Ronald Szymusiak

VA Greater Los Angeles Healthcare System, Los Angeles, California, United States

Are you Ronald Szymusiak?

Claim your profile

Publications (98)396.39 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The preoptic hypothalamus is implicated in sleep regulation. Neurons in the median preoptic nucleus (MnPO) and the ventrolateral preoptic area (VLPO) have been identified as potential sleep regulatory elements. However, the extent to which MnPO and VLPO neurons are activated in response to changing homeostatic sleep regulatory demands is unresolved. To address this question, we continuously recorded the extracellular activity of neurons in the rat MnPO, VLPO and dorsal lateral preoptic area (LPO) during baseline sleep and waking, during 2 h of sleep deprivation (SD) and during 2 h of recovery sleep (RS). Sleep-active neurons in the MnPO (n=11) and VLPO (n=13) were activated in response to SD, such that waking discharge rates increased by 95.8%±29.5% and 59.4±17.3%, respectively, above waking baseline values. During RS, nonREM sleep discharge rates of MnPO neurons initially increased to 65.6±15.2% above baseline values, then declined to baseline levels in association with decreases in EEG delta power. Increase in nonREM sleep discharge rates in VLPO neurons during RS averaged 40.5±7.6% above baseline. REM-active neurons (n=16) in the LPO also exhibited increased waking discharge during SD and an increase in nonREM discharge during RS. Infusion of A2A adenosine receptor antagonist into the VLPO, attenuated SD-induced increases in neuronal discharge. Populations of LPO wake/REM-active and state-indifferent neurons and dorsal LPO sleep-active neurons were unresponsive to SD. These findings support the hypothesis that sleep-active neurons in the MnPO and VLPO, and REM-active neurons in the LPO are components of neuronal circuits that mediate homeostatic responses to sustained wakefulness.
    Journal of Neurophysiology 10/2013; · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) has been implicated in the regulation of sleep. The perifornical-lateral hypothalamic area (PF-LHA) is a key wake-promoting region and contains neurons that are active during behavioral or cortical activation. Recently, we found higher levels of NO metabolites (NOx), an indirect measure of NO levels, in the PF-LHA during prolonged-waking (SD). However, NO is highly reactive and diffuses rapidly and the NOx assay is not sensitive enough to detect rapid-changes in NO levels across spontaneous sleep-waking states. We used a novel Nafion®-modified Platinum (NF-PT) electrode for real-time detection of NO levels in the PF-LHA across sleep-wake cycles, dark-light phases, and during SD. Sprague-Dawley male rats were surgically prepared for chronic sleep-wake recording and implantation of NF-PT electrode into the PF-LHA. EEG, EMG, and electrochemical current generated by NF-PT electrode were continuously acquired for 5-7 days including one day with 3h of SD. In the PF-LHA, NO levels exhibited a waking>REM>nonREM sleep pattern (0.56±0.03μM >0.47±0.02μM >0.42±0.02μM; p<0.01). NO levels were also higher during the dark- as compared to the light-phase (0.53±0.03μM vs. 0.44±0.02μM; p<0.01). NO levels increased during 3h of SD as compared to undisturbed control (0.58±0.04μM vs. 0.47±0.01μM; p<0.05). The findings indicate that in the PF-LHA, NO is produced during behavioral or cortical activation. Since elevated levels of NO inhibits most of the PF-LHA neurons that are active during cortical activation, these findings support a hypothesis that NO produced in conjunction with the activation of PF-LHA neurons during waking/SD, inhibits the same neuronal population to promote sleep.
