Luqi Huang

China Academy of Chinese Medical Sciences, Peping, Beijing, China

Are you Luqi Huang?

Claim your profile

Publications (185)310.28 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The medicinal plant Salvia miltiorrhiza produces various tanshinone diterpenoids that have pharmacological activities such as vasorelaxation, against ischemia-reperfusion injury, and antiarrhythmic effects. Their biosynthesis is initiated from the general diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate by sequential reactions catalyzed by copalyl diphosphate synthase (CPS) and kaurene synthase-like (KSL) cyclases. Here is reported characterization of these enzymatic families from S. miltiorrhiza, which has led to the identification of novel pathways, including roles for separate CPSs in tanshinone production in roots versus aerial tissues (SmCPS1 and SmCPS2, respectively), as well as the novel production of ent-13-epi-manoyl oxide by SmCPS4 and SmKSL2 in floral sepals. The conserved SmCPS5 is involved in gibberellin plant hormone biosynthesis. Down-regulation of SmCPS1 by RNAi resulted in substantial reduction of tanshinones, and metabolomics analysis revealed 21 potential intermediates, indicating a complex network for tanshinone metabolism defined by certain key biosynthetic steps. Notably, the correlation between conservation pattern and stereochemical product outcome of the CPSs observed here, suggests a degree of correlation that, especially when combined with the identity of certain key residues, may be predictive. Accordingly, this study provides molecular insights into the evolutionary diversification of functional diterpenoids in plants. Copyright © 2015, Plant Physiology.
    Plant physiology 06/2015; DOI:10.1104/pp.15.00695 · 7.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tetrabutylphosphonium hydroxide (TBPH) aqueous solution, a novel ionic liquid that could dissolve cellulose rapidly at ambient temperature (25 °C), was used for the first time to develop an extraction method for salidroside from Rhodiola crenulata, used as the model sample, with infrared-assisted extraction (IRAE) in this paper. IRAE-TBPH procedures were optimized using a series of single-factor experiments and under the optimal conditions, the IRAE-TBPH technique not only took a shorter time (from 1.0 h to 8 min) but also afforded a higher extraction rate of salidroside from the herbs (increased by 15.41-38.65%) compared with other extraction techniques, such as TBPH-based heat reflux extraction (HRE-TBPH), ultrasound-assisted extraction (UAE-TBPH) and conventional solvent (methanol, ethanol and pure water) based IRAE. The results indicated IRAE-TBPH to be a fast and efficient extraction technique. Furthermore, the mechanism of IRAE-TBPH was preliminarily studied by means of surface structures and chemical compositions of samples before and after different extraction techniques. On the basis of the destruction of herb surface microstructures, cellulose dissolving property of TBPH and high efficiency heating of infrared irradiation in IRAE-TBPH process, the IRAE-TBPH technique eventually got the maximum yield value. Therefore, TBPH solution as a novel, effective and alternative solvent with higher extraction efficiency in the IRAE of active compounds from medicinal plants showed a great promising prospect.
    RSC Advances 05/2015; 5(59). DOI:10.1039/C5RA07969A · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Color variation in sea cucumber is one of the most crucial traits affecting price and taste in East Asian countries. However, the relationship and taxonomic status of the three color variants are still unclear. We used 14 samples that covered all three color variants and their geographic distributions, to construct the first phylogeny for the color variants based on the complete mitochondrial genome sequence and a number of tree-building methods (maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI)). The divergence times within color variants were estimated by the Bayesian molecular clock approach using the BEAST program. Our results showed that the color variants were not monophyletic in the well-resolved phylogenetic tree, which strongly refuted their separate species status. The molecular dating estimate revealed that the sea cucumber was a young group, which originated in the early Miocene period (22.03 mya) and rapidly diverged after the late Miocene period. It is interesting that individuals within each variant or geographic distribution were not always closely related and thus did not share a common origin. We propose that although they differ in body color, the three color morphs all belong to a single species of Apostichopus japonicus and the historical marine climate and the hydrographic complexity of the ocean currents could be responsible for their present distribution patterns.
