Andrew K Godwin

University of Kansas, Lawrence, Kansas, United States

Are you Andrew K Godwin?

Claim your profile

Publications (366)2519.67 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: There are an estimated 60,000 new cases of ductal carcinoma in situ (DCIS) each year. A lack of understanding in DCIS pathobiology has led to overtreatment of more than half of patients. We profiled the temporal molecular changes during DCIS transition to invasive ductal carcinoma (IDC) using in vivo DCIS progression models. These studies identified B cell lymphoma-9 (BCL9) as a potential molecular driver of early invasion. BCL9 is a newly found co-activator of Wnt-stimulated β-catenin-mediated transcription. BCL9 has been shown to promote progression of multiple myeloma and colon carcinoma. However BCL9 role in breast cancer had not been previously recognized. Methods: Microarray and RNA sequencing were utilized to characterize the sequential changes in mRNA expression during DCIS invasive transition. BCL9-shRNA knockdown was performed to assess the role of BCL9 in in vivo invasion, epithelial-mesenchymal transition (EMT) and canonical Wnt-signaling. Immunofluorescence of 28 patient samples was used to assess a correlation between the expression of BCL9 and biomarkers of high risk DCIS. The cancer genome atlas data were analyzed to assess the status of BCL9 gene alterations in breast cancers. Results: Analysis of BCL9, by RNA and protein showed BCL9 up-regulation to be associated with DCIS transition to IDC. Analysis of patient DCIS revealed a significant correlation between high nuclear BCL9 and pathologic characteristics associated with DCIS recurrence: Estrogen receptor (ER) and progesterone receptor (PR) negative, high nuclear grade, and high human epidermal growth factor receptor2 (HER2). In vivo silencing of BCL9 resulted in the inhibition of DCIS invasion and reversal of EMT. Analysis of the TCGA data showed BCL9 to be altered in 26 % of breast cancers. This is a significant alteration when compared to HER2 (ERBB2) gene (19 %) and estrogen receptor (ESR1) gene (8 %). A significantly higher proportion of basal like invasive breast cancers compared to luminal breast cancers showed BCL9 amplification. Conclusion: BCL9 is a molecular driver of DCIS invasive progression and may predispose to the development of basal like invasive breast cancers. As such, BCL9 has the potential to serve as a biomarker of high risk DCIS and as a therapeutic target for prevention of IDC.
    Breast cancer research: BCR 09/2015; 17(1):128. DOI:10.1186/s13058-015-0630-z · 5.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current genomic studies are limited by the availability of fresh tissue samples. Here, we show that Illumina RNA sequencing of formalin-fixed diagnostic tumor samples produces gene expression that is strongly correlated with matched frozen tumor samples (r > 0.89). In addition, sequence variations identified from FFPE RNA show 99.67% concordance with that from exome sequencing of matched frozen tumor samples. Because FFPE is a routine diagnostic sample preparation, the feasibility results reported here will facilitate the setup of large-scale research and clinical studies in medical genomics that are currently limited by the availability of fresh frozen samples.
    Clinical Cancer Research 08/2015; 5(16 Supplement):12335. DOI:10.1038/srep12335 · 8.72 Impact Factor
  • Cancer Research 08/2015; 75(15 Supplement):1570-1570. DOI:10.1158/1538-7445.AM2015-1570 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C·G > T·A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes.
    Oncotarget 07/2015; 6(28). DOI:10.18632/oncotarget.4671 · 6.36 Impact Factor
  • Hani J Alturkmani · Ziyan Y Pessetto · Andrew K Godwin
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Gastrointestinal stromal tumor (GIST) is the most common nonepithelial malignancy of the GI tract. With the discovery of KIT and later platelet-derived growth factor α (PDGFRA) gain-of-function mutations as factors in the pathogenesis of the disease, GIST was the quintessential model for targeted therapy. Despite the successful clinical use of imatinib mesylate, a selective receptor tyrosine kinase (RTK) inhibitor that targets KIT, PDGFRA and BCR-ABL, we still do not have treatment for the long-term control of advanced GIST. Areas covered: This review summarizes the drugs that are under investigation or have been assessed in trials for GIST treatment. The article focuses on their mechanisms of actions, the preclinical evidence of efficacy, and the clinical trials concerning safety and efficacy in humans. Expert opinion: It is known that KIT and PDGFRA mutations in GIST patients influence the response to treatment. This observation should be taken into consideration when investigating new drugs. RECIST was developed to help uniformly report efficacy trials in oncology. Despite the usefulness of this system, many questions are being addressed about its validity in evaluating the true efficacy of drugs knowing that new targeted therapies do not affect the tumor size as much as they halt progression and prolong survival.
