Stefan Pfuhler

Procter & Gamble, Cincinnati, Ohio, United States

Are you Stefan Pfuhler?

Claim your profile

Publications (32)87.35 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay’s fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in vivo tests by reducing in vitro misleading positives.
    Mutagenesis 03/2014; · 3.50 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have demonstrated previously that the seemingly high rate of “false” or “misleading” positive results from in vitro micronucleus assays (MNvit) was greater when rodent derived cell lines and certain toxicity measures, such as relative cell count or replication index, were used. These studies suggested that the use of a human cell type with functional p53 and a toxicity measure that included a function of cell proliferation could dramatically reduce the detection of misleading positive results. A reduced “false positive rate” should not be at the expense of a loss of sensitivity of the assay. Therefore, we have investigated the sensitivity of the MNvit assay to known genotoxic agents using three cell types shown previously to be less prone to misleading positives, namely human lymphocytes (HuLy), TK6 and HepG2 cells. The 17 chemicals are well characterised and are from a list of chemicals known to produce positive results in in vitro mammalian cell assays. These data demonstrated a high sensitivity of the assay in which TK6 and HuLy cells were employed, such that 15 out of the 17 chemicals were correctly identified. By contrast, the use of HepG2 cells resulted in far fewer than expected positive responses. In conclusion, using TK6 and HuLy cells in preference to long established rodent cell lines in order to improve specificity does not compromise the sensitivity of the MNvit to detect known genotoxic agents.
    Mutation Research/Genetic Toxicology and Environmental Mutagenesis 01/2014; · 2.22 Impact Factor
  • Andreas Zeller, Stefan Pfuhler
    [show abstract] [hide abstract]
    ABSTRACT: N-acetylation has been described as a detoxification reaction for aromatic amines; however, there is only limited data available showing that this metabolic conversion step changes their genotoxicity potential. To extend this database, three aromatic amines, all widely used as precursors in oxidative hair dye formulations, were chosen for this study: p-phenylenediamine (PPD), 2,5-diaminotoluene (DAT) and 4-amino-2-hydroxytoluene (AHT). Aiming at a deeper mechanistic understanding of the interplay between activation and detoxification for this chemical class, we compared the genotoxicity profiles of the parent compounds with those of their N-acetylated metabolites. While PPD, DAT and AHT all show genotoxic potential in vitro, their N-acetylated metabolites completely lack genotoxic potential as shown in the Salmonella typhimurium reversion assay, micronucleus test with cultured human lymphocytes (AHT), chromosome aberration assay with V79 cells (DAT) and Comet assay performed with V79 cells. For the bifunctional aromatic amines studied (PPD and DAT), monoacetylation was sufficient to completely abolish their genotoxic potential. Detoxification through N-acetylation was further confirmed by comparing PPD, DAT and AHT in the Comet assay using standard V79 cells (N-acetyltransferase (NAT) deficient) and two NAT-proficient cell lines,V79NAT1*4 and HaCaT (human keratinocytes). Here we observed a clear shift of dose-response curves towards decreased genotoxicity of the parent aromatic amines in the NAT-proficient cells. These findings suggest that genotoxic effects will only be found at concentrations where the N-acetylation (detoxifying) capacity of the cells is overwhelmed, indicating that a 'first-pass' effect in skin could be taken into account for risk assessment of these topically applied aromatic amines. The findings also indicate that the use of liver S-9 preparations, which generally underestimate Phase II reactions, contributes to the generation of irrelevant positive results in standard genotoxicity tests for this chemical class.
    Mutagenesis 11/2013; · 3.50 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Reconstructed 3D human epidermal skin models are being used increasingly for safety testing of chemicals. Based on EpiDerm™ tissues, an assay was developed in which the tissues were topically exposed to test chemicals for 3h followed by cell isolation and assessment of DNA damage using the comet assay. Inter-laboratory reproducibility of the 3D skin comet assay was initially demonstrated using two model genotoxic carcinogens, methyl methane sulfonate (MMS) and 4-nitroquinoline-n-oxide, and the results showed good concordance among three different laboratories and with in vivo data. In Phase 2 of the project, intra- and inter-laboratory reproducibility was investigated with five coded compounds with different genotoxicity liability tested at three different laboratories. For the genotoxic carcinogens MMS and N-ethyl-N-nitrosourea, all laboratories reported a dose-related and statistically significant increase (P < 0.05) in DNA damage in every experiment. For the genotoxic carcinogen, 2,4-diaminotoluene, the overall result from all laboratories showed a smaller, but significant genotoxic response (P < 0.05). For cyclohexanone (CHN) (non-genotoxic in vitro and in vivo, and non-carcinogenic), an increase compared to the solvent control acetone was observed only in one laboratory. However, the response was not dose related and CHN was judged negative overall, as was p-nitrophenol (p-NP) (genotoxic in vitro but not in vivo and non-carcinogenic), which was the only compound showing clear cytotoxic effects. For p-NP, significant DNA damage generally occurred only at doses that were substantially cytotoxic (>30% cell loss), and the overall response was comparable in all laboratories despite some differences in doses tested. The results of the collaborative study for the coded compounds were generally reproducible among the laboratories involved and intra-laboratory reproducibility was also good. These data indicate that the comet assay in EpiDerm™ skin models is a promising model for the safety assessment of compounds with a dermal route of exposure.
