T N Seyfried

Chestnut Hill College, Boston, Massachusetts, United States

Are you T N Seyfried?

Claim your profile

Publications (179)740.83 Total impact

  • Thomas N Seyfried
    Journal of lipid research. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ketogenic diet (KD) is known to be anticonvulsant and anti-epileptogenic. While the mechanism behind this therapeutic benefit is unclear, a reduction of circulating glucose levels through calorie restriction (CR) has been implicated. Foods or drinks that elevate blood glucose are known to compromise the therapeutic benefit of the KD in some children with epilepsy. We therefore evaluated the effect of a calorie restricted KD (KD-R) with supplementation of glucose in the drinking water of EL mice, a natural model of idiopathic generalized epilepsy, prior to seizure testing to assess the effect of glucose on seizure generation. Mice were fed either a standard diet or the KD unrestricted (SD-UR and KD-UR, respectively), or the KD restricted (KD-R). d-Glucose (25mM) was supplemented in the drinking water of KD-R fed mice for 0.5h or for 2.5h prior to seizure testing. Each restricted mouse served as its own body weight control to achieve a 15-18% body weight reduction. Seizure susceptibility, body weights, and plasma glucose and β-hydroxybutyrate levels were measured over a nine-week treatment period. Body weights and glucose levels remained high over the testing period in both the SD-UR and the KD-UR groups, but were significantly reduced in all R-fed groups. A significant increase in β-hydroxybutyrate levels was observed in all KD groups. Seizure susceptibility remained highest in the SD-UR group, was slightly reduced in the KD-UR group, and was significantly reduced after three weeks in all R-fed groups. Supplementation of glucose prior to seizure testing resulted in a decrease of seizure threshold for R-fed mice, but did not alter bodyweight or circulating glucose levels. The KD has both an anticonvulsant and antiepileptogenic effect in EL mice. Here we confirm that CR enhances the anticonvulsant action of the KD in EL mice. Additionally, we show for the first time that supplementation of glucose decreases the anticonvulsant action of the KD, which further supports the hypothesis that CR works through transitioning metabolism from glucose to ketone utilization for energy.
    Epilepsy research. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ketogenic diet (KD) is known to be anticonvulsant and anti-epileptogenic. While the mechanism behind this therapeutic benefit is unclear, a reduction of circulating glucose levels through calorie restriction (CR) has been implicated. Foods or drinks that elevate blood glucose are known to compromise the therapeutic benefit of the KD in some children with epilepsy. We therefore evaluated the effect of a calorie restricted KD (KD-R) with supplementation of glucose in the drinking water of EL mice, a natural model of idiopathic generalized epilepsy, prior to seizure testing to assess the effect of glucose on seizure generation. Mice were fed either a standard diet or the KD unrestricted (SD-UR and KD-UR, respectively), or the KD restricted (KD-R). D-Glucose (25 mM) was supplemented in the drinking water of KD-R fed mice for 0.5 hours or for 2.5 hours prior to seizure testing. Each restricted mouse served as its own body weight control to achieve a 15-18% body weight reduction. Seizure susceptibility, body weights, and plasma glucose and β-hydroxybutyrate levels were measured over a nine-week treatment period. Body weights and glucose levels remained high over the testing period in both the SD-UR and the KD-UR groups, but were significantly reduced in all R-fed groups. A significant increase in β-hydroxybutyrate levels was observed in all KD groups. Seizure susceptibility remained highest in the SD-UR group, was slightly reduced in the KD-UR group, and was significantly reduced after three weeks in all R-fed groups. Supplementation of glucose prior to seizure testing resulted in a decrease of seizure threshold for R-fed mice, but did not alter bodyweight or circulating glucose levels. The KD has both an anticonvulsant and antiepileptogenic effect in EL mice. Here we confirm that CR enhances the anticonvulsant action of the KD in EL mice. Additionally, we show for the first time that supplementation of glucose decreases the anticonvulsant action of the KD, which further supports the hypothesis that CR works through transitioning metabolism from glucose to ketone utilization for energy.