    Expert Opinion on Investigational Drugs 06/2015; 24(8):1-14. DOI:10.1517/13543784.2015.1046594 · 5.53 Impact Factor
  • Cancer Research 05/2015; 75(9 Supplement):P4-12-03-P4-12-03. DOI:10.1158/1538-7445.SABCS14-P4-12-03 · 9.33 Impact Factor
  • Cancer Research 05/2015; 75(9 Supplement):P3-06-16-P3-06-16. DOI:10.1158/1538-7445.SABCS14-P3-06-16 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods: Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results: We found no association with risk of ovarian cancer (OR=0.99, 95% CI 0.94-1.04, p=0.74) or breast cancer (OR=0.98, 95% CI 0.94-1.01, p=0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR=1.09, 95% CI 0.97-1.23, p=0.14, breast cancer HR=1.04, 95% CI 0.97-1.12, p=0.27; BRCA2, ovarian cancer HR=0.89, 95% CI 0.71-1.13, p=0.34, breast cancer HR=1.06, 95% CI 0.94-1.19, p=0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR=0.94, 95% CI 0.83-1.07, p=0.38), breast cancer (HR=0.96, 95% CI 0.87-1.06, p=0.38), and all other previously-reported associations. Conclusions: rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
    Gynecologic Oncology 05/2015; DOI:10.1016/j.ygyno.2015.04.034 · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals carrying pathogenic mutations in BRCA1/2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals from different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. Here we test the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. We genotyped 22214 (11421 affected, 10793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched for affected or unaffected individuals. We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers than the rest of clade T, (Hazard Ratio (HR) = 0.55 (95% Confidence Interval (CI) 0.34-0.88, p-value = 0.01). Compared with the most frequent haplogroup in the general population i.e. H and T clade, the T1a1 haplogroup has an HR = 0.62 (95% CI = 0.40-0.95, p-value = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. This study illustrates how original approaches like the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.
    Breast cancer research: BCR 04/2015; 17(1):61. DOI:10.1186/s13058-015-0567-2 · 5.49 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE:To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS:Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk. EXPOSURES:Mutations of BRCA1 or BRCA2. MAIN OUTCOMES AND MEASURES: Breast and ovarian cancer risks. RESULTS:Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers. CONCLUSIONS AND RELEVANCE: Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.
    JAMA The Journal of the American Medical Association 04/2015; 313(13):1347-61. DOI:10.1001/jama.2014.5985 · 35.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04 - 1.15, p = 1.9 x 10-4 (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03 - 1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers. PMID: 25830658 [PubMed - in process]
    PLoS ONE 04/2015; 10(4). DOI:10.1371/journal.pone.0120020 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
    Nature Genetics 01/2015; 47(2). DOI:10.1038/ng.3185 · 29.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive associations in the general population (intraclass correlation (ICC) = 0.61, 95% confidence interval (CI): 0.45 to 0.74), and the same was true when considering ER-negative associations in both groups (ICC = 0.59, 95% CI: 0.42 to 0.72). Similarly, there was strong correlation between the ER-positive associations for BRCA1 and BRCA2 carriers (ICC = 0.67, 95% CI: 0.52 to 0.78), whereas ER-positive associations in any one of the groups were generally inconsistent with ER-negative associations in any of the others. After stratifying by ER status in mutation carriers, additional significant associations were observed. Several previously unreported variants exhibited associations at P <10(-6) in the analyses by PR status, HER2 status, TN phenotype, morphologic subtypes, histological grade and nodal involvement. Conclusions: Differences in associations of common BC susceptibility alleles between BRCA1 and BRCA2 carriers and the general population are explained to a large extent by differences in the prevalence of ER-positive and ER-negative tumors. Estimates of the risks associated with these variants based on population-based studies are likely to be applicable to mutation carriers after taking ER status into account, which has implications for risk prediction.