    Mutagenesis 11/2013; 28(6):709-20. · 3.50 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The Cosmetics Europe (formerly COLIPA) Genotoxicity Task Force has driven and funded three projects to help address the high rate of misleading positives in in vitro genotoxicity tests: The completed "False Positives" project optimized current mammalian cell assays and showed that the predictive capacity of the in vitro micronucleus assay can was improved dramatically by selecting more relevant cells and more sensitive toxicity measures. The on-going "3D skin model" project has been developed and is now validating the use of human reconstructed skin (RS) models in combination with the micronucleus (MN) and Comet assays. These models better reflect the in use conditions of dermally applied products, such as cosmetics. Both assays have demonstrated good inter and intra-laboratory reproducibility and are entering validation stages. The completed "Metabolism" project investigated enzyme capacities of human skin and RS models. The RS models were shown to have comparable metabolic capacity to native human skin, confirming their usefulness for testing of compounds with dermal exposure. The program has already helped to improve the initial test battery predictivity and the RS projects have provided sound support for their use as a follow-up test in the assessment of the genotoxic hazard of cosmetic ingredients in the absence of in vivo data.
    Toxicology in Vitro 06/2013; · 2.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Several human skin models employing primary cells and immortalised cell lines, used as monocultures or combined to produce reconstituted 3D skin constructs, have been developed. Furthermore, these models have been included in European genotoxicity and sensitization/irritation assay validation projects. In order to help interpret data, Cosmetics Europe (formerly COLIPA) facilitated research projects that measured a variety of defined phase 1 and 2 enzyme activities and created a complete proteomic profile of xenobiotic metabolising enzymes (XMEs) in native human skin and compared them with data obtained from a number of in vitro models of human skin. Here, we have summarised our findings on the current knowledge of the metabolic capacity of native human skin and in vitro models, and make an overall assessment of the metabolic capacity from gene expression, proteomic expression and substrate metabolism data. The known low expression and function of phase 1 enzymes in native whole skin was reflected in the in vitro models. Some XMEs in whole skin were not detected in in vitro models and vice versa, and some major hepatic XMEs such as cytochrome P450-monooxygenases were absent or measured only at very low levels in the skin. Conversely, despite varying mRNA and protein levels of phase 2 enzymes, functional activity of glutathione S-transferases, N-acetyltransferase 1, and UDP-glucuronosyltransferases were all readily measurable in whole skin and in vitro skin models at activity levels similar to those measured in the liver. These projects have enabled a better understanding of the contribution of XMEs to toxicity endpoints.
