P W Kincade

Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States

Are you P W Kincade?

Claim your profile

Publications (259)2023.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Remarkable progress has been made in characterizing factors controlling lineage fate decisions of primitive progenitors that initiate the lymphoid program in bone marrow. However, the understanding of neonatal/adult differences in environmental signals that influence differentiation pathway stability is still incomplete. Our recent findings suggest that Toll-like receptors (TLR) provide a mechanism for producing cells of the innate immune system from early stages of lymphoid development in mice. We now show that both, human early multi-lymphoid progenitors (MLP) and more differentiated lymphoid progenitors from normal adult bone marrow express TLR9. Furthermore, they respond to its ligation by up-regulating the expression of IL15Rβ (CD122) and accelerating the production of functional natural killer (NK)-like cells. Proliferation of the presumed equivalent progenitor cells from umbilical cord blood was stimulated by CpG-ODN or HSV, but the already robust NK cell formation was unchanged. This new information adds to other known differences between neonatal and adult lymphoid progenitors and suggests only the latter replenish innate NK-like cells in response to TLR agonists.
    Experimental hematology 04/2014; · 3.11 Impact Factor
  • Robert S Welner, Paul W Kincade
    [Show abstract] [Hide abstract]
    ABSTRACT: In this issue of Cell Stem Cell, Zhao et al. (2014) and Schürch et al. (2014) describe two new stem cell mechanisms underlying protective responses to infection. In response to inflammatory signals, HSPCs and MSCs produce cytokines that stimulate HSC mobilization and differentiation toward innate immune cells at the expense of adaptive immune lineages.
    Cell stem cell 04/2014; 14(4):415-6. · 23.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although extremely rare, hematopoietic stem cells (HSCs) are divisible into subsets that differ with respect to differentiation potential and cell surface marker expression. For example, we recently found that CD86- CD150+ CD48- HSCs have limited potential for lymphocyte production. This could be an important new tool for studying hematological abnormalities. Here, we analyzed HSC subsets with a series of stem cell markers in JAK2V617F transgenic (Tg) mice, where the mutation is sufficient to cause myeloproliferative neoplasia with lymphocyte deficiency. Total numbers of HSC were elevated 3 to 20 fold in bone marrow of JAK2V617F mice. Careful analysis suggested the accumulation involved multiple HSC subsets, but particularly those characterized as CD150HI CD86- CD18L°CD41+ and excluding Hoechst dye. Real-Time PCR analysis of their HSC revealed that the erythropoiesis associated gene transcripts Gata1, Klf1 and Epor were particularly high. Flow cytometry analyses based on two differentiation schemes for multipotent progenitors (MPP) also suggested alteration by JAK2 signals. The low CD86 on HSC and multipotent progenitors paralleled the large reductions we found in lymphoid progenitors, but the few that were produced functioned normally when sorted and placed in culture. Either of two HSC subsets conferred disease when transplanted. Thus, flow cytometry can be used to observe the influence of abnormal JAK2 signaling on stem and progenitor subsets. Markers that similarly distinguish categories of human HSCs might be very valuable for monitoring such conditions. They could also serve as indicators of HSC fitness and suitability for transplantation.
    PLoS ONE 01/2014; 9(4):e93643. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How hematopoietic stem cells (HSCs) produce particular lineages is insufficiently understood. We searched for key factors that direct HSC to lymphopoiesis. Comparing gene expression profiles for HSCs and early lymphoid progenitors revealed that Satb1, a global chromatin regulator, was markedly induced with lymphoid lineage specification. HSCs from Satb1-deficient mice were defective in lymphopoietic activity in culture and failed to reconstitute T lymphopoiesis in wild-type recipients. Furthermore, Satb1 transduction of HSCs and embryonic stem cells robustly promoted their differentiation toward lymphocytes. Whereas genes that encode Ikaros, E2A, and Notch1 were unaffected, many genes involved in lineage decisions were regulated by Satb1. Satb1 expression was reduced in aged HSCs with compromised lymphopoietic potential, but forced Satb1 expression partly restored that potential. Thus, Satb1 governs the initiating process central to the replenishing of lymphoid lineages. Such activity in lymphoid cell generation may be of clinical importance and useful to overcome immunosenescence.