    Neuroscience 09/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The median preoptic nucleus (MnPN) and the ventrolateral preoptic area (VLPO) are two hypothalamic regions that have been implicated in sleep regulation, and both nuclei contain sleep-active GABAergic neurons. Adenosine is an endogenous sleep regulatory substance, which promotes sleep via A1 and A2A receptors (A2AR). Infusion of A2AR agonist into the lateral ventricle or into the subarachnoid space underlying the rostral basal forebrain (SS-rBF), has been previously shown to increase sleep. We examined the effects of an A2AR agonist, CGS-21680, administered into the lateral ventricle and the SS-rBF on sleep and Fos protein immunoreactivity (Fos-IR) in GABAergic neurons in the MnPN and VLPO. Intracerebroventricular (ICV) administration of CGS-21680 during the second half of lights-on phase increased sleep and increased the number of MnPN and VLPO GABAergic neurons expressing Fos-IR. Similar effects were found with CGS-21680 microinjection into the SS-rBF. The induction of Fos-IR in preoptic GABAergic neurons was not secondary to drug-induced sleep, since CGS-21680 delivered to the SS-rBF significantly increased Fos-IR in MnPN and VLPO neurons in animals that were not permitted sleep. ICV of infusion of ZM-241385, an A2AR antagonist, during the last 2 h of a 3 h period of sleep deprivation caused suppression of subsequent recovery sleep and reduced Fos-IR in MnPN and VLPO GABAergic neurons. Our findings support a hypothesis that A2AR mediated activation of MnPN and VLPO GABAergic neurons contributes to adenosinergic regulation of sleep.
    AJP Regulatory Integrative and Comparative Physiology 05/2013; · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many physiological and molecular processes are strongly rhythmic and profoundly influenced by sleep. The continuing effort of biological, medical, and veterinary science to understand the temporal organization of cellular, physiological, be- havioral and cognitive function holds great promise for the improvement of the welfare of animals and human beings. As a result, attending veterinarians and IACUC are often charged with the responsibility of evaluating experiments on such rhythms or the effects of sleep (or its deprivation) in vertebrate animals. To produce interpretable data, animals used in such research must often be maintained in carefully controlled (often constant) conditions with minimal disruption. The lighting environment must be strictly controlled, frequent changes of cages and bedding are undesirable, and daily visual checks are often not possible. Thus deviations from the standard housing procedures specified in the Guide for the Care and Use of Laboratory Animals are often necessary. This report reviews requirements for experiments on biological rhythms and sleep and discusses how scientific considerations can be reconciled with the recommendations of the Guide.
    Journal of the American Association for Laboratory Animal Science: JAALAS 01/2013; 52(4):437-443. · 1.15 Impact Factor
  • A Kostin, D McGinty, R Szymusiak, M N Alam
    [Show abstract] [Hide abstract]
    ABSTRACT: The perifornical-lateral hypothalamic area (PF-LHA) is a major wake-promoting structure. It predominantly contains neurons that are active during behavioral and cortical activation. Nitric oxide (NO) is a gaseous neurotransmitter that has been implicated in the regulation of sleep. Recently we found that NO levels in the PF-LHA are higher during sustained waking and that NO exerts predominantly inhibitory effects, especially on PF-LHA neurons excited by tactile stimulation. The mechanisms underlying this NO-evoked inhibitory action on the PF-LHA neurons were assessed in the present study. We investigated the contributions of adenosinergic, GABAergic, and sGC-cGMP signaling mechanisms in mediating nitrergic influences on the PF-LHA neurons. The extracellular discharge activity of PF-LHA neurons was recorded in combination with microdialytic delivery of pharmacological agents adjacent to the recorded neurons in urethane-anesthetized rats. First, we quantified changes in the discharge activity of the PF-LHA neurons during the blockade of the adenosine A(1) receptor, GABA(A) receptor, and sGC-cGMP pathway. Then, we determined the efficacy of blocking adenosine A(1) receptor, GABA(A) receptor, and sGC signaling mechanisms in attenuating the inhibitory influences of 3,3-bis(aminoethyl)-1-hydroxy-1-oxo-1-triazene (a NO donor) (NOC-18), a NO donor, on the discharge activity of the PF-LHA neurons. We found that NOC-18-induced suppression in the discharge activity of PF-LHA neurons was significantly attenuated during the blockade of adenosine A(1) receptor-, GABA(A) receptor-, and sGC-cGMP-mediated signaling. These findings suggest that NO-evoked inhibition of PF-LHA neurons involves a complex mechanism including, but may not be limited to, adenosinergic, GABAergic and sGC-cGMP signaling pathways. The findings are consistent with a generalized sleep-promoting role of NO within the PF-LHA and, given the sleep-promoting roles of adenosinergic and GABAergic systems in this area, further suggest that this effect may be mediated through nitrergic interactions with other neurotransmitters and neuromodulators.