    Toxicological Sciences 03/2013; · 4.33 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A workshop addressing strategies for the genotoxicity assessment of nanomaterials (NMs) was held on October 23, 2010 in Fort Worth Texas, USA. The workshop was organized by the Environmental Mutagen Society and the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute. The workshop was attended by more than 80 participants from academia, regulatory agencies, and industry from North America, Europe and Japan. A plenary session featured summaries of the current status and issues related to the testing of NMs for genotoxic properties, as well as an update on international activities and regulatory approaches. This was followed by breakout sessions and a plenary session devoted to independent discussions of in vitro assays, in vivo assays, and the need for new assays or new approaches to develop a testing strategy for NMs. Each of the standard assays was critiqued as a resource for evaluation of NMs, and it became apparent that none was appropriate without special considerations or modifications. The need for nanospecific positive controls was questioned, as was the utility of bacterial assays. The latter was thought to increase the importance of including mammalian cell gene mutation assays into the test battery. For in-vivo testing, to inform the selection of appropriate tests or protocols, it was suggested to run repeated dose studies first to learn about disposition, potential accumulation, and possible tissue damage. It was acknowledged that mechanisms may be at play that a standard genotoxicity battery may not be able to capture. Environ. Mol. Mutagen., 2013. © 2013 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 03/2013; · 3.71 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The in vitro human reconstructed skin micronucleus (RSMN) assay in EpiDerm™ is a promising new assay for evaluating genotoxicity of dermally applied chemicals. A global pre-validation project sponsored by the European Cosmetics Association (Cosmetics Europe - formerly known as COLIPA), and the European Center for Validation of Alternative Methods (ECVAM), is underway. Results to date demonstrate international inter-laboratory and inter-experimental reproducibility of the assay for chemicals that do not require metabolism [Aardema et al., Mutat. Res. 701 (2010) 123-131]. We have expanded these studies to investigate chemicals that do require metabolic activation: 4-nitroquinoline-N-oxide (4NQO), cyclophosphamide (CP), dimethylbenzanthracene (DMBA), dimethylnitrosamine (DMN), dibenzanthracene (DBA) and benzo(a)pyrene (BaP). In this study, the standard protocol of two applications over 48h was compared with an extended protocol involving three applications over 72h. Extending the treatment period to 72h changed the result significantly only for 4NQO, which was negative in the standard 48h dosing regimen, but positive with the 72h treatment. DMBA and CP were positive in the standard 48h assay (CP induced a more reproducible response with the 72h treatment) and BaP gave mixed results; DBA and DMN were negative in both the 48h and the 72h dosing regimens. While further work with chemicals that require metabolism is needed, it appears that the RMSN assay detects some chemicals that require metabolic activation (4 out of 6 chemicals were positive in one or both protocols). At this point in time, for general testing, the use of a longer treatment period in situations where the standard 48h treatment is negative or questionable is recommended.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 09/2012; · 3.90 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In a previous publication, Fowler et al. [4] demonstrated that the seemingly high rate of false or misleading positive results obtained in in vitro cytogenesis assays for genotoxicity - when compared with in vivo genotoxicity or rodent carcinogenicity data - was greater when rodent cell lines were used that were also reported to have mutant or non-functional p53. As part of a larger project for improvement of in vitro mammalian cell assays, we have investigated the impact of different toxicity measures, commonly used in in vitro cytogenetic assays, on the occurrence of misleading positive results. From a list of 19 chemicals that produce "false" positive results in in vitro mammalian cell assays [10], six substances that had given positive responses in CHO, CHL and TK6 cells [4], were evaluated for micronucleus induction in vitro, with different measures of toxicity for selection of the top concentration. The data show that estimating toxicity by relative cell count (RCC) or replication index (RI) consistently underestimates the toxicity observed by other measures (Relative Population Doubling, RPD, or Relative Increase in Cell Count, RICC). RCC and RI are more likely to lead to selection of concentrations for micronucleus scoring that are highly cytotoxic and thus could potentially lead to artefacts of toxicity being scored (elevated levels of apoptosis and necrosis), generating misleading positive results. These results suggest that a further reduction in the frequency of misleading positive results in in vitro cytogenetic assays can be achieved with this set of chemicals, by avoiding the use of toxicity measures that underestimate the level of toxicity induced.