Hubert Thole

Solvay, Bruxelles, Brussels Capital Region, Belgium

Are you Hubert Thole?

Claim your profile

Publications (20)75.61 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: An expanding body of evidence indicates the possible role of estrane derivatives as useful anticancer agents. The aim of this study was to describe the cytotoxic effects of 63 newly synthetized estrone-16-oxime ethers on human cancer cell lines (cervix carcinoma HeLa, breast carcinoma MCF7 and skin epidermoid carcinoma A431), studied by means of the MTT assay. Four of the most promising compounds were selected for participation in additional experiments in order to characterize the mechanism of action, including cell cycle analysis, morphological study and the 5-bromo-2'-deoxyuridine incorporation assay. The cancer selectivity was tested on a noncancerous fibroblast cell line (MRC-5). Since apoptosis and cell cycle disturbance were observed, caspase-3 activities were further assayed for the two most effective agents. These estrone-16-oxime analogs activated caspase-3 and changed the mRNA level expression of endogenous factors regulating the G1 - S phase transition (retinoblastoma protein, CDK4 and p16). The repression of retinoblastoma protein was reinforced at a protein level too. These experimental data lead to the conclusion that estrone-16-oxime ethers may be regarded as potential starting structures for the design of novel anticancer agents.
    Steroids 01/2013; 78:69-78. · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the search for novel biomarkers of endometriosis, we selected 152 genes from the GeneLogic database based on results of genome-wide expression analysis of ovarian endometriosis, plus 20 genes related to estrogen metabolism and action. We then performed low-density array analysis of these 172 genes on 11 ovarian endometriosis samples and 9 control endometrium samples. Principal component analysis of the gene expression levels showed clear separation between the endometriosis and control groups. We identified 78 genes as differentially expressed. Based on Ingenuity pathway analysis, these differentially expressed genes were arranged into groups according to biological function. These analyses revealed that 32 differentially expressed genes are estrogen related, 23 of which have not been reported previously in connection with endometriosis. Functional annotation showed that 25 and 22 genes are associated with the biological terms "secreted" and "extracellular region", respectively. Differential expression of 4 out of 5 genes related to estrogen metabolism and action (ESR1, ESR2, PGR and BGN) was also confirmed by immunohistochemistry. Our study thus reveals differential expression of several genes that have not previously been associated with endometriosis and that encode potential novel biomarkers and drug targets.
    The Journal of steroid biochemistry and molecular biology 03/2011; 125(3-5):231-42. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD 1) for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17beta-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17beta-HSD types 1, 2, 4, 5 and 7 but also against 17beta-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17beta-HSDs analyzed were observed. Especially, the rodent 17beta-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17beta-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution.
    PLoS ONE 01/2010; 5(6):e10969. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) has become an important drug target for breast cancer because it catalyzes the interconversion of estrone to the biologically more potent estradiol which also plays a crucial role in the etiology of breast cancer. Patients with an increased expression of the 17beta-HSD1 gene have a significantly worse outcome than patients without. Inhibitors for 17beta-HSD1 are therefore included in therapy development. Here we have studied binding of 17beta-HSD1 to substrates and a number of inhibitors using NMR spectroscopy. Ligand observed NMR spectra show a strong pH dependence for the phytoestrogens luteolin and apigenin but not for the natural ligands estradiol and estrone. Moreover, NMR competition experiments show that the phytoestrogens do not replace the estrogens despite their similar inhibition levels in the in vitro assay. These results strongly support an additional 17beta-HSD1 binding site for phytoestrogens which is neither the substrate nor the co-factor binding site. Docking experiments suggest the dimer interface as a possible location. An additional binding site for the phytoestrogens may open new opportunities for the design of inhibitors, not only for 17beta-HSD1, but also for other family members of the short chain dehydrogenases.
