Stéphane Germain

Collège de France, Lutetia Parisorum, Île-de-France, France

Are you Stéphane Germain?

Claim your profile

Publications (67)440.35 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: No-reflow in ST-segment elevation acute myocardial infarction (STEMI) is associated with a poor clinical prognosis. Its pathophysiological mechanisms are not fully elucidated yet but enhanced vascular permeability plays a key role in this phenomenon. Angiopoietin-like 4 (ANGPTL4) has been implicated in vascular permeability in experimental models of acute myocardial infarction (AMI). We therefore sought to investigate whether baseline ANGPTL4 serum levels are associated with no-reflow after primary percutaneous coronary intervention (PPCI). We studied a group of 41 patients presenting with a first STEMI within 12h of onset of symptoms and who underwent successful PPCI. Blood samples were obtained from all patients on admission before the start of the procedure, for ANGPTL4 level measurement. No-reflow was assessed by cardiac magnetic resonance imaging (MRI), the reference method. MRI-detected no-reflow was observed in 20 patients (48.8%). Variables independently associated with no-reflow on multivariate logistic regression analysis were: lower ANGPTL4 serum levels (odds ratio 0.82, 95% CI 0.70-0.98, P=0.02), higher troponin T peak (odds ratio 1.03, 95% CI 1.00-1.05, P=0.03), higher incidence of left anterior descending coronary artery (LAD) as culprit artery (odds ratio 14.61, 95% CI 1.24-172.49, P=0.03), and higher C-reactive protein levels (odds ratio 1.18, 95% CI 1.00-1.39, P=0.05). ANGPTL4 serum levels predict MRI-detected no-reflow after successful PPCI in STEMI patients. Given the recently demonstrated therapeutic role of ANGPTL4 in diminishing no-reflow and limiting infarct size in pre-clinical animal models, these findings in humans may open up new possibilities in the field of research. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    International journal of cardiology 03/2015; 187:511-516. DOI:10.1016/j.ijcard.2015.03.263 · 6.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Developing strategies to overcome resistance to sunitinib is a major challenge in human renal-cell carcinoma (RCC). We hypothesized that sunitinib-induced tumor necrosis-associated hypoxia could interact with renal cancer stem-cells in patients with metastatic RCC. Experimental design: We studied tissue samples from seven patients with primary metastatic RCC, before and after sunitinib treatment, and from six xenograft models derived from human RCC. Two xenograft models were responders to sunitinib, the four others were non-responders. CD133/CXCR4 co-expressing cells derived from the two responder xenograft models were used for in vitro studies. Results: In the seven primary RCC, we identified a significantly larger number of CD133/CXCR4-coexpressing cells in peri-necrotic versus peri-vascular areas. Their numbers also significantly increased after treatment, in peri-necrotic areas. We reproduced these clinical and pathological results in all six RCC xenograft models with again a preferential peri-necrotic distribution of CD133-expressing cells. Necrosis occurred at Day7 in the two responder models treated with sunitinib, while it occurred at Day21 in the untreated controls and in the four non-responder models. Strikingly, when we studied the 6 RCC xenograft models at the time necrosis, whether spontaneous or sunitinib-induced, occurred, necrosis area correlated with stem-cell number in all 120 xenografted RCCs. When studied under experimental hypoxia, the number of CD133/CXCR4 co-expressing cells and their tumorigenic potency increased while their sensitivity to sunitinib decreased. Conclusions: In human RCC, sunitinib was able to generate resistance to its own therapeutic effect via induced hypoxia in peri-necrotic areas where cancer stem cells were found in increased numbers. Copyright © 2014, American Association for Cancer Research.