    Breast Cancer Research 12/2014; 16(6). DOI:10.1186/s13058-014-0492-9 · 5.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the likelihood of mutation status by histopathological markers were derived using a Mantel-Haenszel approach. ER-positive phenotype negatively predicted BRCA1 mutation status, irrespective of grade (LRs from 0.08 to 0.90). ER-negative grade 3 histopathology was more predictive of positive BRCA1 mutation status in women 50 years or older (LR = 4.13 (3.70 to 4.62)) versus younger than 50 years (LR = 3.16 (2.96 to 3.37)). For BRCA2, ER-positive grade 3 phenotype modestly predicted positive mutation status irrespective of age (LR = 1.7-fold), whereas ER-negative grade 3 features modestly predicted positive mutation status at 50 years or older (LR = 1.54 (1.27 to 1.88)). Triple-negative tumor status was highly predictive of BRCA1 mutation status for women younger than 50 years (LR = 3.73 (3.43 to 4.05)) and 50 years or older (LR = 4.41 (3.86 to 5.04)), and modestly predictive of positive BRCA2 mutation status in women 50 years or older (LR = 1.79 (1.42 to 2.24)). These results refine likelihood-ratio estimates for predicting BRCA1 and BRCA2 mutation status by using commonly measured histopathological features. Age at diagnosis is an important variable for most analyses, and grade is more informative than ER status for BRCA2 mutation carrier prediction. The estimates will improve BRCA1 and BRCA2 variant classification and inform patient mutation testing and clinical management.
    Breast cancer research: BCR 12/2014; 16(6):3419. DOI:10.1186/s13058-014-0474-y · 5.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Many circulating biomarkers have been reported for the diagnosis of breast cancer, but few, if any, have undergone rigorous credentialing using prospective cohorts and blinded evaluation. Methods: The NCI Early Detection Network (EDRN) has created a prospective, multicenter collection of plasma and serum samples from 832 subjects designed to evaluate circulating biomarkers for the detection and diagnosis of breast cancer. These samples are available to investigators who wish to evaluate their biomarkers using a set of blinded samples. The breast cancer reference set is comprised of blood samples collected using a standard operating procedure at four U.S. medical centers from 2008-2010 from women undergoing either tissue diagnosis for breast cancer or routine screening mammography. The reference set contains samples from women with incident invasive cancer (n=190), carcinoma in situ (n=55), benign pathology with atypia (n=63), benign disease with no atypia (n=231), and women with no evidence of breast disease by screening mammography (BI-RADS 1 or 2, n=276). Using a subset of plasma samples (n=505) from the reference set, we analyzed 90 proteins by multiplexed immunoassays for their potential utility as diagnostic markers. Results: We found that none of these markers is useful for distinguishing cancer from benign controls. However, elevated CA-125 does appear to be a candidate marker for ER negative cancers. Conclusions: Markers that can distinguish benign breast conditions from invasive cancer have not yet been found. Impact: Availability of prospectively collected samples should improve future validation efforts. Copyright © 2014, American Association for Cancer Research.
    Cancer Epidemiology Biomarkers & Prevention 12/2014; 24(2). DOI:10.1158/1055-9965.EPI-14-1178 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in DNA sequencing have led to the development of breast cancer susceptibility gene panels for germline genetic testing of patients. We assessed the frequency of mutations in 17 predisposition genes, including BRCA1 and BRCA2, in a large cohort of patients with triple-negative breast cancer (TNBC) unselected for family history of breast or ovarian cancer to determine the utility of germline genetic testing for those with TNBC. Patients with TNBC (N = 1,824) unselected for family history of breast or ovarian cancer were recruited through 12 studies, and germline DNA was sequenced to identify mutations. Deleterious mutations were identified in 14.6% of all patients. Of these, 11.2% had mutations in the BRCA1 (8.5%) and BRCA2 (2.7%) genes. Deleterious mutations in 15 other predisposition genes were detected in 3.7% of patients, with the majority observed in genes involved in homologous recombination, including PALB2 (1.2%) and BARD1, RAD51D, RAD51C, and BRIP1 (0.3% to 0.5%). Patients with TNBC with mutations were diagnosed at an earlier age (P < .001) and had higher-grade tumors (P = .01) than those without mutations. Deleterious mutations in predisposition genes are present at high frequency in patients with TNBC unselected for family history of cancer. Mutation prevalence estimates suggest that patients with TNBC, regardless of age at diagnosis or family history of cancer, should be considered for germline genetic testing of BRCA1 and BRCA2. Although mutations in other predisposition genes are observed among patients with TNBC, better cancer risk estimates are needed before these mutations are used for clinical risk assessment in relatives. © 2014 by American Society of Clinical Oncology.