    Mitochondrial DNA 05/2015; DOI:10.3109/19401736.2015.1022765 · 1.70 Impact Factor
  • Xiaohua Jin, Luqi Huang
    Taxon 05/2015; 64(2). DOI:10.12705/642.19 · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dragon's blood is a famous traditional Chinese medicine produced from source plants under bio- or abio-stress. Dracaena cochinchinensis (Lour.) S.C. Chen xylem (DX) is one of the most important sources of the medicine. In this work, a GC-MS method was developed for analysis of the n-hexane extracts of DX with resin (DXR) and without resin (DXW). The repeatability of the method was also investigated for a metabolite comparative study of the different xylems. About 80 components were detected, 26 of which were identified in both DXR and DXN. Three sesquiterpenes (τ-cadinol, τ-muurolon and α-cadinol) were first discovered in Dracaena cochinchinensis (Lour.) S.C. Chen. The chromatographs of the two plant materials were compared and differences of compounds were found. It showed that phytosterols showed a dramatic rise in content, and sesquiterpenes were found to be synthesized in DXR. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
    Biomedical Chromatography 05/2015; DOI:10.1002/bmc.3488 · 1.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Authentication is the first priority when evaluating the quality of Chinese herbal medicines, particularly highly toxic medicines. The most commonly used authentication methods are morphological identification and microscopic identification. Unfortunately, these methods could not effectively evaluate some herbs with complex interior structures, such as root of Aconitum species with a circular conical shape and an interior structure with successive changes. Defining the part that should be selected as the standard plays an essential role in accurate microscopic identification. In this study, we first present a visual 3D model of Aconitum carmichaeli Debx. constructed obtained from microscopic analysis of serial sections. Based on this model, we concluded that the point of largest root diameter should be used as the standard for comparison and identification. The interior structure at this point is reproducible and its shape and appearance can easily be used to distinguish among species. We also report details of the interior structures of parts not shown in the 3D model, such as stone cells and cortical thickness. To demonstrate the usefulness of the results from the 3D model, we have distinguished the microscopic structures, at their largest segments, of the other three Aconitum species used for local habitat species of Caowu. This work provides the basis for resolution of some debate regarding the microstructural differences among these species. Thus, we conclude that the 3D model composed of serial sections has enabled the selection of a standard cross-section that will enable the accurate identification of Aconitum species in Chinese medicine. Microsc. Res. Tech., 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Microscopy Research and Technique 03/2015; 78(5). DOI:10.1002/jemt.22491 · 1.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ginseng, which is the root of Panax ginseng (Araliaceae), has been used in Oriental medicine as a stimulant and dietary supplement for more than 7,000 years. Older ginseng plants are substantially more medically potent, but ginseng age can be simulated using unscrupulous cultivation practices. Telomeres progressively shorten with each cell division until they reach a critical length, at which point cells enter replicative senescence. However, in some cells, telomerase maintains telomere length. In this study, to determine whether telomere length reflects ginseng age and which tissue is best for such an analysis, we examined telomerase activity in the main roots, leaves, stems, secondary roots and seeds of ginseng plants of known age. Telomere length in the main root (approximately 1 cm below the rhizome) was found to be the best indicator of age. Telomeric terminal restriction fragment (TRF) lengths, which are indicators of telomere length, were determined for the main roots of plants of different ages through Southern hybridization analysis. Telomere length was shown to be positively correlated with plant age, and a simple mathematical model was formulated to describe the relationship between telomere length and age for P. ginseng.
    Scientific Reports 01/2015; 5:7985. DOI:10.1038/srep07985 · 5.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera.
    PLoS ONE 01/2015; 10(1):e0115168. DOI:10.1371/journal.pone.0115168 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deer antler is a precious animal-sourced traditional Chinese medicine. We aimed to rapidly assess the quality of deer antler slices by electronic nose so that we can ensure medical safety. In this study, response intensity of the electronic nose was favorably optimized, and samples were well assessed by using an electronic nose based on LDA model. The results obtained herein suggested that electronic nose could be an effective method to rapidly as- sess the quality of deer antler slices, and could also be an important tool for categorization of complex aroma mixtures for the control of quality of drugs or food.