    Epilepsy Research. 06/2014;
  • Joshua J. Meidenbauer, Nathan Ta, Thomas N. Seyfried
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Diet therapies including calorie restriction, ketogenic diets, and fish-oil supplementation have been used to improve health and to treat a variety of neurological and non-neurological diseases. Methods We investigated the effects of three diets on circulating plasma metabolites (glucose and β- hydroxybutyrate), hormones (insulin and adiponectin), and lipids over a 32-day period in C57BL/6J mice. The diets evaluated included a standard rodent diet (SD), a ketogenic diet (KD), and a standard rodent diet supplemented with fish-oil (FO). Each diet was administered in either unrestricted (UR) or restricted (R) amounts to reduce body weight by 20%. Results The KD-UR increased body weight and glucose levels and promoted a hyperlipidemic profile, whereas the FO-UR decreased body weight and glucose levels and promoted a normolipidemic profile, compared to the SD-UR. When administered in restricted amounts, all three diets produced a similar plasma metabolite profile, which included decreased glucose levels and a normolipidemic profile. Linear regression analysis showed that circulating glucose most strongly predicted body weight and triglyceride levels, whereas calorie intake moderately predicted glucose levels and strongly predicted ketone body levels. Conclusions These results suggest that biomarkers of health can be improved when diets are consumed in restricted amounts, regardless of macronutrient composition.
    Nutrition & Metabolism 05/2014; 11:23. · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells express an abnormal metabolism characterized by increased glucose consumption due to genetic mutations and mitochondrial dysfunction. Previous studies indicate that unlike healthy tissues, cancer cells are unable to effectively utilize ketone bodies for energy. Furthermore, ketones inhibit the proliferation and viability of cultured tumor cells. As the Warburg effect is especially prominent in metastatic cells, we hypothesized that dietary ketone supplementation would inhibit metastatic cancer progression in vivo. Proliferation and viability were measured in the highly metastatic VM-M3 cells cultured in the presence and absence of β-hydroxybutyrate (βHB). Adult male inbred VM mice were implanted subcutaneously with firefly-luciferase tagged syngeneic VM-M3 cells. Mice were fed a standard diet supplemented with either 1,3-butanediol (BD) or a ketone ester (KE), which are metabolized to the ketone bodies β-hydroxybutyrate (βHB) and acetoacetate (AcAC). Tumor growth was monitored by in vivo bioluminescent imaging. Survival time, tumor growth rate, blood glucose, blood βHB, and body weight were measured throughout the survival study. Ketone supplementation decreased proliferation and viability of the VM-M3 cells grown in vitro, even in the presence of high glucose. Dietary ketone supplementation with BD and KE prolonged survival in VM-M3 mice with systemic metastatic cancer by 51% and 69%, respectively (p<0.05). Ketone administration elicited anti-cancer effects in vitro and in vivo independent of glucose levels or calorie restriction. The use of supplemental ketone precursors as a cancer treatment should be further investigated in animal models to determine potential for future clinical use. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 02/2014; · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial-derived lipopolysaccharide (LPS) stimulates naive B lymphocytes to differentiate into immunoglobulin (Ig)-secreting plasma cells. Differentiation of B lymphocytes is characterized by a proliferative phase followed by expansion of the intracellular membrane secretory network to support Ig production. A key question in lymphocyte biology is how naive B cells reprogram metabolism to support de novo lipogenesis necessary for proliferation and expansion of the endomembrane network in response to LPS. We report that extracellularly acquired glucose is metabolized, in part, to support de novo lipogenesis in response to LPS stimulation of splenic B lymphocytes. LPS stimulation leads to increased levels of endogenous ATP-citrate lyase (ACLY) and this is accompanied by increased ACLY enzymatic activity. ACLY produces cytosolic acetyl-CoA from mitochondrial-derived citrate. Inhibition of ACLY activity in LPS-stimulated B cells with the selective inhibitor 2-hydroxy-N-arylbenzenesulfonamide (C-9) blocks glucose incorporation into de novo lipid biosynthesis, including cholesterol, free fatty acids, neutral and acidic phospholipids. Moreover, inhibition of ACLY activity in splenic B cells results in inhibition of proliferation and defective endomembrane expansion and reduced expression of CD138 and Blimp-1, markers for plasma-like B cell differentiation. ACLY activity is also required for LPS-induced IgM production in CH12 B-lymphoma cells. These data demonstrate that ACLY mediates glucose-dependent de novo lipogenesis in response to LPS signaling and identify a role for ACLY in several phenotypic changes that define plasma cell differentiation.