    Journal of Clinical Oncology 12/2014; 33(4). DOI:10.1200/JCO.2014.57.1414 · 18.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endometrial cancer (EC) is the 8th leading cause of cancer death amongst American women. Most ECs are endometrioid, serous, or clear cell carcinomas, or an admixture of histologies. Serous and clear ECs are clinically aggressive tumors for which alternative therapeutic approaches are needed. The purpose of this study was to search for somatic mutations in the tyrosine kinome of serous and clear cell ECs, because mutated kinases can point to potential therapeutic targets. In a mutation discovery screen, we PCR amplified and Sanger sequenced the exons encoding the catalytic domains of 86 tyrosine kinases from 24 serous, 11 clear cell, and 5 mixed histology ECs. For somatically mutated genes, we next sequenced the remaining coding exons from the 40 discovery screen tumors and sequenced all coding exons from another 72 ECs (10 clear cell, 21 serous, 41 endometrioid). We assessed the copy number of mutated kinases in this cohort of 112 tumors using quantitative real time PCR, and we used immunoblotting to measure expression of these kinases in endometrial cancer cell lines. Overall, we identified somatic mutations in TNK2 (tyrosine kinase non-receptor, 2) and DDR1 (discoidin domain receptor tyrosine kinase 1) in 5.3% (6 of 112) and 2.7% (3 of 112) of ECs. Copy number gains of TNK2 and DDR1 were identified in another 4.5% and 0.9% of 112 cases respectively. Immunoblotting confirmed TNK2 and DDR1 expression in endometrial cancer cell lines. Three of five missense mutations in TNK2 and one of two missense mutations in DDR1 are predicted to impact protein function by two or more in silico algorithms. The TNK2P761Rfs*72 frameshift mutation was recurrent in EC, and the DDR1R570Q missense mutation was recurrent across tumor types. This is the first study to systematically search for mutations in the tyrosine kinome in clear cell endometrial tumors. Our findings indicate that high-frequency somatic mutations in the catalytic domains of the tyrosine kinome are rare in clear cell ECs. We uncovered ten new mutations in TNK2 and DDR1 within serous and endometrioid ECs, thus providing novel insights into the mutation spectrum of each gene in EC.
    BMC Cancer 11/2014; 14(1):884. DOI:10.1186/1471-2407-14-884 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FoxM1 is an oncogenic Forkhead transcription factor that is overexpressed in ovarian cancer. However, the mechanisms by which FoxM1 is deregulated in ovarian cancer and the extent to which FoxM1 can be targeted in ovarian cancer have not been reported previously. In this study, we showed that MDM2 inhibitor Nutlin-3 upregulated p53 protein and downregulated FoxM1 expression in several cancer cell lines with wild type TP53 but not in cell lines with mutant TP53. FoxM1 downregulation was partially blocked by cycloheximide or actinomycin D, and pulse-chase studies indicate Nutlin-3 enhances FoxM1 mRNA decay. Knockdown of p53 using shRNAs abrogated the FoxM1 downregulation by Nutlin-3, indicating a p53-dependent mechanism. FoxM1 inhibitor, thiostrepton, induces apoptosis in cancer cell lines and enhances sensitivity to cisplatin in these cells. Thiostrepton downregulates FoxM1 expression in several cancer cell lines and enhances sensitivity to carboplatin in vivo. Finally, FoxM1 expression is elevated in nearly all (48/49) ovarian tumors, indicating that thiostrepton target gene is highly expressed in ovarian cancer. In summary, the present study provides novel evidence that both amorphic and neomorphic mutations in TP53 contribute to FoxM1 overexpression and that FoxM1 may be targeted for therapeutic benefits in cancers.