    Neuroscience 06/2012; 220:179-90. · 3.12 Impact Factor
  • Ronald Szymusiak, Irma Gvilia
    Sleep Medicine Clinics 06/2012; 7(2):179–190.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress has been associated with the regulation of sleep and wake. We have previously shown that i.c.v. administration of a specific ER stress modulator, Salubrinal (SALUB), which inhibits global protein translation by blocking the dephosphorylation of eukaryotic initiation factor 2α (p-eIF2α), increased non-rapid eye movement (NREM) sleep. Here we report on the relationship between ER stress response and sleep homeostasis by measuring the amount and intensity of homeostatic recovery sleep in response to the i.c.v. administration of SALUB in adult freely behaving rats. We have also tested the hypothesis that SALUB induces sleep by activating sleep-promoting neurons and inhibiting wake-promoting neurons in the basal forebrain (BF) and hypothalamus by quantifying the effects of SALUB treatment on c-Fos expression in those neuronal groups. The present study found that i.c.v. administration of SALUB significantly modified the homeostatic sleep response. SALUB administered during sleep deprivation increased sleep intensity, indicated by slow-wave activity (SWA), during recovery sleep, whereas its administration during recovery sleep increased the amount of recovery sleep. We also found that SALUB induced c-Fos activation of GABAergic neurons in the sleep-promoting rostral median preoptic nucleus while simultaneously reducing c-Fos activation of wake-promoting lateral hypothalamic orexin-expressing neurons and magnocellular BF cholinergic neurons. The current findings suggest that ER stress pathway plays a role in the homeostatic control of NREM sleep in response to sleep deprivation and provides a mechanistic explanation for the sleep modulation by molecules signaling the need for brain protein synthesis.
    Neuroscience 02/2012; 209:108-18. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ventrolateral division of the periaqueductal gray (vlPAG) and the adjacent deep mesencephalic reticular nucleus have been implicated in the control of sleep. The preoptic hypothalamus, which contains populations of sleep-active neurons, is an important source of afferents to the vlPAG. The perifornical lateral hypothalamus (LH) contains populations of wake-active neurons and also projects strongly to the vlPAG. We examined nonREM and REM sleep-dependent expression of c-Fos protein in preoptic-vlPAG and LH-vlPAG projection neurons identified by retrograde labeling with Fluorogold (FG). Separate groups of rats (n=5) were subjected to 3 h total sleep deprivation (TSD) followed by 1 h recovery sleep (RS), or to 3 h of selective REM sleep deprivation (RSD) followed by RS. A third group of rats (n=5) was subjected to TSD without opportunity for RS (awake group). In the median preoptic nucleus (MnPN), the percentage of FG+ neurons that were also Fos+ was higher in TSD-RS animals compared to both RSD-RS rats and awake rats. There were significant correlations between time spent in deep nonREM sleep during the 1 h prior to sacrifice across groups and the percentage of double-labeled cells in MnPN and ventrolateral preoptic area (VLPO). There were no significant correlations between percentage of double-labeled neurons and time spent in REM sleep for any of the preoptic nuclei examined. In the LH, percentage of double-labeled neurons was highest in awake rats, intermediate in TSD-RS rats and lowest in the RSD-RS group. These results suggest that neurons projecting from MnPN and VLPO to the vlPAG are activated during nonREM sleep and support the hypothesis that preoptic neurons provide inhibitory input to vlPAG during sleep. Suppression of excitatory input to the vlPAG from the LH during sleep may have a permissive effect on REM sleep generation.
    Neuroscience 08/2011; 188:55-67. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined the effects of eszopiclone (ESZ), a GABA-A receptor agonist in current clinical use as a hypnotic medication, on the activity of subcortical wake- and sleep-active neuronal populations in the rat brain. Sleep-wake states were quantified after i.p. injections of ESZ (3 and 10 mg/kg) or vehicle administered early in the dark phase, when rats are spontaneously awake. Rats were euthanized 2 h post-injection and brain tissue was processed for c-Fos protein immunoreactivity (IR) and for neurotransmitter markers. ESZ at 3 and 10 mg/kg increased time spent in non-rapid-eye-movement (nonREM) sleep, but had no significant effect on Fos-IR in GABAergic neurons in the preoptic hypothalamus that normally express c-Fos during sleep. Among wake-active cell types examined, Fos-IR in hypocretin (HCRT) neurons in the perifornical lateral hypothalamus (LH) was reduced following 3 and 10 mg/kg ESZ. At 10 mg/kg, ESZ suppressed Fos-IR in cholinergic and noncholinergic neurons in the basal forebrain and in serotonergic and nonserotonegic neurons in the dorsal raphe. Having determined that HCRT neurons were responsive to the low dose of systemic ESZ, we unilaterally perfused ESZ directly into the LH of awake rats, using reverse microdialysis. Perfusion of ESZ at 50 μM into the LH for 2 h suppressed waking-related Fos-IR in HCRT neurons, but not in nonHCRT neurons ipsilateral to the dialysis probe. Bilateral LH perfusion of ESZ at 50 μM for 2 h early in the dark phase significantly increased sleep. These findings demonstrate that sleep induction by ESZ does not require activation of GABAergic sleep-regulatory neurons in the preoptic hypothalamus, and identify suppression of HCRT neurons in the LH and suppression of basal forebrain and dorsal raphe neurons as potential mechanisms underlying the sleep-promoting effects of ESZ.