    The Journal of steroid biochemistry and molecular biology 08/2009; 117(4-5):93-8. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) catalyzes the reaction between the low active 17-ketosteroids and the highly active 17beta-hydroxysteroids. In the present study, we have generated transgenic (TG) mice expressing human (h) HSD17B1 under mouse mammary tumor virus (MMTV) promoter (MMTV-hHSD17B1TG mice). The MMTV-hHSD17B1TG mice were used to characterize HSD17B1 enzyme activity and properties of HSD17B1 inhibitor in vivo. Expression of the transgene was detected by enzyme activity and RT-PCR analysis. Increased HSD17B1 activity in the TG mice was detected in vivo by applying estrone as a substrate via an intravenous injection. The developed enzyme activity measurement was then applied to analyze the efficacy of HSD17B1 inhibitor in vivo. The results indicated that the MMTV-hHSD17B1TG mouse model is a valuable novel tool to test human HSD17B1 inhibition by various compounds in vivo. With the potent hHSD17B1 inhibitor compound tested, at highest an 85% and 33% inhibition of the enzyme activity in males and in females, respectively, was observed.
    Molecular and Cellular Endocrinology 12/2008; 301(1-2):158-62. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lowering local estradiol concentration by inhibition of the estradiol-synthesizing enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) has been proposed as a promising new therapeutic option to treat estrogen-dependent diseases like endometriosis and breast cancer. Based on a molecular modelling approach we designed and synthesized novel C15-substituted estrone derivatives. Subsequent biological evaluation revealed that potent inhibitors of human 17beta-HSD1 can be identified in this compound class. The best, compound 21, inhibited recombinant human 17beta-HSD1 with an IC50 of 10nM and had no effect on the activity of recombinant human 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD2), the enzyme catalyzing estradiol inactivation. These properties were retained in a cell-based enzyme activity assays. In spite of the estrogen backbone compound 21 did not show estrogen receptor mediated effects in vitro or in vivo. In conclusion, estrone C15 derivative compound 21 can be regarded as a promising lead compound for further development as a 17beta-HSD1 inhibitor.
    Molecular and Cellular Endocrinology 11/2008; 301(1-2):216-24. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyzes the transformation of estrone (E1) into the most potent estrogen, estradiol (E2), which stimulates cell proliferation and decreases apoptosis. 17beta-HSD1 is often strongly overexpressed in estrogen-dependent diseases (like breast cancer and endometriosis). Thus, this over expressed enzyme is a promising novel target for the development of selective inhibitors, which could be used as drugs for the treatment of these diseases. Using a structure- and ligand-based approach, a pharmacophore model was proposed and a new class of non-steroidal inhibitors of 17beta-HSD1 was designed. Enzyme inhibition was evaluated in vitro using the human enzyme. After identification of the 6-(3'-hydroxyphenyl)-2-naphthol scaffold 1, the potency of this class of inhibitors was further improved by substitution of the 1-position of the naphthalene ring by a phenyl group (compound 18, IC(50)=20nM). Compound 18 also showed a good selectivity toward 17beta-HSD2 and the estrogen receptors alpha and beta.
    Molecular and Cellular Endocrinology 11/2008; 301(1-2):205-11. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endometriosis is a very common disease in pre-menopausal women, where defective metabolism of steroid hormones plays an important role in its development and promotion. In the present study, we have examined the expression of 11 estrogen and progesterone metabolizing enzymes and their corresponding receptors in samples of ovarian endometriomas and control endometrium. Expression analysis revealed significant up-regulation of enzymes involved in estradiol formation (aromatase, sulfatase and all reductive 17beta-hydroxysteroid dehydrogenases) and in progesterone inactivation (AKR1C1 and AKR1C3). Among the estrogen and progesterone receptors, ERalpha was down-regulated, ERbeta was up-regulated, and there was no significant difference in expression of progesterone receptors A and B (PRAB). Our data indicate that several enzymes of estrogen and progesterone metabolism are aberrantly expressed in endometriosis, which can lead to increased local levels of mitogenic estradiol and decreased levels of protective progesterone. Changes in estrogen receptor expression suggest that estradiol may also act via non-estrogen receptor-mediated pathways, while expression of progesterone receptors still needs further investigation.
    Molecular and Cellular Endocrinology 09/2008; 301(1-2):59-64. · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 17beta-Estradiol (E2) is implicated in the genesis and the development of estrogen-dependent diseases. Its concentration is mainly regulated by 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which catalyzes the reduction of the weak estrogen estrone (E1) to the highly potent E2. This enzyme is thus an important target for the treatment of hormone-dependent diseases. Thirty-seven novel substituted 6-phenyl-2-naphthols were synthesized and evaluated for 17beta-HSD1 inhibition, selectivity toward 17beta-HSD2 and the estrogen receptors (ERs) alpha and beta, and pharmacokinetic properties. SAR studies revealed that the compounds most likely bind according to binding mode B to the active site, i.e., the 6-phenyl moiety mimicking the steroidal A-ring. While substitution at the phenyl ring decreased activity, introduction of substituents at the naphthol moiety led to highly active compounds, especially in position 1. The 1-phenyl compound 32 showed a very high inhibitory activity for 17beta-HSD1 (IC50 = 20 nM) and good selectivity (17beta-HSD2 and ERs) and pharmacokinetic properties after peroral application.