    Immunity 06/2013; · 19.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE OF REVIEW: Cells of the immune system are replaced in large numbers throughout life, and the underlying mechanisms have been extensively studied. Whereas the pace of discovery in this area is unprecedented, many questions remain, particularly with respect to lymphocyte formation. RECENT FINDINGS: While transcription factors have long been a focus of investigation, microRNAs are also being implicated in lymphopoiesis. Lymphocytes are normally replaced in correct proportion to other blood cells, but ratios change dramatically during infections. Long-standing issues relating to T versus B lineage divergence remain but have been enriched with remarkable new findings about thymus seeding. There are indications that at least some age-related changes in lymphopoiesis may be reversible. Finally, knowledge obtained from studies of mice is slowly being extended to humans. SUMMARY: We can now appreciate that new lymphoid progenitors are drawn from a heterogeneous collection of hematopoietic stem cells through asynchronous patterns of gene expression. Complex interactions then occur between the gene products, preparing lymphoid progenitors to respond to environmental cues. Whereas unique markers describe the process of lymphocyte formation in humans, fundamental information now available should suggest ways to promote rebound from chemotherapy or transplantation and reverse declines associated with aging.
    Current opinion in hematology 04/2013; · 5.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Common lymphoid progenitors (CLPs) are thought to represent major intermediates in the transition of hematopoietic stem cells (HSCs) to B lineage lymphocytes. However, it has been obvious for some time that CLPs are heterogeneous, and there has been controversy concerning their differentiation potential. We have now resolved four Flt3(+) CLP subsets that are relatively homogenous and capable of forming B cells. Differentiation potential and gene expression patterns suggest Flt3(+) CLPs lacking both Ly6D and RAG-1 are the least differentiated. In addition to B cells, they generate natural killer (NK) and dendritic cells (DCs). At the other extreme is a subset of the recently described Flt3(+) Ly6D(+) CLPs that have a history of RAG-1 expression and are B lineage restricted. These relatively abundant and potent CLPs were depleted within 48 hours of acute in vivo estrogen elevation, suggesting they descend from hormone regulated progenitors. This contrasts with the hormone insensitivity of other CLP subsets that include NK lineage progenitors. This progenitor heterogeneity and differentiation complexity may add flexibility in response to environmental changes. Expression of RAG-1 and display of Ly6D are both milestone events, but they are neither synchronized nor dependent on each other.
    PLoS ONE 01/2013; 8(8):e72397. · 3.53 Impact Factor
  • Paul W Kincade
    The Journal of Immunology 10/2012; 189(7):3269-70. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A unique subset of CD86(-) HSCs was previously discovered in mice that were old or chronically stimulated with lipopolysaccharide. Functionally defective HSCs were also present in those animals, and we now show that CD86(-) CD150(+) CD48(-) HSCs from normal adult mice are particularly poor at restoring the adaptive immune system. Levels of the marker are high on all progenitors with lymphopoietic potential, and progressive loss helps to establish relations between progenitors corresponding to myeloid and erythroid lineages. CD86 represents an important tool for subdividing HSCs in several circumstances, identifying those unlikely to generate a full spectrum of hematopoietic cells.
    Blood 02/2012; 119(21):4889-97. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The path from hematopoietic stem cells (HSCs) to functional B lymphocytes has long been appreciated as a basic model of differentiation, but much clinically relevant information has also been obtained. It is now possible to conduct single cell studies with increasingly high resolution, revealing that individual stem and progenitor cells differ from each other with respect to differentiation potential and fates. B lymphopoiesis is now seen as a gradual and unsynchronized process where progenitors eventually become B lineage restricted. Major milestones have been identified, but a precise sequence need not be followed and oscillation between states is possible. It is not yet clear if this versatility has survival value, but information is accumulating about infections and age-related changes.
    Current opinion in immunology 01/2012; 24(2):196-203. · 10.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A strict balance between self-renewal and differentiation of hematopoietic stem cells (HSCs) is required in order to maintain homeostasis, as well as to efficiently respond to injury and infections. Numbers and fate decisions made by progenitors derived from HSC must also be carefully regulated to sustain large-scale production of blood cells. The complex Wnt family of molecules generally is thought to be important to these processes, delivering critical signals to HSC and progenitors as they reside in specialized niches. Wnt proteins have also been extensively studied in connection with malignancies and are causatively involved in the development of several types of leukemias. However, studies with experimental animal models have produced contradictory findings regarding the importance of Wnt signals for normal hematopoiesis and lymphopoiesis. Here, we will argue that dose dependency of signaling via particular Wnt pathways accounts for much, if not all of this controversy. We conclude that there seems little doubt that Wnt proteins are required to sustain normal hematopoiesis, but are likely to be presented in carefully controlled gradients in a tissue-specific manner.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 12/2011; 26(3):414-21. · 10.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Considerable information has accumulated about components of BM that regulate the survival, self-renewal, and differentiation of hematopoietic cells. In the present study, we investigated Wnt signaling and assessed its influence on human and murine hematopoiesis. Hematopoietic stem/progenitor cells (HSPCs) were placed on Wnt3a-transduced OP9 stromal cells. The proliferation and production of B cells, natural killer cells, and plasmacytoid dendritic cells were blocked. In addition, some HSPC characteristics were maintained or re-acquired along with different lineage generation potentials. These responses did not result from direct effects of Wnt3a on HSPCs, but also required alterations in the OP9 cells. Microarray, PCR, and flow cytometric experiments revealed that OP9 cells acquired osteoblastic characteristics while down-regulating some features associated with mesenchymal stem cells, including the expression of angiopoietin 1, the c-Kit ligand, and VCAM-1. In contrast, the production of decorin, tenascins, and fibromodulin markedly increased. We found that at least 1 of these extracellular matrix components, decorin, is a regulator of hematopoiesis: upon addition of this proteoglycan to OP9 cocultures, decorin caused changes similar to those caused by Wnt3a. Furthermore, hematopoietic stem cell numbers in the BM and spleen were elevated in decorin-knockout mice. These findings define one mechanism through which canonical Wnt signaling could shape niches supportive of hematopoiesis.