    Neuroscience 03/2011; 181:67-78. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study evaluated the hypothesis that developmental changes in hypothalamic sleep-regulatory neuronal circuits contribute to the maturation of sleep homeostasis in rats during the fourth postnatal week. In a longitudinal study, we quantified electrographic measures of sleep during baseline and in response to sleep deprivation (SD) on postnatal days 21/29 (P21/29) and P22/30 (experiment 1). During 24-h baseline recordings on P21, total sleep time (TST) during the light and dark phases did not differ significantly. On P29, TST during the light phase was significantly higher than during the dark phase. Mean duration of non-rapid-eye-movement (NREM) sleep bouts was significantly longer on P29 vs. P21, indicating improved sleep consolidation. On both P22 and P30, rats exhibited increased NREM sleep amounts and NREM electroencephalogram delta power during recovery sleep (RS) compared with baseline. Increased NREM sleep bout length during RS was observed only on P30. In experiment 2, we quantified activity of GABAergic neurons in median preoptic nucleus (MnPN) and ventrolateral preoptic area (VLPO) during SD and RS in separate groups of P22 and P30 rats using c-Fos and glutamic acid decarboxylase (GAD) immunohistochemistry. In P22 rats, numbers of Fos(+)GAD(+) neurons in VLPO did not differ among experimental conditions. In P30 rats, Fos(+)GAD(+) counts in VLPO were elevated during RS. MnPN neuronal activity was state-dependent in P22 rats, but Fos(+)GAD(+) cell counts were higher in P30 rats. These findings support the hypothesis that functional emergence of preoptic sleep-regulatory neurons contributes to the maturation of sleep homeostasis in the developing rat brain.
    AJP Regulatory Integrative and Comparative Physiology 02/2011; 300(4):R885-94. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The perifornical-lateral hypothalamic area (PF-LHA) is a major wake-promoting structure. It predominantly contains neurons that are active during behavioral and cortical activation. PF-LHA stimulation produces arousal and PF-LHA lesions produce somnolence. Nitric oxide (NO) is a gaseous neurotransmitter that has been implicated in the regulation of multiple pathological and physiological processes including the regulation of sleep. NO levels are higher in the cortex and in the basal forebrain (BF) during arousal. In this study we determined whether NO levels increase in the PF-LHA during prolonged arousal and whether increased NO modulates the discharge activity of PF-LHA neurons. Experiments were conducted during lights-on phase between 8.00 and 20.00 h (lights-on at 8.00 h). First, we quantified levels of NO metabolites, NO2- and NO3- (collectively called NOx-) in the microdialysis dialysates collected from the PF-LHA during baseline (undisturbed rats), 6 h of sleep deprivation (SD), and recovery after SD. We further determined the effects of a NO donor, NOC-18, on the discharge activity of PF-LHA neurons in urethane-anesthetized rats. Overall, SD significantly affected NOx- production in the PF-LHA (one way repeated measures ANOVA, F=7.827, P=0.004). The levels of NOx- increased progressively in animals that were subjected to prolonged arousal as compared to the undisturbed predominantly sleeping animals and decreased during the recovery period. Local application of NOC-18 significantly suppressed the discharge of PF-LHA neurons including a majority of stimulus-on neurons or neurons exhibiting activation during electroencephalogram (EEG) desynchronization. The findings of this study suggest that in the PF-LHA, NO production is elevated during prolonged waking and that NO exerts predominantly inhibitory effects on PF-LHA neurons, especially on those neurons that are active during cortical activation. These findings are consistent with a hypothesis that NO in the PF-LHA plays a role in sleep regulation by inhibiting its neurons.