    Journal of Biological Chemistry 01/2014; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GM1-gangliosidosis is a rare progressive neurodegenerative disorder due to an autosomal recessively inherited deficiency of lysosomal β-galactosidase. We have identified seven American Black Bears (Ursus americanus) found in the Northeast United States suffering from GM1-gangliosidosis. This report describes the clinical features, brain MRI, morphologic, biochemical and molecular genetic findings in the affected bears. Brain lipids were compared with those in the brain of the GM1-mouse. The bears presented at ages 10 – 14 months in poor clinical condition, lethargic, tremulous and ataxic. They continued to decline and were humanely euthanized. The T2-weighted MR images of the brain of one bear disclosed white matter hyperintensity. Morphological studies of brain from five of the bears revealed enlarged neurons with foamy cytoplasm containing granules. Axonal spheroids were present in white matter. Electron microscopic examination revealed lamellated membrane structures within neurons. Cytoplasmic vacuoles were found in the liver, kidneys and chondrocytes and foamy macrophages within the lungs. Acid β-galactosidase activity in cultured skin fibroblasts was only 1–2 percent of control values. In brain, ganglioside-bound sialic acid was increased more than 2-fold with GM1-ganglioside predominating. GA1 content was also increased whereas cerebrosides and sulfatides were markedly decreased. The distribution of gangliosides was similar to that in GM1-mouse brain, but the loss of myelin lipids was greater in the brain of the affected bear than in the brain of the GM1 mouse. Isolated full-length cDNA of the black bear GLB1 gene revealed 86% homology to its human counterpart in nucleotide sequence and 82% in amino acid sequence. GLB1 cDNA from liver tissue of an affected bear contained a homozygous recessive T1042 to C transition inducing a Tyr348 to His mutation (Y348H) within a highly conserved region of the GLB1 gene. The coincidence of several Black Bears with GM1-gangliosidosis in the same geographic area suggests increased frequency of a founder mutation in this animal population.
    Molecular Genetics and Metabolism 01/2014; · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole-body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual(')s unique physiology.
    Carcinogenesis 12/2013; · 5.64 Impact Factor
  • Nathan L Ta, Xibei Jia, Michael Kiebish, Thomas N Seyfried
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiolipin is a complex polyglycerol phospholipid found almost exclusively in the inner mitochondrial membrane and regulates numerous enzyme activities especially those related to oxidative phosphorylation and coupled respiration. Abnormalities in cardiolipin can impair mitochondrial function and bioenergetics. We recently demonstrated that the ratio of shorter chain saturated and monounsaturated fatty acids (C16:0; C18:0; C18:1) to longer chain polyunsaturated fatty acids (C18:2; C20:4; C22:6) was significantly greater in the brains of adult VM/DK (VM) inbred mice than in the brains of C57BL/6 J (B6) mice. The cardiolipin fatty acid abnormalities in VM mice are also associated with alterations in the activity of mitochondrial respiratory complexes. In this study we found that the abnormal brain fatty acid ratio in the VM strain was inherited as an autosomal dominant trait in reciprocal B6 × VM F1 hybrids. To evaluate the potential influence of brain cardiolipin fatty acid composition on cognitive sensitivity, we placed the parental B6 and VM mice and their reciprocal male and female B6VMF1 hybrid mice (3-month-old) in a hypoxic chamber (5 % O2). Cognitive awareness (conscientiousness) under hypoxia was significantly lower in the VM parental mice and F1 hybrid mice (11.4 ± 0.4 and 11.0 ± 0.4 min, respectively) than in the parental B6 mice (15.3 ± 1.4 min), indicating an autosomal dominant inheritance like that of the brain cardiolipin abnormalities. These findings suggest that impaired cognitive awareness under hypoxia is associated with abnormalities in neural lipid composition.