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 05/2012; 747(1):104-17. · 3.90 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: While the collection of genotoxicity data and insights into potential mechanisms of action for nano-sized particulate materials (NPs) are steadily increasing, there is great uncertainty whether current standard assays are suitable to appropriately characterize potential risks. We investigated the effects of NPs in an in vivo Comet/micronucleus (MN) combination assay and in an in vitro MN assay performed with human blood. We also incorporated additional endpoints into the in vivo study in an effort to delineate primary from secondary mechanisms. Amorphous silica NPs (15 and 55 nm) were chosen for their known reactivity, while gold nano/microparticles (2, 20, and 200 nm) were selected for their wide size range and lower reactivity. DNA damage in liver, lung and blood cells and micronuclei in circulating reticulocytes were measured after 3 consecutive intravenous injections to male Wistar rats at 48, 24 and 4h before sacrifice. Gold nano/microparticles were negative for MN induction in vitro and in vivo, and for the induction of DNA damage in all tissues. Silica particles, however, caused a small but reproducible increase in DNA damage and micronucleated reticulocytes when tested at their maximum tolerated dose (MTD). No genotoxic effects were observed at lower doses, and the in vitro MN assay was also negative. We hypothesize that silica NPs initiate secondary genotoxic effects through release of inflammatory cell-derived oxidants, similar to that described for crystalline silica (quartz). Such a mechanism is supported by the occurrence of increased neutrophilic infiltration, necrosis, and apoptotic cells in the liver, and induction of inflammatory markers TNF-α and IL-6 in plasma at the MTDs. These results were fairly consistent between silica NPs and the quartz control, thereby strengthening the argument that silica NPs may act in a similar, thresholded manner. The observed profile is supportive of a secondary genotoxicity mechanism that is driven by inflammation.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 04/2012; 745(1-2):38-50. · 3.90 Impact Factor
  • Shareen H Doak, Stefan Pfuhler
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 04/2012; 745(1-2):1-3. · 3.90 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Current in vitro mammalian cell genotoxicity assays show a high rate of positive results, many of which are misleading when compared with in vivo genotoxicity or rodent carcinogenicity data. P53-deficiency in many of the rodent cell lines may be a key factor in this poor predictivity. As part of an European Cosmetics Industry Association initiative for improvement of in vitro mammalian cell assays, we have compared several rodent cell lines (V79, CHL, CHO) with p53-competent human peripheral blood lymphocytes (HuLy), TK6 human lymphoblastoid cells, and the human liver cell line, HepG2. We have compared in vitro micronucleus (MN) induction following treatment with 19 compounds that were accepted as producing misleading or "false" positive results in in vitro mammalian cell assays [6]. Of these, six chemicals (2-ethyl-1,3-hexandiol, benzyl alcohol, urea, sodium saccharin, sulfisoxazole and isobutyraldehyde) were not toxic and did not induce any MN at concentrations up to 10mM. d,l-Menthol and ethionamide induced cytotoxicity, but did not induce MN. o-Anthranilic acid was not toxic and did not induce MN in V79, CHL, CHO, HuLy and HepG2 cells up to 10mM. Toxicity was induced in TK6 cells, although there were no increases in MN frequency up to and above the 55% toxicity level. The other 10 chemicals (1,3-dihydroxybenzene, curcumin, propyl gallate, p-nitrophenol, ethyl acrylate, eugenol, tert-butylhydroquinone, 2,4-dichlorophenol, sodium xylene sulfonate and phthalic anhydride) produced cytotoxicity in at least one cell type, and were evaluated further for MN induction in most or all of the cell types listed above. All these chemicals induced MN at concentrations <10mM, with levels of cytotoxicity below 60% (measured as the replication index) in at least one cell type. The rodent cell lines (V79, CHO and CHL) were consistently more susceptible to cytotoxicity and MN induction than p53-competent cells, and are therefore more susceptible to giving misleading positive results. These data suggest that a reduction in the frequency of misleading positive results can be achieved by careful selection of the mammalian cell type for genotoxicity testing.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 11/2011; 742(1-2):11-25. · 3.90 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
    Archives of Toxicology 05/2011; 85(5):367-485. · 5.22 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Improving current in vitro genotoxicity tests is an ongoing task for genetic toxicologists. Further, the question on how to deal with positive in vitro results that are demonstrated to not predict genotoxicity or carcinogenicity potential in rodents or humans is a challenge. These two aspects were addressed at the 5th International Workshop on Genotoxicity Testing (IWGT) held in Basel, Switzerland, on August 17-19, 2009. The objectives of the working group (WG) were to make recommendations on the use of cell types or lines, if possible, and to provide evaluations of promising new approaches. Results obtained in rodent cell lines with impaired p53 function (L5178Y, V79, CHL and CHO cells) and human p53-competent cells (peripheral blood lymphocytes, TK6 and HepG2 cells) suggest that a reduction in the percentage of non-relevant positive results for carcinogenicity prediction can be achieved by careful selection of cells used without decreasing the sensitivity of the assays. Therefore, the WG suggested using p53- competent - preferably human - cells in in vitro micronucleus or chromosomal aberration tests. The use of the hepatoma cell line HepaRG for genotoxicity testing was considered promising since these cells possess better phase I and II metabolizing potential compared to cell lines commonly used in this area and may overcome the need for the addition of S9. For dermally applied compounds, the WG agreed that in vitro reconstructed skin models, once validated, will be useful to follow up on positive results from standard in vitro assays as they resemble the properties of human skin (barrier function, metabolism). While the reconstructed skin micronucleus assay has been shown to be further advanced, there was also consensus that the Comet assay should be further evaluated due to its independence from cell proliferation and coverage of a wider spectrum of DNA damage.