    Clinical Cancer Research 12/2014; 21(4). DOI:10.1158/1078-0432.CCR-14-0666 · 8.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein tyrosine phosphatase 1B (PTP1B) modulates tyrosine kinase receptors, among which is the vascular endothelial growth factor receptor type 2 (VEGFR2), a key component of angiogenesis. Because PTP1B deficiency in mice improves left ventricular (LV) function 2 mo after myocardial infarction (MI), we hypothesized that enhanced angiogenesis early after MI via activated VEGFR2 contributes to this improvement. At 3 d after MI, capillary density was increased at the infarct border of PTP1B(-/-) mice [+7±2% vs. wild-type (WT), P = 0.05]. This was associated with increased extracellular signal-regulated kinase 2 phosphorylation and VEGFR2 activation (i.e., phosphorylated-Src/Src/VEGFR2 and dissociation of endothelial VEGFR2/VE-cadherin), together with higher infiltration of proangiogenic M2 macrophages within unchanged overall infiltration. In vitro, we showed that PTP1B inhibition or silencing using RNA interference increased VEGF-induced migration and proliferation of mouse heart microvascular endothelial cells as well as fibroblast growth factor (FGF)-induced proliferation of rat aortic smooth muscle cells. At 8 d after MI in PTP1B(-/-) mice, increased LV capillary density (+21±3% vs. WT; P<0.05) and an increased number of small diameter arteries (15-50 μm) were likely to participate in increased LV perfusion assessed by magnetic resonance imaging and improved LV compliance, indicating reduced diastolic dysfunction. In conclusion, PTP1B deficiency reduces MI-induced heart failure promptly after ischemia by enhancing angiogenesis, myocardial perfusion, and diastolic function.-Besnier, M., Galaup, A., Nicol, L., Henry, J.-P, Coquerel, D., Gueret, A., Mulder, P., Brakenhielm, E., Thuillez, C., Germain, S., Richard, V., Ouvrard-Pascaud, A. Enhanced angiogenesis and increased cardiac perfusion after myocardial infarction in protein tyrosine phosphatase 1B-deficient mice.
    The FASEB Journal 04/2014; 28(8). DOI:10.1096/fj.13-245753 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dicer is an RNase III enzyme that cleaves double stranded RNA and generates functional interfering RNAs that act as important regulators of gene and protein expression. Dicer plays an essential role during mouse development because the deletion of the dicer gene leads to embryonic death. In addition, dicer-dependent interfering RNAs regulate postnatal angiogenesis. However, the role of dicer is not yet fully elucidated during vascular development. In order to explore the functional roles of the RNA interference in vascular biology, we developed a new constitutive Cre/loxP-mediated inactivation of dicer in tie2 expressing cells. We show that cell-specific inactivation of dicer in Tie2 expressing cells does not perturb early blood vessel development and patterning. Tie2-Cre; dicerfl/fl mutant embryos do not show any blood vascular defects until embryonic day (E)12.5, a time at which hemorrhages and edema appear. Then, midgestational lethality occurs at E14.5 in mutant embryos. The developing lymphatic vessels of dicer-mutant embryos are filled with circulating red blood cells, revealing an impaired separation of blood and lymphatic vasculature. Thus, these results show that RNA interference perturbs neither vasculogenesis and developmental angiogenesis, nor lymphatic specification from venous endothelial cells but actually provides evidence for an epigenetic control of separation of blood and lymphatic vasculature.
    04/2014; 6(1):9. DOI:10.1186/2045-824X-6-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Connexin 40 (Cx40) is expressed by the renin-producing cells (RSCs) of the kidneys and the endothelial cells of blood vessels. Cx40 null mice (Cx40(-/-)) feature a much increased renin synthesis and secretion, which results in chronic hypertension, and also display an altered endothelium-dependent relaxation of the aorta because of reduced eNOS levels and nitric oxide production. To discriminate the effect of Cx40 in renin secretion and vascular signaling, we targeted Cx40 to either the RSCs or the endothelial cells of Cx40 null mice. When compared with Cx40(-/-) controls, the animals expressing Cx40 in RSCs were less hypertensive and featured reduced renin levels, still numerous RSCs outside the wall of the afferent arterioles. In contrast, mice expressing Cx40 in the endothelial cells were as hypertensive as Cx40(-/-) mice, in spite of control levels of Cx37 and eNOS. Our data show that blood pressure is improved by restoration of Cx40 expression in RSCs but not in endothelial cells, stressing the prominent role of renin in the mouse hypertension linked to loss of Cx40.