    Oncotarget 11/2014; 5(22). DOI:10.18632/oncotarget.2497 · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular vulnerabilities represent promising candidates for the development of targeted therapies that hold the promise to overcome the challenges encountered with non-targeted chemotherapy for the treatment of ovarian cancer. Through a synthetic lethality screen, we previously identified pleiotrophin (PTN) as a molecular vulnerability in ovarian cancer and showed that siRNA-mediated PTN knockdown induced apoptotic cell death in epithelial ovarian cancer (EOC) cells. Although, it is well known that PTN elicits its pro-tumorigenic effects through its receptor, protein tyrosine phosphatase receptor Z1 (PTPRZ1), little is known about the potential importance of this pathway in the pathogenesis of ovarian cancer. In this study, we show that PTN is expressed, produced, and secreted in a panel of EOC cell lines. PTN levels in serous ovarian tumor tissues are on average 3.5-fold higher relative to normal tissue and PTN is detectable in serum samples of patients with EOC. PTPRZ1 is also expressed and produced by EOC cells and is found to be up-regulated in serous ovarian tumor tissue relative to normal ovarian surface epithelial tissue (P < 0.05). Gene silencing of PTPRZ1 in EOC cell lines using siRNA-mediated knockdown shows that PTPRZ1 is essential for viability and results in significant apoptosis with no effect on the cell cycle phase distribution. In order to determine how PTN mediates survival, we silenced the gene using siRNA mediated knockdown and performed expression profiling of 36 survival-related genes. Through computational mapping of the differentially expressed genes, members of the MAPK (mitogen-activated protein kinase) family were found to be likely effectors of PTN signaling in EOC cells. Our results provide the first experimental evidence that PTN and its signaling components may be of significance in the pathogenesis of epithelial ovarian cancer and provide a rationale for clinical evaluation of MAPK inhibitors in PTN and/or PTPRZ1 expressing ovarian tumors. © 2014 Wiley Periodicals, Inc.
    Molecular Carcinogenesis 11/2014; DOI:10.1002/mc.22249 · 4.81 Impact Factor

Publication Stats

19k Citations
2,519.67 Total Impact Points


  • 2010–2015
    • University of Kansas
      • Department of Pathology and Laboratory Medicine
      Lawrence, Kansas, United States
    • Queensland Institute of Medical Research
      Brisbane, Queensland, Australia
  • 2013
    • University of Helsinki
      • Department of Obstetrics and Gynaecology
      Helsinki, Uusimaa, Finland
  • 2012–2013
    • Kansas City VA Medical Center
      Kansas City, Missouri, United States
    • Memorial Sloan-Kettering Cancer Center
      • Clinical Genetics Service
      New York City, New York, United States
  • 1987–2013
    • Fox Chase Cancer Center
      • • Department of Medical Oncology
      • • Department of Pathology
      Filadelfia, Pennsylvania, United States
  • 2011
    • University of Southern California
      • Department of Preventive Medicine
      Los Angeles, CA, United States
    • Mayo Clinic - Rochester
      • Department of Health Science Research
      Rochester, MN, United States
    • University of Pennsylvania
      • Department of Biostatistics and Epidemiology
      Filadelfia, Pennsylvania, United States
    • Centro Nacional de Investigaciones Oncológicas
      Madrid, Madrid, Spain
  • 2009–2010
    • University of Cambridge
      • Department of Public Health and Primary Care
      Cambridge, ENG, United Kingdom
  • 2008
    • Dartmouth–Hitchcock Medical Center
      Lebanon, New Hampshire, United States
  • 2007
    • University of Cologne
      Köln, North Rhine-Westphalia, Germany
  • 2006
    • Sapienza University of Rome
      Roma, Latium, Italy
    • Columbia University
      New York, New York, United States
    • University of Toronto
      Toronto, Ontario, Canada
    • University of Vermont
      • Department of Animal Science
      Burlington, VT, United States
  • 1991–2006
    • Baylor College of Medicine
      Houston, Texas, United States
  • 2003
    • Moncrief Cancer Institute
      Fort Worth, Texas, United States
  • 1996
    • McGill University
      • Department of Medicine
      Montréal, Quebec, Canada
  • 1995
    • Creighton University
      Omaha, Nebraska, United States
  • 1985
    • Washington University in St. Louis
      San Luis, Missouri, United States