    Revista Brasileira de Farmacognosia 12/2014; 22(6). DOI:10.1016/j.bjp.2014.10.011 · 0.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Antelope horn is a valuable Chinese traditional medicine and widely used in clinic. However, with the deterioration of antelope's living environment and a lot of killing, the saiga population begins falling and in some places plummet. Since the increasing demand of this expensive and good bioactive medicine, the horn of artiodactyla animals is often used as the antelope horn. The adulterated or impostor not only cause damage to clinical medicine but also affect the antelope resources protection and sustainable development. Here, in order to establish a melting curve analysis (MCA) method to distinguish the antelope horn from other animal horns and identify the decoction pieces and Chinese patent medicine in a fast and easy way, animal horns and its decoction pieces, Chinese patent medicines were collected from the market and the DNA of all the collected samples were extracted. The melting curve of two universal fragments (COI and Cyt b) was scanned and Cyt b was selected as feasibility fragment for identifying authentic antelope horn from eight adulterant animal horns. After optimizing the condition for MCA, inspecting the precision and the replication of the method, a reference melting curve modern was established and we performed MCA on the antelope horns, fakes, and adulterants on a 1:1 mix, decoction pieces, and Chinese patent medicine. Thus, this study provides fast and easy methods so that MCA can detect the truth, fakes, and adulterations of antelope horns.
    Mitochondrial DNA 12/2014; DOI:10.3109/19401736.2014.989500 · 1.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: R2R3-MYB proteins are involved in the primary and secondary metabolism, developmental processes and the responses to biotic and abiotic stresses. Little is known about the functions of R2R3-MYB proteins in Scutellaria baicalensis Georgi which is a traditional Chinese medicinal plants. In this study, the function of a S. baicalensis R2R3-MYB protein, SbMYB8, was investigated. SbMYB8 had similar expression pattern with SbC4H and SbCHS in ABA-treated S. baicalensis, indicating that SbMYB8 might be involved in the flavonoid metabolism. SbMYB8 protein could bind to the GmMYB92 BS3 sequence of SbCHS promoter region, regulating the expression of SbCHS. The SbMYB8 protein was localized to the nucleus where it activated transcription. The transgenic tobacco plants over-expressing SbMYB8 had higher caffeoylquinic acid contents, compared to that in wild type plants. Overexpression of SbMYB8 also changed the expression level of some flavonoid biosynthesis-related genes. It was found that overexpression of SbMYB8 can improve stress tolerance of transgenic plants, and can alter the activity and expression levels of some antioxidant enzymes. These results indicate that SbMYB8 plays important roles in flavonoid biosynthesis and stress tolerance of plant.
    Plant Cell Tissue and Organ Culture 12/2014; 120(3). DOI:10.1007/s11240-014-0686-y · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dummy molecularly imprinted polymers (DMIPs) for simultaneously selective removal and enrichment of ginkgolic acids (GAs) during the processing of Ginkgo biloba leaves have been prepared. Two dummy template molecule with similar structural skeleton to GAs, 6-methoxysalicylic acid (MOSA, DT-1) and 6-hexadecyloxysalicylic acid (HOSA, DT-2), have been designed and synthesized. The performance of the DMIPs and NIPs were evaluated including selective recognition capacity, adsorption isotherm, and adsorption kinetics. The selective recognition capacity of the three GAs with four analogues on the sorbents illustrated that the DMIPs sorbents have high specificity for GAs. An efficient method based on DMIP-HOSA coupled with solid-phase extraction (SPE) was developed for simultaneously selective removal and enrichment of ginkgolic acids (GAs) during the processing of Ginkgo biloba leaves. The method showed excellent recoveries (82.5-88.7%) and precision (RSD 0.5-2.6%, n=5) for licorice extracts, Gastrodia elata extracts and pepper extracts spiked at three concentration levels each (50, 100, 200 mu g mL(-1)). The results indicated that GAs and standardized Ginkgo biloba leaves extracts could be obtained simultaneously through the DMIP-SPE.