    Lipids 11/2013; · 2.56 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Canavan's disease (CD) is a fatal pediatric leukodystrophy caused by mutations in aspartoacylase (AspA) gene. Currently, there is no effective treatment for CD; however, gene therapy is an attractive approach to ameliorate the disease. Here, we studied progressive neuropathology and gene therapy in short-lived (≤1 month) AspA(-/-) mice, a bona-fide animal model for the severest form of CD. Single intravenous (IV) injections of several primate-derived recombinant adeno-associated viruses (rAAVs) as late as postnatal day 20 (P20) completely rescued their early lethality and alleviated the major disease symptoms, extending survival in P0-injected rAAV9 and rAAVrh8 groups to as long as 2 years thus far. We successfully used microRNA (miRNA)-mediated post-transcriptional detargeting for the first time to restrict therapeutic rAAV expression in the central nervous system (CNS) and minimize potentially deleterious effects of transgene overexpression in peripheral tissues. rAAV treatment globally improved CNS myelination, although some abnormalities persisted in the content and distribution of myelin-specific and -enriched lipids. We demonstrate that systemically delivered and CNS-restricted rAAVs can serve as efficacious and sustained gene therapeutics in a model of a severe neurodegenerative disorder even when administered as late as P20.Molecular Therapy (2013); doi:10.1038/mt.2013.138.
    Molecular Therapy 07/2013; · 7.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of β-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and β-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.Molecular Therapy (2013); doi:10.1038/mt.2013.86.
    Molecular Therapy 05/2013; · 7.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sandhoff disease is an incurable neurodegenerative disorder caused by mutations in the lysosomal hydrolase β-hexosaminidase. Deficiency in this enzyme leads to excessive accumulation of ganglioside GM2 and its asialo derivative, GA2, in brain and visceral tissues. Small molecule inhibitors of ceramide-specific glucosyltransferase, the first committed step in ganglioside biosynthesis, reduce storage of GM2 and GA2. Limited brain access or adverse effects have hampered the therapeutic efficacy of the clinically approved substrate reduction molecules, eliglustat tartrate and the imino sugar NB-DNJ (Miglustat). The novel eliglustat tartrate analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1, 4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (EtDO-PIP2, CCG-203586 or "3h"), was recently reported to reduce glucosylceramide in murine brain. Here we assessed the therapeutic efficacy of 3h in juvenile Sandhoff (Hexb-/-) mice. Sandhoff mice received intraperitoneal injections of phosphate buffered saline (PBS) or 3h (60 mg/kg/day) from postnatal day 9 (p-9) to postnatal day 15 (p-15). Brain weight and brain water content was similar in 3h and PBS-treated mice. 3h significantly reduced total ganglioside sialic acid, GM2, and GA2 content in cerebrum, cerebellum and liver of Sandhoff mice. Data from the liver showed that 3h reduced the key upstream ganglioside precursor (glucosylceramide), providing evidence for an on target mechanism of action. No significant differences were seen in the distribution of cholesterol or of neutral and acidic phospholipids. These data suggest that 3h can be an effective alternative to existing substrate reduction molecules for ganglioside storage diseases.
    Neurochemical Research 02/2013; · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal cancer metabolism creates a glycolytic-dependency which can be exploited by lowering glucose availability to the tumor. The ketogenic diet (KD) is a low carbohydrate, high fat diet which decreases blood glucose and elevates blood ketones and has been shown to slow cancer progression in animals and humans. Abnormal tumor vasculature creates hypoxic pockets which promote cancer progression and further increase the glycolytic-dependency of cancers. Hyperbaric oxygen therapy (HBO2T) saturates tumors with oxygen, reversing the cancer promoting effects of tumor hypoxia. Since these non-toxic therapies exploit overlapping metabolic deficiencies of cancer, we tested their combined effects on cancer progression in a natural model of metastatic disease. We used the firefly luciferase-tagged VM-M3 mouse model of metastatic cancer to compare tumor progression and survival in mice fed standard or KD ad libitum with or without HBO2T (2.5 ATM absolute, 90 min, 3x/week). Tumor growth was monitored by in vivo bioluminescent imaging. KD alone significantly decreased blood glucose, slowed tumor growth, and increased mean survival time by 56.7% in mice with systemic metastatic cancer. While HBO2T alone did not influence cancer progression, combining the KD with HBO2T elicited a significant decrease in blood glucose, tumor growth rate, and 77.9% increase in mean survival time compared to controls. KD and HBO2T produce significant anti-cancer effects when combined in a natural model of systemic metastatic cancer. Our evidence suggests that these therapies should be further investigated as potential non-toxic treatments or adjuvant therapies to standard care for patients with systemic metastatic disease.
