responsible for substrate binding and selectivity remain poorly understood. Since UGT2B7 and UGT2B15 exhibit distinct, but overlapping, substrate selectivities, UGT2B7-UGT2B15 chimeras were constructed here to identify substrate binding domains. A UGT2B7-15-7 chimera that incorporated amino acids 61-194 of UGT2B15 glucuronidated the UGT2B15 substrates testosterone and phenolphthalein, but not the UGT2B7 substrates zidovudine and 11alpha-hydroxyprogesterone. Derived apparent K(m) values for testosterone and phenolphthalein glucuronidation by UGT2B7-15((61-194))-7 were similar in magnitude to those determined for UGT2B15. Moreover, glucuronidation of the non-selective substrate 4-methylumbelliferone (4MU) by UGT2B7-15((61-194))-7 and UGT2B15 followed Michaelis-Menten and weak substrate inhibition kinetics, respectively, whereas 4MU glucuronidation by UGT2B7 exhibited sigmoidal kinetics characteristic of autoactivation. Six UGT2B7-15-7 chimeras that incorporated smaller domains of UGT2B15 were subsequently generated. Of these, UGT2B7-15((61-157))-7, UGT2B7-15((91-157))-7 and UGT2B7-15((61-91))-7 glucuronidated 4MU, but activity towards the other substrates investigated here was not detected. Like UGT2B7, the UGT2B7-15((61-157))-7, UGT2B7-15((91-157))-7 and UGT2B7-15((61-91))-7 chimeras exhibited sigmoidal 4MU glucuronidation kinetics. The sigmoidal 4MU kinetic data were well modelled using both the Hill equation and the expression for a two-site model that assumes the simultaneous binding of two substrate molecules at equivalent sites. It may be concluded that residues 61-194 of UGT2B15 are responsible for substrate binding and for conferring the unique substrate selectivity of UGT2B15, while residues 158-194 of UGT2B7 appear to facilitate the binding of multiple 4MU molecules within the active site.
    Biochemical Pharmacology 06/2007; 73(9):1463-73. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies were performed to elucidate the mechanism responsible for the reduction in Km values of UDP-glucuronosyltransferase 2B7 (UGT2B7) substrates observed for incubations conducted in the presence of albumin. Addition of bovine serum albumin (BSA) and fatty acid-free human serum albumin (HSA-FAF), but not "crude" HSA, resulted in an approximate 90% reduction in the Km values for the glucuronidation of zidovudine (AZT) by human liver microsomes (HLM) and UGT2B7 and a 50 to 75% reduction in the S50 for 4-methylumbelliferone (4MU) glucuronidation by UGT2B7, without affecting Vmax. Oleic, linoleic, and arachidonic acids were shown to be the most abundant unsaturated long-chain fatty acids present in crude HSA and in the membranes of HLM and human embryonic kidney (HEK)293 cells, and it was demonstrated that these and other unsaturated long-chain fatty acids were UGT2B7 substrates. Glucuronides with Rf (retention factor) values corresponding to the glucuronides of linoleic and arachidonic acid were detected when HLM and HEK293 cell lysates were incubated with radiolabeled cofactor, and the intensity of the bands was modulated by the presence of crude HSA (increased) and BSA or HSA-FAF (decreased). Oleic, linoleic, and arachidonic acid inhibited AZT and 4MU glucuronidation by HLM and/or UGT2B7, due to an increase in Km/S50 without a change in Vmax. Addition of BSA and HSA-FAF reversed the inhibition. Likewise, coexpression of UGT2B7 and HSA in HEK293 cells reduced the Km/S50 values of these substrates. It is postulated that BSA and HSA-FAF sequester inhibitory fatty acids released during incubations, and the apparent high Km values observed for UGT2B7 substrates arise from the presence of these endogenous inhibitors.