    Journal of Chromatography A 11/2014; 1368. DOI:10.1016/j.chroma.2014.09.070 · 4.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evaluating the safety of traditional medicinal herbs and their major active constituents is critical for their widespread usage. Geniposide, a major active constituent with a defined structure from the traditional medicinal herb Gardenia jasminoides ELLIS fruit, exhibits remarkable anti-inflammatory, antiapoptotic, and antifibrotic properties and has been used in a variety of medical fields, mainly for the treatment of liver diseases. However, geniposide-induced hepatotoxicity and methods for the early detection of hepatotoxicity have yet to be reported. In this study, geniposide-induced hepatotoxicity was investigated. In addition, candidate biomarkers for the earlier detection of geniposide-induced hepatotoxicity were identified using a label-free quantitative proteomics approach on a geniposide overdose-induced liver injury in a rat model. Using an accurate intensity-based, absolute quantification (iBAQ)-based, one-step discovery and verification approach, a candidate biomarker panel was easily obtained from individual samples in response to different conditions. To determine the biomarkers' early detection abilities, five candidate biomarkers were selected and tested using enzyme-linked immunosorbent assays (ELISAs). Two biomarkers, glycine N-methyltransferase (GNMT) and glycogen phosphorylase (PYGL), were found to indicate hepatic injuries significantly earlier than the current gold standard liver biomarker. This study provides a first insight into geniposide-induced hepatotoxicity in a rat model and describes a method for the earlier detection of this hepatotoxicity, facilitating the efficient monitoring of drug-induced hepatotoxicity.
    Journal of Proteome Research 10/2014; DOI:10.1021/pr5007119 · 5.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scutellaria baicalensis Georgi is an herbaceous perennial plant used as one of the staple Chinese herbal medicines in China with a long officinal history. However, research on S. baicalensis is currently limited due to the lack of genome and gene expression information. A full-length cDNA library from leaves and roots of S. baicalensis subjected to water deficit and heat, conditions that have been shown to affect baicalein accumulation, was constructed. There were 6491 expressed sequence tags (ESTs) obtained. UniGenes were assembled by BLAST similarity searches and annotated with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 78 simple sequence repeats (SSRs) were identified and SSR markers associated with the active ingredients of S. baicalensis were selected. EST-SSR transferability was determined from 5 populations from different areas. This study is the first to produce a large volume of gene expression data from S. baicalensis to facilitate gene discovery in S. baicalensis and provide an important resource for molecular genetic and functional genomic studies in this species.
    Genomics 10/2014; DOI:10.1016/j.ygeno.2014.10.009 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Saffron (Crocus sativus L.) is one of the most important and expensive medicinal spice products in the world. Because of its high market value and premium price, saffron is often adulterated through the incorporation of other materials, such as Carthamus tinctorius L. and Calendula officinalis L. flowers, Hemerocallis L. petals, Daucus carota L. fleshy root, Curcuma longa L. rhizomes, Zea may L., and Nelumbo nucifera Gaertn. stigmas. To develop a straightforward, nonsequencing method for rapid, sensitive, and discriminating detection of these adulterants in traded saffron, we report here the application of a barcoding melting curve analysis method (Bar-MCA) that uses the universal chloroplast plant DNA barcoding region trnH-psbA to identify adulterants. When amplified at DNA concentrations and annealing temperatures optimized for the curve analysis, peaks were formed at specific locations for saffron (81.92°C) and the adulterants: D. carota (81.60°C), C. tinctorius (80.10°C), C. officinalis (79.92°C), Dendranthema morifolium (Ramat.) Tzvel. (79.62°C), N. nucifera (80.58°C), Hemerocallis fulva (L.) L. (84.78°C), and Z. mays (84.33°C). The constructed melting curves for saffron and its adulterants have significantly different peak locations or shapes. In conclusion, Bar-MCA could be a faster and more cost-effective method to authenticate saffron and detect its adulterants.