    Blood 11/2011; 119(7):1683-92. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cells (HSC) can be harmed by disease, chemotherapy, radiation, and normal aging. We show in this study that damage also occurs in mice repeatedly treated with very low doses of LPS. Overall health of the animals was good, and there were relatively minor changes in marrow hematopoietic progenitors. However, HSC were unable to maintain quiescence, and transplantation revealed them to be myeloid skewed. Moreover, HSC from treated mice were not sustained in serial transplants and produced lymphoid progenitors with low levels of the E47 transcription factor. This phenomenon was previously seen in normal aging. Screening identified mAbs that resolve HSC subsets, and relative proportions of these HSC changed with age and/or chronic LPS treatment. For example, minor CD150(Hi)CD48(-) populations lacking CD86 or CD18 expanded. Simultaneous loss of CD150(Lo/-)CD48(-) HSC and gain of the normally rare subsets, in parallel with diminished transplantation potential, would be consistent with age- or TLR-related injury. In contrast, HSC in old mice differed from those in LPS-treated animals with respect to VCAM-1 or CD41 expression and lacked proliferation abnormalities. HSC can be exposed to endogenous and pathogen-derived TLR ligands during persistent low-grade infections. This stimulation might contribute in part to HSC senescence and ultimately compromise immunity.
    The Journal of Immunology 03/2011; 186(9):5367-75. · 5.52 Impact Factor
  • Paul W Kincade
    [Show abstract] [Hide abstract]
    ABSTRACT: In this issue of Immunity, Omatsu et al. (2010) provide new information on the CXCL12 abundant reticular (CAR) cells that support hematopoietic stem cells and lymphoid progenitors in bone marrow. CAR cells can convert to adipocytes and osteoblasts, additional cells known to regulate hematopoiesis.
    Immunity 09/2010; 33(3):291-3. · 19.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B-cell regulator of immunoglobulin heavy chain transcription (Bright)/ARID3a, an A+T-rich interaction domain protein, was originally discovered in B lymphocyte lineage cells. However, expression patterns and high lethality levels in knockout mice suggested that it had additional functions. Three independent lines of evidence show that functional inhibition of Bright results in increased developmental plasticity. Bright-deficient cells from two mouse models expressed a number of pluripotency-associated gene products, expanded indefinitely, and spontaneously differentiated into cells of multiple lineages. Furthermore, direct knockdown of human Bright resulted in colonies capable of expressing multiple lineage markers. These data suggest that repression of this single molecule confers adult somatic cells with new developmental options.
    Stem Cells 09/2010; 28(9):1560-7. · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Technical advances have made it possible to separate hematopoietic tissues such as the bone marrow into ever smaller populations, complicating our understanding of immune system replenishment. Patterns of surface marker expression and transcription profiles as well as results obtained with reporter mice suggest that lymphopoietic cells are not closely synchronized, and there is considerable cell to cell variation. Loss of differentiation options is gradual, and ultimate fate can be established at different stages of lineage progression. For example, individual hematopoietic stem cells can be biased such that some are very poor sources of lymphocytes as contrasted to ones with balanced outputs. Still other hematopoietic stem cells are effective at generating B and T cells but are defective with respect to expansion and difficult to distinguish from early lymphoid progenitors. That diversity carries forward to later events, and similar appearing cells in the immune system can arise from alternate differentiation pathways. In fact, new categories of lymphoid progenitors are still being discovered. Heterogeneity provides adaptability as hematopoiesis can be dramatically altered during infections, influencing numbers and types of cells that are produced.