    PLoS ONE 01/2013; 8(6):e65522. · 3.73 Impact Factor
  • Thomas N Seyfried, Leanne C Huysentruyt
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis involves the spread of cancer cells from the primary tumor to surrounding tissues and to distant organs and is the primary cause of cancer morbidity and mortality. In order to complete the metastatic cascade, cancer cells must detach from the primary tumor, intravasate into the circulatory and lymphatic systems, evade immune attack, extravasate at distant capillary beds, and invade and proliferate in distant organs. Currently, several hypotheses have been advanced to explain the origin of cancer metastasis. These involve an epithelial mesenchymal transition, an accumulation of mutations in stem cells, a macrophage facilitation process, and a macrophage origin involving either transformation or fusion hybridization with neoplastic cells. Many of the properties of metastatic cancer cells are also seen in normal macrophages. A macrophage origin of metastasis can also explain the long-standing "seed and soil" hypothesis and the absence of metastasis in plant cancers. The view of metastasis as a macrophage metabolic disease can provide novel insight for therapeutic management.
    Critical reviews in oncogenesis 01/2013; 18(1-2):43-73.
  • J R Arthur, J P Lee, E Y Snyder, T N Seyfried
    [Show abstract] [Hide abstract]
    ABSTRACT: Sandhoff Disease (SD) involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the β-subunit gene of β-hexosaminidase A and B (Hexb gene). Substrate reduction therapy, utilizing imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ), reduces ganglioside biosynthesis and levels of stored GM2 in SD mice. Intracranial transplantation of Neural Stem Cells (NSCs) can provide enzymatic cross correction, to help reduce ganglioside storage and extend life. Here we tested the effect of NSCs and NB-DGJ, alone and together, on brain β-hexosaminidase activity, GM2, and GA2 content in juvenile SD mice. The SD mice received either cerebral NSC transplantation at post-natal day 0 (p-0), intraperitoneal injection of NB-DGJ (500 mg/kg/day) from p-9 to p-15, or received dual treatments. The brains were analyzed at p-15. β-galactosidase staining confirmed engraftment of lacZ-expressing NSCs in the cerebral cortex. Compared to untreated and sham-treated SD controls, NSC treatment alone provided a slight increase in Hex activity and significantly decreased GA2 content. However, NSCs had no effect on GM2 content when analyzed at p-15. NB-DGJ alone had no effect on Hex activity, but significantly reduced GM2 and GA2 content. Hex activity was slightly elevated in the NSC + drug-treated mice. GM2 and GA2 content in the dual treated mice were similar to that of the NB-DGJ treated mice. These data indicate that NB-DGJ alone was more effective in targeting storage in juvenile SD mice than were NSCs alone. No additive or synergistic effect between NSC and drug was found in these juvenile SD mice.
    Neurochemical Research 02/2012; 37(6):1335-43. · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mature vasculature contains an endothelial cell lining with a surrounding sheath of pericytes/vascular smooth muscle cells (VSMCs). Tumor vessels are immature and lack a pericyte sheath. Colocalization of vascular endothelial growth factor receptor 2 (VEGFR-2) and platelet-derived growth factor receptor beta (PDGF-Rβ) reduces pericyte ensheathment of tumor vessels. We found that a 30% dietary restriction (DR) enhanced vessel maturation in the mouse CT-2A astrocytoma. DR reduced microvessel density and VEGF expression in the astrocytoma, while increasing recruitment of pericytes, positive for alpha-smooth muscle actin (α-SMA). Moreover, DR reduced colocalization of VEGF-R2 and PDGF-Rβ, but did not reduce total PDGF-Rβ expression. These findings suggest that DR promoted vessel normalization by preventing VEGF-induced inhibition of the PDGF signaling axis in pericytes. DR appears to shift the tumor vasculature from a leaky immature state to a more mature state. We suggest that vessel normalization could improve delivery of therapeutic drugs to brain tumors.