    Hypertension 03/2014; 63(6). DOI:10.1161/HYPERTENSIONAHA.113.02976 · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sunitinib is an inhibitor of tyrosine-kinase receptors, and no biomarker predictive of sunitinib response is available. The purpose of this preclinical study was to show whether sunitinib molecular targets could be used as biomarkers to assess tumor response to sunitinib in human cancer cell line xenografts of three different tumor types. Using mice xenografted with liver, breast and renal carcinoma cell lines, we sequentially analyzed the effect of 7-day sunitinib treatment on tumor and vascular compartments. In all xenografts, microvessel damage occurred from Day 1. Tumor damage also occurred in liver, breast, but not in renal xenografts. Using specific human and mouse probes for genes encoding sunitinib targets, we showed a significant relation between apoptotic tumor cell numbers and human PDGFRΒ and RET mRNA expression in liver cancer and to human VEGFR2 expression in breast cancer xenografts. In contrast, in renal cancer xenografts, vascular effect evaluated by measuring endothelial cell apoptosis was related to mouse Vegfr1, Vegfr2 and Vegfa-164 expression. This study identifies sunitinib vascular and tumor effects according to different tumor types and shows that sunitinib molecular targets used as biomarkers enable assessment of therapeutic response.
    Cancer Chemotherapy and Pharmacology 09/2013; 72(6). DOI:10.1007/s00280-013-2300-0 · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As adenosine monophosphate (AMP)-activated protein kinase both controls cytoskeleton organization in endothelial cells and exerts anti-inflammatory effects, we here postulated that it could influence vascular permeability and inflammation, thereby counteracting cardiac wall edema during sepsis. Controlled animal study. University research laboratory. C57BL/6J, α1AMPK, and α1AMPK mice. Sepsis was triggered in vivo using a sublethal injection of lipopolysaccharide (O55B5, 10 mg/kg), inducing systolic left ventricular dysfunction. Left ventricular function, edema, vascular permeability, and inflammation were assessed in vivo in both wild-type mice (α1AMPK) and α1AMP-activated protein kinase-deficient mice (α1AMPK). The 5-aminoimidazole-4-carboxamide riboside served to study the impact of AMP-activated protein kinase activation on vascular permeability in vivo. The integrity of endothelial cell monolayers was also examined in vitro after lipopolysaccharide challenge in the presence of aminoimidazole-4-carboxamide riboside and/or after α1AMP-activated protein kinase silencing. α1AMP-activated protein kinase deficiency dramatically impaired tolerance to lipopolysaccharide challenge. Indeed, α1AMPK exhibited heightened cardiac vascular permeability after lipopolysaccharide challenge compared with α1AMPK. Consequently, an increase in left ventricular mass corresponding to exaggerated wall edema occurred in α1AMPK, without any further decrease in systolic function. Mechanistically, the lipopolysaccharide-induced α1AMPK cardiac phenotype could not be attributed to major changes in the systemic inflammatory response but was due to an increased disruption of interendothelial tight junctions. Accordingly, AMP-activated protein kinase activation by aminoimidazole-4-carboxamide riboside counteracted lipopolysaccharide-induced hyperpermeability in wild-type mice in vivo as well as in endothelial cells in vitro. This effect was associated with a potent protection of zonula occludens-1 linear border pattern in endothelial cells. Our results demonstrate for the first time the involvement of a signaling pathway in the control of left ventricular wall edema during sepsis. AMP-activated protein kinase exerts a protective action through the preservation of interendothelial tight junctions. Interestingly, exaggerated left ventricular wall edema was not coupled with aggravated systolic dysfunction. However, it could contribute to diastolic dysfunction in patients with sepsis.
    Critical care medicine 08/2013; 41(12). DOI:10.1097/CCM.0b013e31829866dc · 6.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: Given the impact of vascular injuries and oedema on brain damage caused during stroke, vascular protection represents a major medical need. We hypothesized that angiopoietin-like 4 (ANGPTL4), a regulator of endothelial barrier integrity, might exert a protective effect during ischaemic stroke. METHODS AND RESULTS: Using a murine transient ischaemic stroke model, treatment with recombinant ANGPTL4 led to significantly decreased infarct size and improved behaviour. Quantitative characteristics of the vascular network (density and branchpoints) were preserved in ANGPTL4-treated mice. Integrity of tight and adherens junctions was also quantified and ANGPTL4-treated mice displayed increased VE-cadherin and claudin-5-positive areas. Brain oedema was thus significantly decreased in ANGPTL4-treated mice. In accordance, vascular damage and infarct severity were increased in angptl4-deficient mice thus providing genetic evidence that ANGPTL4 preserves brain tissue from ischaemia-induced alterations. Altogether, these data show that ANGPTL4 protects not only the global vascular network, but also interendothelial junctions and controls both deleterious inflammatory response and oedema.Mechanistically, ANGPTL4 counteracted VEGF signalling and thereby diminished Src-signalling downstream from VEGFR2. This led to decreased VEGFR2-VE-cadherin complex disruption, increased stability of junctions and thus increased endothelial cell barrier integrity of the cerebral microcirculation. In addition, ANGPTL4 prevented neuronal loss in the ischaemic area. CONCLUSION: These results, therefore, show ANGPTL4 counteracts the loss of vascular integrity in ischaemic stroke, by restricting Src kinase signalling downstream from VEGFR2. ANGPTL4 treatment thus reduces oedema, infarct size, neuronal loss, and improves mice behaviour. These results suggest that ANGPTL4 constitutes a relevant target for vasculoprotection and cerebral protection during stroke.