    Immunological Reviews 09/2010; 237(1):10-21. · 12.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of apoptosis and cell cycle progression plays an essential role in the maintenance of B-cell homeostasis, because a fine balance of survival and expansion is critical for preventing lymphocytic disorders. Although remarkable progress in understanding B-cell development has been achieved, much less is known concerning niches that are critical to the maintenance of B-cell homeostasis. Leptin has recently been recognized to be important for modulating the immune responses, but it has remained unclear how leptin signaling influences B-cell physiology. A variety of lymphocytic malignancies have been reported to be linked to leptin, and therefore it is necessary to elucidate the mechanisms involved. Here we demonstrate that leptin promotes B-cell homeostasis by inhibiting apoptosis and by inducing cell cycle entry through the activation of expressions of B-cell CLL/lymphoma 2 (Bcl-2) and cyclin D1. We further show that leptin can induce Bcl-2 and cyclin D1 expression by two pathways, including the direct activation of their promoters and suppression of microRNAs (miRNAs) that target their putative 3'untranslated regions. Amplification of these leptin-modulated miRNAs inhibited B lymphoma cell growth. These findings provide insights into mechanisms for leptin regulation of the humoral immune system and suggest new therapeutic strategies for leptin receptor expressing malignancies.
    Proceedings of the National Academy of Sciences 08/2010; 107(31):13812-7. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progress has been slow in defining molecular requirements for human B lymphopoiesis in part because of differences from experimental animals and also because of the lack of culture conditions that efficiently support the process. We recently found that human CD10+ lymphocytes were produced when CD34+ hematopoietic stem and progenitor cells were cultured in contact with human mesenchymal stem cells (hMSC). Further investigation revealed that it occurred even when progenitors were separated from hMSC by membrane filters. Experiments with neutralizing antibodies suggested that important heat labile factors produced by hMSC are unlikely to be IL-7, TSLP, CXCL12 or hemokinin-1. Further manipulation of culture conditions revealed that optimal lymphopoiesis required careful selection of fetal calf serum lots, maintenance of high cell densities, as well as recombinant cytokines (SCF, FL and G-CSF). G-CSF was particularly important when adult bone marrow rather than umbilical cord blood derived CD34+ cells were used to initiate the cultures. These improved methods should facilitate identification of molecules that can be used to speed regeneration of the humoral immune system following chemotherapy and might suggest ways to inhibit growth of B lineage malignancies.
    Journal of immunological methods 07/2010; 359(1-2):47-55. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Requirements for human B lymphopoiesis are still poorly understood, and that has hampered investigation of differentiation events. For example, there are few cell surface antigens that can be used as milestones of lineage progression. The CD10 ectoenzyme is one such marker and has been used to define CLP, but we found substantial tissue specific variations in CD10 levels, and there was no information about how that corresponded to differentiation options. The aim of the present study was to use recently developed culture methods to assess the nature and differentiation potential of progenitors sorted according to CD10 density from umbilical cord blood (CB), adult bone marrow (BM) or G-CSF mobilized peripheral blood (PB). Many CD34(+) cells in BM express high levels of CD10, while low or low/negative CD10 densities were found on CD34(+) cells in CB or G-CSF mobilized PB, respectively. The relative abundance of CD10(Lo) versus CD10(Hi) cells only accounts for some CB versus BM differences. Almost all of the CD34(+) CD10(Hi) cells expressed CD19 and lymphocyte transcription factors and corresponded to loss of myeloid potential. A high degree of immunoglobulin D(H)-J(H) gene rearrangements was characteristic only of the CD10(Hi) subset. In contrast, the CD34(+) CD10(Lo) progenitors efficiently produced plasmacytoid and conventional dendritic cells as well as myeloid cells. These findings suggest a positive correlation between CD10 density and degree of differentiation. Although freshly isolated CD34(+) CD10(Hi) cells were in cycle, those from CB or BM expanded poorly in culture, suggesting regulators of populations remain to be discovered. Steps in human B lymphopoiesis have not been sufficiently studied, and we now show that increased CD10 expression corresponds to differentiation potential and stage. CD34(+) CD10(Hi) progenitors are obviously in the B lineage but may have progressed beyond the point where they can be expanded in culture.