    Neuroscience 01/2011; 179:159-69. · 3.12 Impact Factor
  • Ronald Szymusiak
    [Show abstract] [Hide abstract]
    ABSTRACT: Regions of the neocortex most strongly activated during waking exhibit increased sleep intensity during subsequent sleep. The novel concept that aspects of sleep homeostasis are determined locally in the cortex contrasts with the established views that global changes in neocortical activity during sleep are achieved through inhibition of ascending arousal systems that originate in the brainstem and hypothalamus. Experiments in animals and humans document asymmetries in neocortical electroencephalogram (EEG) slow-wave activity (SWA), a marker of homeostatic sleep need, as a result of functional activity during waking. In addition to local, use-dependent augmentation of EEG SWA and evoked potentials, expression of plasticity-related genes and of sleep-regulatory cytokines and neuromodulators have been shown to be elevated in a use-dependent manner in neocortex. The functional consequences of local sleep are hypothesized to involve regulation of synaptic plasticity, synaptic homeostasis and energy balance. The evidence for use-dependent modulation of neocortical activity during sleep is compelling and provides novel insights into sleep function. However, local changes in neocortex are generally expressed on a background of global sleep. It remains to be determined if events initiated in the cortex have global sleep-promoting effects and how neocortical and hypothalamic mechanisms of sleep control interact.
    Current opinion in pulmonary medicine 11/2010; 16(6):530-5. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep fragmentation (SF) is prevalent in human sleep-related disorders. In rats, sustained SF has a potent suppressive effect on adult hippocampal dentate gyrus (DG) neurogenesis. Adult-generated DG neurons progressively mature over several weeks, and participate in certain hippocampal-dependent cognitive functions. We predicted that suppression of neurogenesis by sustained SF would affect hippocampal-dependent cognitive functions in the time window when new neurons would reach functional maturity. Sprague-Dawley rats were surgically-prepared with electroencephalogram (EEG) and electromyogram (EMG) electrodes for sleep state detection. We induced sleep-dependent SF for 12 days, and compared SF animals to yoked sleep fragmentation controls (SFC), treadmill controls (TC) and cage controls (CC). Rats were injected with bromodeoxyuridine on treatment days 4 and 5. Rats were returned to home cages for 14 days. Cognitive performance was assessed in a Barnes maze with 5 days at a constant escape position followed by 2 days at a rotated position. After Barnes maze testing rats were perfused and DG sections were immunolabeled for BrdU and neuronal nuclear antigen (NeuN), a marker of mature neurons.SF reduced BrdU-labeled cell counts by 32% compared to SFC and TC groups. SF reduced sleep epoch duration, but amounts of rapid eye movement (REM) sleep did not differ between SF and SFC rats, and non-rapid eye movement (NREM) was reduced only transiently. In the Barnes maze, SF rats exhibited a progressive decrease in escape time, but were slower than controls. SF animals used different search strategies. The use of a random, non-spatial search strategy was significantly elevated in SF compared to the SFC, TC and CC groups. The use of random search strategies was negatively correlated with NREM sleep bout length during SF. Sustained sleep fragmentation reduced DG neurogenesis and induced use of a non-spatial search strategy, which could be seen 2 weeks after terminating the SF treatment. The reduction in neurogenesis induced by sleep fragmentation is likely to underlie the delayed changes in cognitive function.
    Neuroscience 09/2010; 170(1):247-58. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A(1) receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A(1) receptor, the in vivo effects of A(1) receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N(6)-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 muM) and CPDX (50 muM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep.