    Journal of Medicinal Chemistry 08/2008; 51(15):4685-98. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyzes the reduction of the weak estrogen estrone (E1) to the highly potent estradiol (E2). This reaction takes place in the target cell where the estrogenic effect is exerted via the estrogen receptor (ER). Estrogens, especially E2, are known to stimulate the proliferation of hormone-dependent diseases. 17beta-HSD1 is overexpressed in many breast tumors. Thus, it is an attractive target for the treatment of these diseases. Ligand- and structure-based drug design led to the discovery of novel, selective, and potent inhibitors of 17beta-HSD1. Phenyl-substituted bicyclic moieties were synthesized as mimics of the steroidal substrate. Computational methods were used to obtain insight into their interactions with the protein. Compound 5 turned out to be a highly potent inhibitor of 17beta-HSD1 showing good selectivity (17beta-HSD2, ERalpha and beta), medium cell permeation, reasonable metabolic stability (rat hepatic microsomes), and little inhibition of hepatic CYP enzymes.
    Journal of Medicinal Chemistry 05/2008; 51(7):2158-69. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estradiol (E(2)) is an important promoter of the growth of both eutopic and ectopic endometrium. The findings with regard to the expression and activity of steroidogenic enzymes in endometrium of controls, in endometrium of endometriosis patients and in endometriotic lesions are not consistent. In this study, we have looked at the mRNA expression and protein levels of a range of steroidogenic enzymes [aromatase, 17beta-hydroxysteroid dehydrogenases (17beta-HSD) type 1, 2 and 4, estrogen sulfotransferase (EST) and steroid sulfatase (STS)] in eutopic and ectopic endometrium of patients (n = 14) with deep-infiltrative endometriosis as well as in disease-free endometrium (n = 48) using real-time PCR and immunocytochemistry. In addition, we evaluated their menstrual cycle-related expression patterns, and investigated their steroid responsiveness in explant cultures. Aromatase and 17beta-HSD type 1 mRNA levels were extremely low in normal human endometrium, while mRNAs for types 2 and 4 17beta-HSD, EST and STS were readily detectable. Only 17beta-HSD type 2 and EST genes showed sensitivity to progesterone in normal endometrium. Types 1 and 2 17beta-HSD and STS protein was detected in normal endometrium using new polyclonal antibodies. In endometriosis lesions, the balance is tilted in favor of enzymes producing E(2). This is due to a suppression of types 2 and 4 17beta-HSD, and an increased expression of aromatase and type 1 17beta-HSD in ectopic endometrium.
    Human Reproduction 01/2008; 22(12):3148-58. · 4.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the regulation of estrogen-converting enzymes in human ectopic endometrial tissue. Animal study. Academic medical center. Sixty female nude mice with implanted human endometrial tissue. Twenty-two premenopausal women undergoing endometrial biopsy or hysterectomy. Human endometrial tissue was implanted into the peritoneal cavity of nude mice, and the effect of therapeutic drugs on transcription of steroid receptors and estrogen-converting enzymes was analyzed. Transcript levels of steroid hormone receptors, 17beta-hydroxysteroid dehydrogenase type 1 and 2, aromatase, and steroid sulfatase as well as proliferation rate were analyzed in the human ectopic endometrial tissue. Steroid receptors and estrogen-converting enzymes were expressed in the ectopic human endometrial fragments. Application of medroxyprogesterone acetate, dydrogesterone, danazol, and the aromatase inhibitor finrozole significantly inhibited aromatase transcription. In addition, danazol caused a significant decrease in transcription of steroid sulfatase, and finrozole, of 17beta-hydroxysteroid dehydrogenase type 1 in parallel to a decrease in proliferation rate in the ectopic human endometrial tissue. Pharmacological regulation of transcription of estrogen-converting enzymes in human endometrium cultured in nude mice may help to develop new therapeutic concepts based on local regulation of estrogen metabolism in endometriosis.