    PLoS ONE 01/2010; 5(9):e12954. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in cell surface markers and patterns of gene expression are commonly used to construct sequences of events in hematopoiesis. However, the order may not be as rigid as once thought and it is unclear which changes represent the best milestones of differentiation. We developed a fate-mapping model where cells with a history of RAG-1 expression are permanently marked by red fluorescence. This approach is valuable for appreciating lymphoid-lineage relationships without need for irradiation and transplantation. Hematopoietic stem cells (HSC) as well as myeloid and dendritic cell progenitors were unlabeled. Also as expected, most previously identified RAG-1(+) early lymphoid progenitors in bone marrow and all lymphoid-affiliated cells were marked. Of particular interest, there was heterogeneity among canonical common lymphoid progenitors (CLP) in bone marrow. Labeled CLP expressed slightly higher levels of IL-7Ralpha, displayed somewhat less c-Kit, and generated CD19(+) lymphocytes faster than the unlabeled CLP. Furthermore, CLP with a history of RAG-1 expression were much less likely to generate dendritic and NK cells. The RAG-1-marked CLP were lineage stable even when exposed to LPS, while unlabeled CLP were redirected to become dendritic cells in response to this TLR4 ligand. These findings indicate that essential events in B lymphopoiesis are not tightly synchronized. Some progenitors with increased probability of becoming lymphocytes express RAG-1 while still part of the lineage marker-negative Sca-1(+)c-Kit(high) (LSK) fraction. Other progenitors first activate this locus after c-Kit levels have diminished and cell surface IL-7 receptors are detectable.
    The Journal of Immunology 12/2009; 183(12):7768-77. · 5.52 Impact Factor
  • Source
    Xinrong Chen, Robert S Welner, Paul W Kincade
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently found that all trans retinoic acid (ATRA) accelerated B lymphocyte formation. In the current study, we address the question whether retinoids account for the rapid lymphopoiesis that is characteristic of fetal progenitors. Surprisingly, addition of ATRA to fetal liver cultures actually reduced B lymphopoiesis. A pan-retinoid receptor antagonist selectively suppressed lymphocyte formation from fetal and adult progenitors, suggesting some normal contribution of retinoids to this process. Consistent with this role, B lymphopoiesis was compromised in the marrow of mice with prolonged vitamin A deficiency. Recently identified B1 progenitors from adult marrow were similar to adult B2 progenitors in that their differentiation was stimulated by ATRA. The inhibitory response observed with fetal cells was seen when adult progenitors were exposed to high doses in culture or when adult mice were treated with ATRA for 2 wk. In addition to explosive lymphocyte generation, fetal progenitors tend to be less IL-7 dependent than their adult counterparts, but ATRA did not make fetal progenitors IL-7 independent. We conclude that all known categories of B lineage progenitors are responsive to retinoids and probably regulated by these compounds under physiological conditions. Retinoids may account in part for rapid differentiation in fetal life, but not all unique features of fetal progenitors.
    European Journal of Immunology 09/2009; 39(9):2515-24. · 4.97 Impact Factor

Publication Stats

11k Citations
2,023.03 Total Impact Points

Institutions

  • 1987–2014
    • Oklahoma Medical Research Foundation
      • Immunobiology and Cancer Program
      Oklahoma City, Oklahoma, United States
  • 2008–2013
    • Osaka City University
      Ōsaka, Ōsaka, Japan
    • Saga University
      • Department of Oral & Maxilioffacial surgery
      Сага Япония, Saga, Japan
  • 2011
    • University of Pittsburgh
      • Department of Immunology
      Pittsburgh, PA, United States
  • 1985–2009
    • University of Oklahoma Health Sciences Center
      • • Department of Microbiology and Immunology
      • • Department of Pediatrics
      Oklahoma City, OK, United States
  • 1977–2006
    • Memorial Sloan-Kettering Cancer Center
      New York City, New York, United States
  • 2005
    • The Scripps Research Institute
      La Jolla, California, United States
  • 2000–2002
    • Osaka University
      • Department of Integrated Medicine
      Ōsaka-shi, Osaka-fu, Japan
    • Tottori University
      • Faculty of Medicine
      Tottori, Tottori-ken, Japan
  • 2001
    • Children's Hospital Los Angeles
      Los Angeles, California, United States
  • 1992–1998
    • McGill University
      • Department of Anatomy and Cell Biology
      Montréal, Quebec, Canada
  • 1994
    • Tufts University
      Georgia, United States
  • 1992–1993
    • Salk Institute
      • Cancer Biology Laboratory
      La Jolla, California, United States
  • 1991
    • National Cancer Institute (USA)
      • Experimental Immunology Branch
      Maryland, United States
    • National Institutes of Health
      • Branch of Experimental Immunology
      Bethesda, MD, United States
  • 1988–1990
    • University of California, Los Angeles
      • Molecular Biology Institute
      Los Angeles, CA, United States
  • 1975
    • Royal Melbourne Hospital
      Melbourne, Victoria, Australia