    BioMed Research International 10/2014; 2014:809037. DOI:10.1155/2014/809037 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The changes in the main nutrient and medicinal components during the storage of the Chinese yam (Dioscorea opposita) tubers were studied. The harvested tubers were stored under ambient conditions (10 °C to 18 °C, 60 % to 80 % Relative Humidity) and cold temperature and packaged conditions (4 °C, 60 % to 65 % Relative Humidity) for 45 day. The allantoin, starch, total alcohol-soluble sugar, reducing sugar, protein, and moisture contents of the samples were evaluated. Their amylase activities were also investigated. Results of ambient conditions indicated that, during storage, moisture decreased by 67.96 % to 56.51 %, and total sugars, reducing sugars, and protein increased by 6.49 % to 9.81 %, 1.7 % to 2.27 %, and 13.02 % to 14.55 %, respectively. Starch and enzyme activities increased during the early days of storage and progressively decreased, and the content of allantoin changed in volatility. The changes were more significant at cold temperatures and packaged conditions than at ambient conditions. This result suggests that after-ripening occurred in the early stages of Chinese yam tubers, which positively affected the nutritional potential of the tubers by a marked increase in nutrients. Low-temperature sweetening greatly affects the nutritional potential of tubers by a series of complicated interactions between starch and sugars at 4 °C.
    Journal of Food Science and Technology -Mysore- 10/2014; 51(10). DOI:10.1007/s13197-012-0776-y · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structural and functional properties of starches isolated from Ginkgo biloba L. (GBL), Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. (ADB) and Bletilla sfriata (Thunb.) Reiehb. f. (BSR) have been studied using a range of characterization methods including amylose content, water-binding capacity, paste clarity, scanning electron microscopy (SEM) and light microscopy, X-ray diffraction (XRD), amylose leaching, differential scanning calorimetry (DSC) and in vitro digestion. Considerable differences in these properties were observed. Amylose content varied from 16.7% to 30.5%, while paste clarity was in the range of 8.03-25.3%. Moreover, the shape of starch granules varied from spherical, elliptical to irregular or polygonal with different sizes. ADB displayed a B-type pattern, while GBL and BSR showed a C-type pattern. In addition, amylose leaching (AML) varied linearly with temperature for BSR, while the AML of other samples increased gradually below 60 degrees C, but increased dramatically beyond 60 degrees C. The three starch samples had similar gelatinization temperature ranging from 63.0 to 76.7 degrees C, but showed lower enthalpy values (0.90-3.96 J/g) than most of conventional starch. GBL and ADB possessed much higher slowly digested starch (SDS) content in vitro digestion, which made them suitable candidates for dietary starch.
    Food Hydrocolloids 10/2014; 40:196–202. DOI:10.1016/j.foodhyd.2014.02.019 · 4.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, a reliable method for analysis and identification of eight terpenoids in tissue cultures of Tripterygium wilfordii has been established using high‐performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC‐ESI‐MS). Our study indicated that sterile seedlings, callus cultures and cell‐suspension cultures can rapidly increase the amount of biological materials. HPLC‐ESI‐MS was used to identify terpenoids from the extracts of these tissue cultures. Triptolide, triptophenolide, celastrol and wilforlide A were unambiguously determined by comparing the retention times, UV spectral data, and mass fragmentation behaviors with those of the reference compounds. Another four compounds were tentatively identified as triptonoterpenol, triptonoterpene, 22β‐hydroxy‐3‐oxoolean‐12‐en‐29‐oic acid and wilforlide B, based on their UV and mass spectrometry spectra. The quantitative analysis showed that all three materials contain triptolide, triptophenolide, celastrol, wilforlide A, and the contents of the four compounds in the cell‐suspension cultures were 53.1, 240, 129 and 964 µg/g, respectively, which were at least 2.0‐fold higher than these in the sterile seedlings and callus cultures. Considering the known pharmacological activity of triptolide and celastrol, we recommend the cell‐suspension cultures as biological materials for future studies, such as clinical and toxicological studies. The developed method was validated by the evaluation of its precision, linearity, detection limits and recovery, and it was successfully used to identify and quantify the terpenoids in the tissue cultures. Copyright © 2014 John Wiley & Sons, Ltd.