    Fertility and sterility 11/2007; 88(4 Suppl):1029-38. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disorders of estrogen-responsive tissues are frequently associated with aberrations in steroid metabolism due to altered expression of synthesizing and metabolizing enzymes. For instance, overexposure to unopposed 17beta-estradiol has been associated with the pathogenesis of endometrial proliferative disorders, such as endometriosis. Investigations into the metabolic conversion in tissues and cells have been rather limited. This is mostly due to fact that such studies have to make use of radioactive steroid hormones and expensive equipment to obtain sufficient sensitivity. We adapted a sensitive non-radioactive HPLC method to study estrogen metabolism in more detail. This HPLC method is based on the solid phase extraction of estrogens and the derivatization of the steroids with 2-(4-carboxy-phenyl)-5,6-dimethylbenzimidazole. The technique is sensitive, robust and is useful for the detection of aromatase, 17beta-HSD types 1 and 2 and sulfatase activities in lysates of placenta and endometrium.
    The Journal of Steroid Biochemistry and Molecular Biology 06/2007; 104(3-5):246-51. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endometriosis is defined as the presence of endometrial glands and stroma within extrauterine sites, and it is well known that endometriosis is an estrogen-dependent disease. The defective formation and metabolism of steroid hormones is responsible for the promotion and development of endometriosis. In the present study we examined the mRNA levels of six enzymes that are involved in the metabolism of estrogen and progesterone--aromatase, 17beta-hydroxysteroid dehydrogenase (17beta-HSD) types 1, 2 and 7, sulfatase and sulfotransferase--and of the steroid receptors--estrogen receptors alpha and beta (ERalpha, ERbeta) and progesterone receptors A and B (PRAB)--implicated in human ovarian endometriosis. We analyzed 16 samples of ovarian endometriosis and 9 of normal endometrium. The real-time polymerase chain reaction analyses revealed that six of the nine genes investigated are differentially regulated. Aromatase, 17beta-HSD types 1 and 7, sulfatase and ERbeta were statistically significantly upregulated, while ERalpha was significantly downregulated, in the endometriosis group compared with the control group. There were no significant differences in 17beta-HSD type 2, sulfotransferase and PRAB gene expression. Our results indicate that, in addition to the previously reported upregulation of aromatase, upregulation of 17beta-HSD types 1 and 7 and sulfatase can also increase the local estradiol concentration. This could thus be responsible for the estrogen-dependent growth of endometriotic tissue. Surprisingly ERalpha was downregulated.
    Gynecological Endocrinology 03/2007; 23(2):105-11. · 1.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydroxysteroid (17-beta) dehydrogenase 1 (HSD17B1) catalyzes the conversion between estrone (E1) and estradiol (E2). The reaction is reversible in vitro, but the data in cultured cells suggest that E2 production is the predominant reaction in physiological conditions. However, the hypothesis has not been verified in vivo. In the present study, estrogen-dependent MCF-7 human breast cancer cells were stably transfected with an expression plasmid for human HSD17B1. The enzyme efficiently converted E1 to E2 and enhanced the estrogen-dependent growth of cultured MCF-7 cells in the presence of hormonally less active E1. The HSD17B1-expressing cells also formed estrogen-dependent tumors in immunodeficient nude mice. After treating the mice with an appropriate dose of the substrate (E1, 0.1 micromol/kg x d), a marked difference in tumor growth was observed between nontransfected and HSD17B1-transfected MCF-7 cells, mean tumor weights at the end of E1 treatment being 23.2 and 130.4 mg, respectively. Furthermore, estrogen-dependent growth of the HSD17B1-expressing xenografts in the presence of E1 was markedly inhibited by administering 5 micromol/kg x d of a specific HSD17B1 inhibitor. After a 4-wk treatment, the tumor size was reduced by 59.8% as compared with the nontreated tumors, whereas the uterine growth of the mice was not affected by the HSD17B1 inhibitor used. This was in line with the induction of apoptosis of the tumors. The results evidently show that estrogenic response for E1 is enhanced by the local action of HSD17B1 in vivo, and thus, the enzyme is a potential target for pharmacological inhibition of estrogen action.