    Journal of Oncology 01/2012; 2012:264039.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Itaconic acid (ITA), or methylenesuccinic acid, is not generally classified as a mammalian metabolite. Using NMR-based metabolomics and (13)C-labeling, we have detected ITA in both macrophage-like VM-M3 and RAW 264.7 tumor cell lines as well as stimulated and unstimulated primary murine macrophages. Macrophage activation by addition of lipopolysaccharide and IFN-γ markedly increased ITA production and secretion. Crude cell extracts synthesize ITA via decarboxylation of cis-aconitate, indicative of a novel mammalian cis-aconitic decarboxylase activity. Our results highlight a previously unidentified biosynthetic pathway related to TCA cycle metabolism in mammalian cells and a novel metabolite that likely plays a role in macrophage-based immune response.
    Journal of the American Chemical Society 09/2011; 133(41):16386-9. · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant brain cancer persists as a major disease of morbidity and mortality. The failure to recognize brain cancer as a disease of energy metabolism has contributed in large part to the failure in management. As long as brain tumor cells have access to glucose and glutamine, the disease will progress. The current standard of care provides brain tumors with access to glucose and glutamine. The high fat low carbohydrate ketogenic diet (KD) will target glucose availability and possibly that of glutamine when administered in carefully restricted amounts to reduce total caloric intake and circulating levels of glucose. The restricted KD (RKD) targets major signaling pathways associated with glucose and glutamine metabolism including the IGF-1/PI3K/Akt/Hif pathway. The RKD is anti-angiogenic, anti-invasive, anti-inflammatory, and pro-apoptotic when evaluated in mice with malignant brain cancer. The therapeutic efficacy of the restricted KD can be enhanced when combined with drugs that also target glucose and glutamine. Therapeutic efficacy of the RKD was also seen against malignant gliomas in human case reports. Hence, the RKD can be an effective non-toxic therapeutic option to the current standard of care for inhibiting the growth and invasive properties of malignant brain cancer.
    Epilepsy research 08/2011; 100(3):310-26. · 2.48 Impact Factor
  • Source
    Leanne C Huysentruyt, Zeynep Akgoc, Thomas N Seyfried
    [Show abstract] [Hide abstract]
    ABSTRACT: Most malignant brain tumours contain various numbers of cells with characteristics of activated or dysmorphic macrophages/microglia. These cells are generally considered part of the tumour stroma and are often described as TAM (tumour-associated macrophages). These types of cells are thought to either enhance or inhibit brain tumour progression. Recent evidence indicates that neoplastic cells with macrophage characteristics are found in numerous metastatic cancers of non-CNS (central nervous system) origin. Evidence is presented here suggesting that subpopulations of cells within human gliomas, specifically GBM (glioblastoma multiforme), are neoplastic macrophages/microglia. These cells are thought to arise following mitochondrial damage in fusion hybrids between neoplastic stem cells and macrophages/microglia.
    ASN Neuro 08/2011; 3(4). · 3.64 Impact Factor

Publication Stats

4k Citations
740.83 Total Impact Points

Institutions

  • 1989–2014
    • Chestnut Hill College
      Boston, Massachusetts, United States
  • 1997–2013
    • Boston College, USA
      • • Biology Department
      • • Psychology Department
      Boston, Massachusetts, United States
  • 2011
    • Georgetown University
      Washington, Washington, D.C., United States
  • 2010–2011
    • University of California, San Francisco
      • Division of Hematology and Medical Oncology
      San Francisco, CA, United States
  • 2009
    • University of Washington Seattle
      • Division of General Internal Medicine
      Seattle, WA, United States
  • 2006
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 2004
    • St. Jude Children's Research Hospital
      • Department of Genetics
      Memphis, Tennessee, United States
  • 1994
    • Beverly Hospital, Boston MA
      Beverly, Massachusetts, United States
  • 1990
    • Boston Children's Hospital
      • Department of Neurology
      Boston, MA, United States
  • 1977–1988
    • Yale University
      • Department of Neurology
      New Haven, CT, United States
  • 1979–1985
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States