    Neuroscience 04/2010; 167(1):40-8. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The perifornical-lateral hypothalamic area (PF-LHA) has been implicated in the regulation of behavioral arousal. The PF-LHA predominantly contains neurons that are active during behavioral and cortical activation and quiescent during non-rapid eye movement (nonREM) sleep, that is, are nonREM-off neurons. Some in vitro and in vivo studies indicate that PF-LHA neurons, including hypocretin-expressing neurons, are under GABAergic control. However, a role of GABA in suppressing the discharge of PF-LHA neurons during spontaneous nonREM sleep has not been confirmed. We recorded the sleep-wake discharge profiles of PF-LHA neurons and simultaneously assessed the contributions of local GABA(A) receptor activation and blockade on their wake- and nonREM sleep-related discharge activities by delivering GABA(A) receptor agonist, muscimol (500 nm, 5 microM, and 10 microM) and its antagonist, bicuculline (5 microM, 10 microM, and 20 microM), adjacent to the recorded neurons via reverse microdialysis. Muscimol dose-dependently decreased the discharge of PF-LHA neurons including nonREM-off neurons. Muscimol-induced suppression of discharge during nonREM sleep was significantly weaker than the suppression produced during waking. In the presence of bicuculline, PF-LHA neurons, including nonREM-off neurons, exhibited elevated discharge, which was dose-dependent and was significantly higher during nonREM sleep, compared to waking. These results suggest that GABA(A) receptor mediated increased GABAergic tone contributes to the suppression of PF-LHA neurons, including nonREM-off neurons, during spontaneous nonREM sleep.
    Neuroscience 02/2010; 167(3):920-8. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lamina terminalis (LT) consists of the organum vasculosum of the LT (OVLT), the median preoptic nucleus (MnPO) and the subfornical organ (SFO). All subdivisions of the LT project to the ventrolateral periaqueductal gray (vlPAG). The LT and the vlPAG are implicated in several homeostatic and behavioral functions, including body fluid homeostasis, thermoregulation and the regulation of sleep and waking. By combining visualization of c-Fos protein and retrograde neuroanatomical tracer we have examined the functional correlates of LT-vlPAG projection neurons. Rats were injected with retrograde tracer into the vlPAG and, following a 1-week recovery period, they were subjected to either hypertonic saline administration (0.5 M NaCl, 1 mL/100 g i.p.), 24-h water deprivation, isoproterenol administration (increases circulating angiotensin II; 50 microg/kg s.c.), heat exposure (39 degrees C for 60 min) or permitted 180 min spontaneous sleep. Retrogradely labeled neurons from the vlPAG and double-labelled neurons were then identified and quantified throughout the LT. OVLT-vlPAG projection neurons were most responsive to hypertonic saline and water deprivation. SFO-vlPAG projection neurons were most active following isoproterenol administration, and MnPO-vlPAG projection neurons displayed significantly more Fos immunostaining following water deprivation, heat exposure and sleep. These results support the existence of functional subdivisions of LT-vlPAG-projecting neurons, and indicate three patterns of activity that correspond to thermal and sleep wake regulation, osmotic or hormonal stimuli.
    European Journal of Neuroscience 12/2009; 30(12):2347-55. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined whether growth hormone-releasing hormone (GHRH) may promote non-rapid eye movement (NREM) sleep via activation of GABAergic neurons in the preoptic area. Male Sprague-Dawley rats were implanted with EEG, EMG electrodes and a unilateral intracerebroventricular cannula. Groups of rats received injections (3 microl icv) with gonadotropin-releasing hormone (GHRH) (0.1 nmol/100 g body wt) or equal volume of physiological saline at the onset of the dark period and were permitted spontaneous sleep for 90 min. Separate groups of rats were sleep deprived by gentle handling for 90 min, beginning at the time of GHRH or saline injection, at the onset of the dark period. Other groups of rats received intracerebroventricular octreotide (somatostatin analog OCT) injections, intracerebroventricular injection of one of two doses of competitive GHRH antagonist, or intracerebroventricular saline injection at light onset and were then permitted 90 min spontaneous sleep-waking. Rats were killed immediately after the 90-min sleep/wake monitoring period. Brain tissue was processed for immunohistochemistry for c-Fos protein and glutamic acid decarboxylase (GAD). Single c-Fos and dual Fos-GAD cell counts were determined in the median preoptic nucleus (MnPN), and in the core and the extended parts of the ventrolateral preoptic nucleus (cVLPO and exVLPO). Intracerebroventricular GHRH elicited a significant increase in NREM sleep amount. Double-labeled Fos+GAD cell counts were significantly elevated after GHRH injection in the MnPN and VLPO in both undisturbed and sleep-deprived groups. OCT and GHRH antagonist significantly decreased NREM sleep amount compared with control rats. OCT injection increased single c-Fos-labeled cell counts in the MnPN, but not in the VLPO. Double-labeled cell counts were significantly reduced after OCT and the high dose of GHRH antagonist injection in all areas examined. These findings identify GABAergic neurons in the MnPN and VLPO as potential targets of the sleep-regulatory actions of GHRH.