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 04/2011; 723(2):101-7. · 3.90 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The European Cosmetic Toiletry and Perfumery Association (COLIPA), along with contributions from the European Centre for the Validation of Alternative Methods (ECVAM), initiated a multi-lab international prevalidation project on the reconstructed skin micronucleus (RSMN) assay in EpiDerm™ for the assessment of the genotoxicity of dermally applied chemicals. The first step of this project was to standardize the protocol and transfer it to laboratories that had not performed the assay before. Here we describe in detail the protocol for the RSMN assay in EpiDerm™ and the harmonized guidelines for scoring, with an atlas of cell images. We also describe factors that can influence the performance of the assay. Use of these methods will help new laboratories to conduct the assay, thereby further increasing the database for this promising new in vitro genotoxicity test.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 02/2011; 720(1-2):42-52. · 3.90 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: For the assessment of genotoxic effects of cosmetic ingredients, a number of well-established and regulatory accepted in vitro assays are in place. A caveat to the use of these assays is their relatively low specificity and high rate of false or misleading positive results. Due to the 7th amendment to the EU Cosmetics Directive ban on in vivo genotoxicity testing for cosmetics that was enacted March 2009, it is no longer possible to conduct follow-up in vivo genotoxicity tests for cosmetic ingredients positive in in vitro genotoxicity tests to further assess the relevance of the in vitro findings. COLIPA, the European Cosmetics Association, has initiated a research programme to improve existing and develop new in vitro methods. A COLIPA workshop was held in Brussels in April 2008 to analyse the best possible use of available methods and approaches to enable a sound assessment of the genotoxic hazard of cosmetic ingredients. Common approaches of cosmetic companies are described, with recommendations for evaluating in vitro genotoxins using non-animal approaches. A weight of evidence approach was employed to set up a decision-tree for the integration of alternative methods into tiered testing strategies.
    Regulatory Toxicology and Pharmacology 04/2010; 57(2-3):315-24. · 2.13 Impact Factor
  • Source
    Toxicology Letters - TOXICOL LETT. 01/2010; 196.
  • Source
    Regulatory Toxicology and Pharmacology - REGUL TOXICOL PHARMACOL. 01/2010; 58(3):544-544.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In vivo genetic toxicology tests measure direct DNA damage or the formation of gene or chromosomal mutations, and are used to predict the mutagenic and carcinogenic potential of compounds for regulatory purposes and/or to follow-up positive results from in vitro testing. These tests are widely used and consume large numbers of animals, with a foreseeable marked increase as a result of the EU chemicals legislation (REACH), which may require follow-up of any positive outcome in the in vitro standard battery with appropriate in vivo tests, regardless of the tonnage level of the chemical. A 2-day workshop with genotoxicity experts from academia, regulatory agencies and industry was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) in Ranco, Italy from 24 to 25 June 2008. The objectives of the workshop were to discuss how to reduce the number of animals in standard genotoxicity tests, whether the application of smarter test strategies can lead to lower animal numbers, and how the possibilities for reduction can be promoted and implemented. The workshop agreed that there are many reduction options available that are scientifically credible and therefore ready for use. Most of these are compliant with regulatory guidelines, i.e. the use of one sex only, one administration and two sampling times versus two or three administrations and one sampling time for micronucleus (MN), chromosomal aberration (CA) and Comet assays; and the integration of the MN endpoint into repeat-dose toxicity studies. The omission of a concurrent positive control in routine CA and MN tests has been proven to be scientifically acceptable, although the OECD guidelines still require this; also the combination of acute MN and Comet assay studies are compliant with guidelines, except for sampling times. Based on the data presented at the workshop, the participants concluded that these options have not been sufficiently utilized to date. Key factors for this seem to be the uncertainty regarding regulatory compliance/acceptance, lack of awareness, and an in many cases unjustified uncertainty regarding the scientific acceptance of reduction options. The workshop therefore encourages the use and promotion of these options as well as the dissemination of data related to reduction opportunities by the scientific community in order to boost the acceptance level of these approaches. Furthermore, experimental proof is needed and under way to demonstrate the credibility of additional options for reduction of the number of animals, such as the integration of the Comet assay into repeat-dose toxicity studies.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 09/2009; 680(1-2):31-42. · 3.90 Impact Factor
  • Toxicology Letters - TOXICOL LETT. 01/2009; 189.

Publication Stats

466 Citations
822 Downloads
3k Views
87.35 Total Impact Points

Institutions

  • 2007–2013
    • Procter & Gamble
      Cincinnati, Ohio, United States
    • Covance
      Princeton, New Jersey, United States
  • 2012
    • Swansea University
      • Institute of Life Science "ILS"
      Swansea, WLS, United Kingdom
  • 2002
    • Universität Ulm
      Ulm, Baden-Württemberg, Germany