    European Heart Journal 05/2013; DOI:10.1093/eurheartj/eht153 · 14.72 Impact Factor
  • Vascular Pharmacology 05/2012; 56(5-6):333. DOI:10.1016/j.vph.2011.08.081 · 4.62 Impact Factor
  • Ariane Galaup, Stéphane Germain
    Medecine sciences: M/S 02/2012; 28(2):133-5. DOI:10.1051/medsci/2012282005 · 0.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased permeability, predominantly controlled by endothelial junction stability, is an early event in the deterioration of vascular integrity in ischemic disorders. Hemorrhage, edema, and inflammation are the main features of reperfusion injuries, as observed in acute myocardial infarction (AMI). Thus, preservation of vascular integrity is fundamental in ischemic heart disease. Angiopoietins are pivotal modulators of cell-cell junctions and vascular integrity. We hypothesized that hypoxic induction of angiopoietin-like protein 4 (ANGPTL4) might modulate vascular damage, infarct size, and no-reflow during AMI. We showed that vascular permeability, hemorrhage, edema, inflammation, and infarct severity were increased in angptl4-deficient mice. We determined that decrease in vascular endothelial growth factor receptor 2 (VEGFR2) and VE-cadherin expression and increase in Src kinase phosphorylation downstream of VEGFR2 were accentuated after ischemia-reperfusion in the coronary microcirculation of angptl4-deficient mice. Both events led to altered VEGFR2/VE-cadherin complexes and to disrupted adherens junctions in the endothelial cells of angptl4-deficient mice that correlated with increased no-reflow. In vivo injection of recombinant human ANGPTL4 protected VEGF-driven dissociation of the VEGFR2/VE-cadherin complex, reduced myocardial infarct size, and the extent of no-reflow in mice and rabbits. These data showed that ANGPTL4 might constitute a relevant target for therapeutic vasculoprotection aimed at counteracting the effects of VEGF, thus being crucial for preventing no-reflow and conferring secondary cardioprotection during AMI.
    Circulation 11/2011; 125(1):140-9. DOI:10.1161/CIRCULATIONAHA.111.049072 · 14.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapidly progressive glomerulonephritis (RPGN) is a life-threatening clinical syndrome and a morphological manifestation of severe glomerular injury that is marked by a proliferative histological pattern ('crescents') with accumulation of T cells and macrophages and proliferation of intrinsic glomerular cells. We show de novo induction of heparin-binding epidermal growth factor–like growth factor (HB-EGF) in intrinsic glomerular epithelial cells (podocytes) from both mice and humans with RPGN. HB-EGF induction increases phosphorylation of the epidermal growth factor receptor (EGFR, also known as ErbB1) in mice with RPGN. In HB-EGF–deficient mice, EGFR activation in glomeruli is absent and the course of RPGN is improved. Autocrine HB-EGF induces a phenotypic switch in podocytes in vitro. Conditional deletion of the Egfr gene from podocytes of mice alleviates the severity of RPGN. Likewise, pharmacological blockade of EGFR also improves the course of RPGN, even when started 4 d after the induction of experimental RPGN. This suggests that targeting the HB-EGF–EGFR pathway could also be beneficial in treatment of human RPGN.
    Nature medicine 11/2011; 17(11):1521. DOI:10.1038/nm1111-1521b · 28.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions.