    Journal of Pharmacology and Experimental Therapeutics 05/2007; 321(1):137-47. · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stereo- and regioselective glucuronidation of 10 Delta(4)-3-keto monohydroxylated androgens and pregnanes was investigated to identify UDP-glucuronosyltransferase (UGT) enzyme-selective substrates. Kinetic studies were performed using human liver microsomes (HLMs) and a panel of 12 recombinant human UGTs as the enzyme sources. Five of the steroids, which were hydroxylated in the 6beta-, 7alpha-, 11beta- or 17alpha-positions, were not glucuronidated by HLMs. Of the remaining compounds, comparative kinetic and inhibition studies indicated that 6alpha- and 21-hydroxyprogesterone (OHP) were glucuronidated selectively by human liver microsomal UGT2B7. 6alpha-OHP glucuronidation by HLMs and UGT2B7 followed Michaelis-Menten kinetics, whereas 21-OHP glucuronidation by these enzyme sources exhibited positive cooperativity. UGT2B7 was also identified as the enzyme responsible for the high-affinity component of human liver microsomal 11alpha-OHP glucuronidation. In contrast, UGT2B15 and UGT2B17 were the major forms involved in human liver microsomal testosterone 17beta-glucuronidation and the high-affinity component of 16alpha-OHP glucuronidation. Activity of UGT1A subfamily enzymes toward the hepatically glucuronidated substrates was generally low, although UGT1A4 and UGT1A9 contribute to the low-affinity components of microsomal 16alpha- and 11alpha-OHP glucuronidation, respectively. Interestingly, UGT1A10, which is expressed only in the gastrointestinal tract, exhibited activity toward most of the glucuronidated substrates. The results indicate that 6alpha- and 21-OHP may be used as selective "probes" for human liver microsomal UGT2B7 activity and, taken together, provide insights into the regio- and stereoselectivity of hydroxysteroid glucuronidation by human UGTs.
    Drug Metabolism and Disposition 04/2007; 35(3):363-70. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The uricosuric agent sulfinpyrazone (SFZ) is metabolized via C-glucuronidation, an uncommon metabolic pathway, in humans. The present study aimed to characterize SFZ glucuronidation by human liver microsomes (HLMs) and identify the hepatic forms of UDP-glucuronosyltransferase responsible for this pathway. Incubations of SFZ with HLMs formed a single glucuronide that was resistant to beta-glucuronidase and acid hydrolysis, consistent with formation of a C-glucuronide. Mass spectral analysis confirmed the identity of the metabolite as SFZ glucuronide (sulfinpyrazone beta-D-glucuronide; SFZG). SFZ C-glucuronidation by HLMs exhibited Michaelis-Menten kinetics, with mean (+/- S.D.) Km and Vmax values of 51 +/- 21 microM and 2.6 +/- 0.6 pmol/min . mg, respectively. Fifteen recombinant human UDP-glucuronosyltransferases (UGTs), expressed in HEK293 cells, were screened for their capacity to catalyze SFZ C-glucuronidation. Of the hepatically expressed enzymes, only UGT1A9 formed SFZG. UGTs 1A7 and 1A10, which are expressed in the gastrointestinal tract, also metabolized SFZ, but rates of metabolism were low compared with UGT1A9. SFZ glucuronidation by UGT1A9 exhibited "weak" negative cooperative kinetics, which was modeled by the Hill equation (S50 16 microM). The data indicate that UGT1A9 is the enzyme responsible for hepatic SFZ C-glucuronidation and that SFZ may be used as a substrate "probe" for UGT1A9 activity in HLMs.
    Drug Metabolism and Disposition 01/2007; 34(12):1950-3. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies were performed to investigate the UDP-glucuronosyltransferase enzyme(s) responsible for the human liver microsomal N2-glucuronidation of the anticonvulsant drug lamotrigine (LTG) and the mechanistic basis for the LTG-valproic acid (VPA) interaction in vivo. LTG N2-glucuronidation by microsomes from five livers exhibited atypical kinetics, best described by a model comprising the expressions for the Hill (1869 +/- 1286 microM, n = 0.65 +/- 0.16) and Michaelis-Menten (Km 2234 +/- 774 microM) equations. The UGT1A4 inhibitor hecogenin abolished the Michaelis-Menten component, without affecting the Hill component. LTG N2-glucuronidation by recombinant UGT1A4 exhibited Michaelis-Menten kinetics, with a Km of 1558 microM. Although recombinant UGT2B7 exhibited only low activity toward LTG, inhibition by zidovudine and fluconazole and activation by bovine serum albumin (BSA) (2%) strongly suggested that this enzyme was responsible for the Hill component of microsomal LTG N2-glucuronidation. VPA (10 mM) abolished the Hill component of microsomal LTG N2-glucuronidation, without affecting the Michaelis-Menten component or UGT1A4-catalyzed LTG metabolism. Ki values for inhibition of the Hill component of LTG N2-glucuronidation by VPA were 2465 +/- 370 microM and 387 +/- 12 microM in the absence and presence, respectively, of BSA (2%). Consistent with published data for the effect of fluconazole on zidovudine glucuronidation by human liver microsomal UGT2B7, the Ki value generated in the presence of BSA predicted the magnitude of the LTG-VPA interaction reported in vivo. These data indicate that UGT2B7 and UGT1A4 are responsible for the Hill and Michaelis-Menten components, respectively, of microsomal LTG N2-glucuronidation, and the LTG-VPA interaction in vivo arises from inhibition of UGT2B7.