    AJP Regulatory Integrative and Comparative Physiology 11/2009; 298(1):R147-56. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The perifornical-lateral hypothalamic area (PF-LHA) has been implicated in the regulation of arousal. The PF-LHA contains wake-active neurons that are quiescent during non-REM sleep and in the case of neurons expressing the peptide hypocretin (HCRT), quiescent during both non-REM and REM sleep. Adenosine is an endogenous sleep factor and recent evidence suggests that adenosine via A(1) receptors may act on PF-LHA neurons to promote sleep. We examined the effects of bilateral activation as well as blockade of A(1) receptors in the PF-LHA on sleep-wakefulness in freely behaving rats. The sleep-wake profiles of male Wistar rats were recorded during reverse microdialysis perfusion of artificial cerebrospinal fluid (aCSF) and two doses of adenosine A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX; 5 microM and 50 microM) or A(1) receptor agonist, N(6)-cyclopentyladenosine (CPA; 5 microM and 50 microM) into the PF-LHA for 2 h followed by 4 h of aCSF perfusion. CPDX perfused into the PF-LHA during lights-on phase produced arousal (F=7.035, p<0.001) and concomitantly decreased both non-REM (F=7.295, p<0.001) and REM sleep (F=3.456, p<0.004). In contrast, CPA perfused into the PF-LHA during lights-off phase significantly suppressed arousal (F=7.891, p<0.001) and increased non-REM (F=8.18, p <0.001) and REM sleep (F=30.036, p<0.001). These results suggest that PF-LHA is one of the sites where adenosine, acting via A(1) receptors, inhibits PF-LHA neurons to promote sleep.
    Brain research 09/2009; 1304:96-104. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Absence epilepsy (AE) in humans and the genetic AE model in WAG/Rij rats are both associated with abnormalities in sleep architecture that suggest insufficiency of the sleep-promoting mechanisms. In this study we compared the functionality of sleep-active neuronal groups within two well-established sleep-promoting sites, the ventrolateral and median preoptic nuclei (VLPO and MnPN, respectively), in WAG/Rij and control rats. Neuronal activity was assessed using c-Fos immunoreactivity and chronic single-unit recording techniques. We found that WAG/Rij rats exhibited a lack of sleep-associated c-Fos activation of GABAergic MnPN and VLPO neurons, a lower percentage of MnPN and VLPO cells increasing discharge during sleep and reduced firing rates of MnPN sleep-active neurons, compared to non-epileptic rats. The role of sleep-promoting mechanisms in pathogenesis of absence seizures was assessed in non-epileptic rats using electrical stimulation and chemical manipulations restricted to the MnPN. We found that fractional activation of the sleep-promoting system in waking was sufficient to elicit absence-like seizures. Given that reciprocally interrelated sleep-promoting and arousal neuronal groups control thalamocortical excitability, we hypothesize that malfunctioning of sleep-promoting system results in impaired ascending control over thalamocortical rhythmogenic mechanisms during wake-sleep transitions thus favoring aberrant thalamocortical oscillations. Our findings suggest a pathological basis for AE-associated sleep abnormalities and a mechanism underlying association of absence seizures with wake-sleep transitions.
    Neurobiology of Disease 08/2009; 36(1):126-41. · 5.62 Impact Factor
  • Source
    Ronald Szymusiak
    Sleep 07/2009; 32(6):713-4. · 5.10 Impact Factor

Publication Stats

3k Citations
396.39 Total Impact Points

Institutions

  • 2000–2013
    • VA Greater Los Angeles Healthcare System
      Los Angeles, California, United States
  • 1987–2012
    • University of California, Los Angeles
      • • Department of Psychology
      • • Department of Medicine
      Los Angeles, CA, United States
  • 1989–2011
    • CSU Mentor
      Long Beach, California, United States
  • 1995–2000
    • Tohoku University
      • Graduate School of Information Sciences
      Sendai-shi, Miyagi-ken, Japan
    • U.S. Department of Veterans Affairs
      Washington, Washington, D.C., United States
    • California State University, Los Angeles
      Los Angeles, California, United States
    • Spokane VA Medical Center
      Spokane, Washington, United States
  • 1986
    • Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
      Torrance, California, United States