    Journal of Biological Chemistry 10/2011; 286(42):36841-36851. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapidly progressive glomerulonephritis (RPGN) is a life-threatening clinical syndrome and a morphological manifestation of severe glomerular injury that is marked by a proliferative histological pattern ('crescents') with accumulation of T cells and macrophages and proliferation of intrinsic glomerular cells. We show de novo induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in intrinsic glomerular epithelial cells (podocytes) from both mice and humans with RPGN. HB-EGF induction increases phosphorylation of the epidermal growth factor receptor (EGFR, also known as ErbB1) in mice with RPGN. In HB-EGF-deficient mice, EGFR activation in glomeruli is absent and the course of RPGN is improved. Autocrine HB-EGF induces a phenotypic switch in podocytes in vitro. Conditional deletion of the Egfr gene from podocytes of mice alleviates the severity of RPGN. Likewise, pharmacological blockade of EGFR also improves the course of RPGN, even when started 4 d after the induction of experimental RPGN. This suggests that targeting the HB-EGF-EGFR pathway could also be beneficial in treatment of human RPGN.
    Nature medicine 09/2011; 17(10):1242-50. DOI:10.1038/nm.2491 · 28.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sprouting angiogenesis is associated with extensive extracellular matrix (ECM) remodeling. The molecular mechanisms involved in building the vascular microenvironment and its impact on capillary formation remain elusive. We therefore performed a proteomic analysis of ECM from endothelial cells maintained in hypoxia, a major stimulator of angiogenesis. Here, we report the characterization of lysyl oxidase-like protein-2 (LOXL2) as a hypoxia-target expressed in neovessels and accumulated in the endothelial ECM. LOXL2 belongs to the lysyl oxidase family of secreted enzymes involved in ECM crosslinking. Knockdown experiments in Tg(fli1:egfp)y1 zebrafish embryos resulted in lack of intersegmental vessel circulation and demonstrated LOXL2 involvement in proper capillary formation. Further investigation in vitro by loss and gain of function experiments confirmed that LOXL2 was required for tubulogenesis in 3D fibrin gels and demonstrated that this enzyme was required for collagen IV assembly in the ECM. In addition, LOXL2 depletion down-regulated cell migration and proliferation. These data suggest a major role for LOXL2 in the organization of endothelial basal lamina and in the downstream mechanotransductive signaling. Altogether, our study provides the first evidence for the role of LOXL2 in regulating angiogenesis through collagen IV scaffolding.
    Blood 08/2011; 118(14):3979-89. DOI:10.1182/blood-2010-10-313296 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions.
    Journal of Biological Chemistry 08/2011; 286(42):36841-51. DOI:10.1074/jbc.M111.220061 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to assess the role of cAMP target sequences enhancer cAMP response element (enhCRE) and cAMP and overlapping negative response element (CNRE) in the control of human renin gene (REN) in vivo. enhCRE and CNRE were silenced by mutations in a 12.2-kb human renin promoter fused to LacZ reporter gene. This construct was used to generate transgenic mice (RENMut-LacZ). The expression of the transgene was correctly targeted to the juxtaglomerular portions of renal afferent arterioles which express endogenous mouse renin. Therefore, enhCRE and CNRE do not seem to be relevant for the control of the cell-specific expression of the human renin gene. The β-adrenoreceptor agonist isoproterenol (10 mg/kg/day, for 2 days) stimulated the endogenous renin, but not the LacZ mRNA expression. Treatment of RENMut-LacZ mice with the angiotensin converting enzyme inhibitor (enalapril 10 mg/kg/day, for 7 days) or their crossing to angiotensin receptor type 1a knockout mice led to increased renin and LacZ mRNA levels. Renin expression was upregulated by low-salt diet (0.03% NaCl, for 10 days) and downregulated by high-salt diet (4% NaCl, for 10 days). In contrast, low-salt diet did not influence, while high-salt diet inhibited the expression of LacZ. In summary, enhCRE and CNRE appear to be necessary for the transactivation of the human renin gene through β-adrenoreceptors and by low-salt diet. Our data also suggest that different intracellular mechanisms mediate the effect of low- and high-salt intake on renin expression in vivo.