    Endocrinology 12/2006; 147(11):5333-9. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endometriosis is an estrogen-dependent gynaecological disease associated with pain and infertility, which occurs in humans and menstruating primates. In this study, the marmoset monkey (Callithrix jacchus), which is a non-menstruating primate with high circulating estrogen levels, was used to test firstly the hypothesis that endometriosis is based on uterine shedding into the peritoneal cavity, secondly to study the pathogenesis of endometriosis due to its estrogenic situation. Female marmoset monkeys (n = 29) were exposed to two different experimental procedures (non-invasive versus invasive) for intrapelvic placement of endometrial cells by uterine flushing over an experimental period of 2-3 years. First endometriotic foci were detected by colour Doppler ultrasound at the bladder, the uterus and the ovaries at the earliest after 4 months of either treatments. However, invasive induction was more effective in terms of the time-course of induction and the number of resulting endometriotic foci. The analysis of the endometriotic foci by histology, immunohistochemistry and molecular techniques allowed a division into two distinct groups: an initial developing stage occurred, which under further treatment led to the second stage of established endometriosis. Both procedures showed a treatment-dependent increase of vascular supply to the endometriotic foci over the experimental period. The invasive method induced the final established stage of endometriosis more rapidly, with the expression of steroid receptors, aromatase, 17betaHSD1 and CD10. Altogether, 72% of the treated marmoset monkeys developed endometriosis under our endometrial reflux protocols. Our data support the theory that endometriosis can be induced artificially in a non-menstruating primate (C. jacchus) by endometrial shedding into the peritoneal cavity. Because the marmoset is a primate with very high peripheral estrogen levels, this offers an interesting model for studying the pathogenesis of this estrogen-dependent disease, as well as for therapeutic impacts on enzymes involved in steroid metabolism.
    Molecular Human Reproduction 06/2006; 12(5):291-9. · 4.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The estradiol-synthesizing enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17betaHSD1) is mainly responsible for the conversion of estrone (E1) to the potent estrogen estradiol (E2). It is a key player to control tissue levels of E2 and is therefore an attractive target in estradiol-dependent diseases like breast cancer or endometriosis. We selected a unique non-steroidal pyrimidinone core to start a lead optimization program. We optimized this core by modulation of R1-R6. Its binding mode at the substrate-binding site of 17betaHSD1 is complex and difficult to predict. Nevertheless, some basic structure-activity relationships could be identified. In vitro, the most active pyrimidinone derivative showed effective inhibition of recombinant human 17betaHSD1 at nanomolar concentrations. In intact cells overexpressing the human enzyme, IC50 values in the lower micromolar range were determined. Furthermore, the pyrimidinone proved its use in vivo by significantly reducing 17betaHSD1-dependent tumor growth in a new nude mouse model.
    Molecular and Cellular Endocrinology 04/2006; 248(1-2):192-8. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 17Beta-hydroxysteroid dehydrogenase (17HSD1) is an enzyme activating estrone (E1) to estradiol (E2). In the present study, a mechanistic animal model was set up for evaluating putative inhibitors for the human enzyme in vivo. Estrogen-dependent MCF-7 human breast carcinoma cells were stably transfected with a plasmid expressing human 17HSD1. These cells formed estrogen-dependent tumors in immunodeficient mice. In the optimized model, tumor sizes were decreased in both ovariectomized and intact vehicle-treated mice, whereas they were maintained or slightly increased in mice supplemented 2 weeks with an appropriate dose of the 17HSD1-substrate E1. Tumor sizes in mice treated with 0.1 micromol/kg/d of E1 were reduced by administering 5 micromol/kg/d of different 17HSD1-inhibitors and a 86% reduction in size was detected with the most potent inhibitor. A dose-response relationship in the inhibitory effect of this compound further confirmed the validity of the model for testing the drug candidates in vivo.
    Molecular and Cellular Endocrinology 04/2006; 248(1-2):109-13. · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New heteroestrone derivatives with a seven-membered ring D were efficiently synthesized from unsaturated carboxylic estrone-secoaldehyde 1 via multistep reactions.
    Synlett 01/2005; 2005:2814-2816. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An efficient Pd(0)-catalyzed protocol for the rapid and efficient preparation of 3-aminoestrone via 3-benzylaminoestrone from estrone–triflate is described. The three step synthesis proceeds with an overall yield of about 55% using X-Phos as optimal ligand for the Pd(0)-catalyzed Buchwald–Hartwig amination.
    Tetrahedron Letters - TETRAHEDRON LETT. 01/2005; 46(42):7111-7115.