    Drug Metabolism and Disposition 07/2006; 111(6):1055-62. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To characterize potential mechanism-based inactivation (MBI) of major human drug-metabolizing cytochromes P450 (CYP) by monoamine oxidase (MAO) inhibitors, including the antitubercular drug isoniazid. Human liver microsomal CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities were investigated following co- and preincubation with MAO inhibitors. Inactivation kinetic constants (KI and kinact) were determined where a significant preincubation effect was observed. Spectral studies were conducted to elucidate the mechanisms of inactivation. Hydrazine MAO inhibitors generally exhibited greater inhibition of CYP following preincubation, whereas this was less frequent for the propargylamines, and tranylcypromine and moclobemide. Phenelzine and isoniazid inactivated all CYP but were most potent toward CYP3A and CYP2C19. Respective inactivation kinetic constants (KI and kinact) for isoniazid were 48.6 microm and 0.042 min-1 and 79.3 microm and 0.039 min-1. Clorgyline was a selective inactivator of CYP1A2 (6.8 microm and 0.15 min-1). Inactivation of CYP was irreversible, consistent with metabolite-intermediate complexation for isoniazid and clorgyline, and haeme destruction for phenelzine. With the exception of phenelzine-mediated CYP3A inactivation, glutathione and superoxide dismutase failed to protect CYP from inactivation by isoniazid and phenelzine. Glutathione partially slowed (17%) the inactivation of CYP1A2 by clorgyline. Alternate substrates or inhibitors generally protected against CYP inactivation. These data are consistent with mechanism-based inactivation of human drug-metabolizing CYP enzymes and suggest that impaired metabolic clearance may contribute to clinical drug-drug interactions with some MAO inhibitors.
    British Journal of Clinical Pharmacology 06/2006; 61(5):570-84. · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using the fluconazole-zidovudine (AZT) interaction as a model, to determine whether inhibition of UDP-glucuronosyltransferase (UGT) catalysed drug metabolism in vivo could be predicted quantitatively from in vitro kinetic data generated in the presence and absence bovine serum albumin (BSA). Kinetic constants for AZT glucuronidation were generated using human liver microsomes (HLM) and recombinant UGT2B7, the principal enzyme responsible for AZT glucuronidation, as the enzyme sources with and without fluconazole. K(i) values were used to estimate the decrease in AZT clearance in vivo. Addition of BSA (2%) to incubations decreased the K(m) values for AZT glucuronidation by 85-90% for the HLM (923 +/- 357 to 91 +/- 9 microm) and UGT2B7 (478-70 microm) catalysed reactions, with little effect on V(max). Fluconazole, which was shown to be a selective inhibitor of UGT2B7, competitively inhibited AZT glucuronidation by HLM and UGT2B7. Like the K(m), BSA caused an 87% reduction in the K(i) for fluconazole inhibition of AZT glucuronidation by HLM (1133 +/- 403 to 145 +/- 36 microm) and UGT2B7 (529 to 73 microm). K(i) values determined for fluconazole using HLM and UGT2B7 in the presence (but not absence) of BSA predicted an interaction in vivo. The predicted magnitude of the interaction ranged from 41% to 217% of the reported AUC increase in patients, depending on the value of the in vivo fluconazole concentration employed in calculations. K(i) values determined under certain experimental conditions may quantitatively predict inhibition of UGT catalysed drug glucuronidation in vivo.
    British Journal of Clinical Pharmacology 05/2006; 61(4):427-39. · 3.69 Impact Factor

Publication Stats

694 Citations
95.48 Total Impact Points


  • 2012
    • Khon Kaen University
      • Department of Pharmacology
      Khon Kaen, Changwat Khon Kaen, Thailand
  • 2006–2010
    • Flinders University
      • • Department of Clinical Pharmacology
      • • School of Medicine
      • • Flinders Medical Centre
      Adelaide, South Australia, Australia
  • 2004–2008
    • Flinders Medical Centre
      Tarndarnya, South Australia, Australia
  • 2007
    • Airlangga University
      Surabaya, West Java, Indonesia