    Pflügers Archiv - European Journal of Physiology 03/2011; 461(5):567-77. DOI:10.1007/s00424-011-0956-z · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the role of Wnt antagonist Dickkopf (DKK) 1 in human endothelial colony-forming cells (ECFCs) in view of the emerging importance of Wnt pathways in vascular biology. Endothelial progenitor cells have been proposed to be crucial in tumor neovascularization. Recombinant DKK1 has been tested in ECFC angiogenic properties in vitro. DKK1 enhanced ECFC proliferation and the capacity of ECFCs to form pseudotubes in Matrigel. These effects have been attributed to enhancement of vascular endothelial growth factor receptor 2, SDF-1, and CXCR4. DKK1 gene silencing has been realized on ECFCs and mesenchymal stem cells, and we found that DKK1 silencing in the 2 cell types decreased their angiogenic potential. We then examined the possible role of DKK1 in tumor neovasculogenesis and found that blood vessels of breast cancer tissues expressed DKK1 far more strongly in human breast tumors than in normal breast tissues. By studying 62 human breast tumors, we found a significant positive correlation between DKK1 expression and von Willebrand factor. In vivo, DKK1 strongly enhanced the vascularization of Matrigel plugs and increased tumor size in a xenograft model of human breast carcinoma in nude mice. DKK1 enhances angiogenic properties of ECFCs in vitro and is required for ECFC and mesenchymal stem cell angiogenic phenotypes in vivo. DKK1 also increases tumoral angiogenesis. Thus, we demonstrated a major role of DKK1 in angiogenic processes.
    Arteriosclerosis Thrombosis and Vascular Biology 12/2010; 30(12):2544-52. DOI:10.1161/ATVBAHA.110.213751 · 5.53 Impact Factor
  • Stéphane Germain, Anne Eichmann
    [Show abstract] [Hide abstract]
    ABSTRACT: Ephrin-B2 is required for the formation of blood and lymphatic vessels, but the mechanism has been enigmatic. Two independent studies show that ephrin-B2 controls the internalization and signaling of two types of vascular endothelial growth factor (VEGF) receptors-thereby regulating VEGF-induced angiogenesis in normal and pathological conditions.
    Nature medicine 07/2010; 16(7):752-4. DOI:10.1038/nm0710-752 · 28.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that angiopoietin-like 4 (angptl4) mRNA, a hypoxia-inducible gene, is highly expressed in clear cell renal-cell carcinoma (ccRCC), the most common subtype of RCC for which no specific marker is available. We here investigated whether angptl4 mRNA 1) could be a useful diagnostic and/or prognostic marker of ccRCC in a large and comprehensive retrospective series, 2) induction is dependent on the VHL status of tumors. Using in situ hybridization, we report that angptl4 mRNA is expressed in 100% of both sporadic (n = 102) and inherited (n = 6) primary ccRCCs, without any statistical association with nuclear grade (p = 0.39), tumor size (p = 0.09), stage grouping (p = 0.17), progression-free survival (p = 0.94), and overall survival (p = 0.80). Angptl4 mRNA was also expressed in 26 (87%) of 30 secondary ccRCCs but neither in any other secondary RCCs (n = 7). In contrast, angptl4 mRNA was neither expressed in 94% non-ccRCC renal tumors (papillary RCCs (n = 46), chromophobe RCCs (n = 28), and oncocytomas (n = 9)), nor in non-renal clear cell carcinomas (n = 39). Angptl4 expression was also examined in tumors associated (n = 23) or not associated (n = 66) with VHL disease. 40 (98%) hemangioblastomas expressed angptl4 whereas all pheochromocytomas (n = 23) and pancreatic tumors (n = 25) were angptl4-negative, whatever their VHL status. Angptl4 mRNA expression was highly associated with ccRCC (p = 1.5 10(-49), Chi square test) allowing to define its expression as a diagnosis marker for primary ccRCC. Moreover, angptl4 mRNA allows to discriminate the renal origin of metastases of clear-cell carcinomas arising from various organs. Finally, inactivation of VHL gene is neither necessary nor sufficient for angptl4 mRNA induction.
    PLoS ONE 04/2010; 5(4):e10421. DOI:10.1371/journal.pone.0010421 · 3.53 Impact Factor

Publication Stats

1k Citations
440.35 Total Impact Points

Institutions

  • 1994–2014
    • Collège de France
      • Center for Interdisciplinary Research in Biology
      Lutetia Parisorum, Île-de-France, France
  • 2011–2012
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2007–2010
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
  • 2006–2009
    • Hôpital Européen Georges-Pompidou (Hôpitaux Universitaires Paris-Ouest)
      Lutetia Parisorum, Île-de-France, France
    • Unité Inserm U1077
      Caen, Lower Normandy, France