    Biomedical Chromatography 09/2014; 28(9). DOI:10.1002/bmc.3140 · 1.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Pilos antler (Lu-Rong in Chinese) is a famous traditional medicine in China. Many adulterants have been discovered in Chinese markets in recent years. However, few DNA-based methods are effective for discrimination of this DNA-degraded animal medicine. Here, novel and deft amplification refractory mutation sequencing system (ARMSS), integrating the advantages of the amplification refractory mutation system (ARMS) and the short DNA barcode, was first developed to discriminate Pilos antler from its adulterants. We aimed to provide a new sight and inspiration for deft detection. The results showed that developed ARMS achieved strong specificity and high sensitivity in rapid identification, while the short Cytb gene was of excellent identification power in terms of accurate identification, which suggested that ARMSS successfully integrated the advantages of the ARMS and short DNA barcode, and that it was useful for deft detection. Our study determined that the deft ARMSS could be the well candidate for discrimination of Pilos antler, as well as be a valuable tool for deft identification of Chinese medicine.
    Mitochondrial DNA 08/2014; DOI:10.3109/19401736.2014.945578 · 1.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a new kind of Lonicera japonica (FLJ) tea well known for its red color, flavor, and taste has become popular in the market. This tea comes from the buds of Lonicera japonica Thunb. var. chinensis (Wats.) Bak. (rFLJ), a wild mutant of the Lonicerae plant The present study aimed to identify and quantify, for the first time and in detail, the anthocyanin compounds in the buds of rFLJ. Anthocyanins were extracted with methanol-water-formic acid-trifluoroacetic acid (70:27:2:1, v/v/v/v) and quantified as 108.06 +/- 4.32 mg/100 g of fresh weight (cyanidin-3-glucoside equivalent) by using the pH-differential method. Eight different anthocyanins were identified by HPLC-DAD-ESI-MS/MS analysis and were quantitated by HPLC-DAD analysis. The main anthocyanins in the buds of rFLJ were two non-acylated anthocyanins: cyanidin-3,5-diglucoside and cyanidin-3-glucoside. Moreover, orthologous genes in the biosynthesis of anthocyanins were cloned and their structure and transcript levels in the buds of FLJ and rFLJ were further compared. The results revealed a 12-residue insertion (IKPTIEGVLGII) in LjcDFR compared with LjDFR. Furthermore, transcript levels of DFR, LDOX, BZ1 and GT1 were decreased in the buds of FLJ compared with rFLJ, as constitute with the content of cyanidin-3-glucoside. Here, a rapid and effective method to identify and quantify all major anthocyanins in the buds of rFLJ is established. Furthermore, the results of this study may explain which anthocyanin produces the red color of rFJL, an important characteristic that distinguishes it from FLJ. (C) 2014 Published by Elsevier Ltd.
    Food Research International 08/2014; 62:812-818. DOI:10.1016/j.foodres.2014.03.026 · 3.05 Impact Factor

Publication Stats

758 Citations
310.28 Total Impact Points

Institutions

  • 2009–2015
    • China Academy of Chinese Medical Sciences
      • Institute of Chinese Material Medica
      Peping, Beijing, China
  • 2011–2014
    • Chinese Academy of Medical Sciences
      Peping, Beijing, China
    • University of Padova
      • Department of Biology
      Padua, Veneto, Italy
    • China Academy of Traditional Chinese Medicine
      Peping, Beijing, China
    • 302 Military Hospital of China
      Peping, Beijing, China
    • Nanjing University of Traditional Chinese Medicine
      Peping, Beijing, China
  • 2009–2014
    • Beijing University of Chinese Medicine and Pharmacology
      • • School of Chinese Materia Medica
      • • College of Chinese Materia Medica
      Peping, Beijing, China
  • 2012
    • Yunnan Academy of Agricultural Sciences
      Yün-nan, Yunnan, China
    • Southwest Jiaotong University
      Hua-yang, Sichuan, China
    • Shandong University of Traditional Chinese Medicine
      Shan-tang, Jiangxi Sheng, China
    • Chongqing Municipal Academy of Chinese Materia Medica
      Ch’ung-ch’ing-shih, Chongqing Shi, China
  • 2010–2012
    • Shandong Academy of Sciences
      Chi-nan-shih, Shandong Sheng, China
    • Tianjin University of Traditional Chinese Medicine
      T’ien-ching-shih, Tianjin Shi, China
  • 2010–2011
    • Jinan University (Guangzhou, China)
      Shengcheng, Guangdong, China