Lina M Moreno

University of Iowa, Iowa City, Iowa, United States

Are you Lina M Moreno?

Claim your profile

Publications (17)204.08 Total impact

  • George L Wehby, Lina M Moreno
    Journal of comparative effectiveness research. 01/2014; 3(1):23-28.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have applied a GWAS to 40 consanguineous families segregating cases of non-syndromic cleft lip with or without cleft palate (NS CL/P) (a total of 160 affected and unaffected individuals) in order to trace potential recessive loci that confer susceptibility to this common facial malformation. Pedigree-based association test (PBAT) analyses reported nominal evidence of association and linkage over SNP markers located at 11q25 (rs4937877, P = 2.7 × 10(-6)), 19p12 (rs4324267, P = 1.6 × 10(-5)), 5q14.1 (rs4588572, P-value = 3.36 × 10(-5)), and 15q21.1 (rs4774497, P = 1.08 × 10(-4)). Using the Versatile Gene-Based Association Study to complement the PBAT results, we found clusters of markers located at chromosomes 19p12, 11q25, and 8p23.2 overcome the threshold for GWAS significance (P < 1 × 10(-7)). From this study, new recessive loci implicated in NS CL/P include: B3GAT1, GLB1L2, ZNF431, ZNF714, and CSMD1, even though the functional association with the genesis of NS CL/P remains to be elucidated. These results emphasize the importance of using homogeneous populations, phenotypes, and family structures for GWAS combined with gene-based association analyses, and should encourage. other researchers to evaluate these genes on independent patient samples affected by NS CL/P.
    European journal of medical genetics 06/2012; 55(10):510-4. · 1.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous evidence from tooth agenesis studies suggested IRF6 and TGFA interact. Since tooth agenesis is commonly found in individuals with cleft lip/palate (CL/P), we used four large cohorts to evaluate if IRF6 and TGFA interaction contributes to CL/P. Markers within and flanking IRF6 and TGFA genes were tested using Taqman or SYBR green chemistries for case-control analyses in 1,000 Brazilian individuals. We looked for evidence of gene-gene interaction between IRF6 and TGFA by testing if markers associated with CL/P were overtransmitted together in the case-control Brazilian dataset and in the additional family datasets. Genotypes for an additional 142 case-parent trios from South America drawn from the Latin American Collaborative Study of Congenital Malformations (ECLAMC), 154 cases from Latvia, and 8,717 individuals from several cohorts were available for replication of tests for interaction. Tgfa and Irf6 expression at critical stages during palatogenesis was analyzed in wild type and Irf6 knockout mice. Markers in and near IRF6 and TGFA were associated with CL/P in the Brazilian cohort (p<10(-6)). IRF6 was also associated with cleft palate (CP) with impaction of permanent teeth (p<10(-6)). Statistical evidence of interaction between IRF6 and TGFA was found in all data sets (p = 0.013 for Brazilians; p = 0.046 for ECLAMC; p = 10(-6) for Latvians, and p = 0.003 for the 8,717 individuals). Tgfa was not expressed in the palatal tissues of Irf6 knockout mice. IRF6 and TGFA contribute to subsets of CL/P with specific dental anomalies. Moreover, this potential IRF6-TGFA interaction may account for as much as 1% to 10% of CL/P cases. The Irf6-knockout model further supports the evidence of IRF6-TGFA interaction found in humans.
    PLoS ONE 01/2012; 7(9):e45441. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study uses instrumental variable (IV) models with genetic instruments to assess the effects of maternal smoking on the child's risk of orofacial clefts (OFC), a common birth defect. The study uses genotypic variants in neurotransmitter and detoxification genes relateded to smoking as instruments for cigarette smoking before and during pregnancy. Conditional maximum likelihood and two-stage IV probit models are used to estimate the IV model. The data are from a population-level sample of affected and unaffected children in Norway. The selected genetic instruments generally fit the IV assumptions but may be considered "weak" in predicting cigarette smoking. We find that smoking before and during pregnancy increases OFC risk substantially under the IV model (by about 4-5 times at the sample average smoking rate). This effect is greater than that found with classical analytic models. This may be because the usual models are not able to consider self-selection into smoking based on unobserved confounders, or it may to some degree reflect limitations of the instruments. Inference based on weak-instrument robust confidence bounds is consistent with standard inference. Genetic instruments may provide a valuable approach to estimate the "causal" effects of risk behaviors with genetic-predisposing factors (such as smoking) on health and socioeconomic outcomes.
    Health Services and Outcomes Research Methodology 07/2011; 11(1-2):54-78.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a large literature showing the detrimental effects of prenatal smoking on birth and childhood health outcomes. It is somewhat unclear though, whether these effects are causal or reflect other characteristics and choices by mothers who choose to smoke that may also affect child health outcomes or biased reporting of smoking. In this paper we use genetic markers that predict smoking behaviors as instruments to address the endogeneity of smoking choices in the production of birth and childhood health outcomes. Our results indicate that prenatal smoking produces more dramatic declines in birth weight than estimates that ignore the endogeneity of prenatal smoking, which is consistent with previous studies with non-genetic instruments. We use data from two distinct samples from Norway and the United States with different measured instruments and find nearly identical results. The study provides a novel application that can be extended to study several behavioral impacts on health and social and economic outcomes.
    Biodemography and Social Biology 01/2011; 57(1):3-32. · 1.37 Impact Factor
  • Nature Genetics 08/2010; 42(8):727. · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Case-parent trios were used in a genome-wide association study of cleft lip with and without cleft palate. SNPs near two genes not previously associated with cleft lip with and without cleft palate (MAFB, most significant SNP rs13041247, with odds ratio (OR) per minor allele = 0.704, 95% CI 0.635-0.778, P = 1.44 x 10(-11); and ABCA4, most significant SNP rs560426, with OR = 1.432, 95% CI 1.292-1.587, P = 5.01 x 10(-12)) and two previously identified regions (at chromosome 8q24 and IRF6) attained genome-wide significance. Stratifying trios into European and Asian ancestry groups revealed differences in statistical significance, although estimated effect sizes remained similar. Replication studies from several populations showed confirming evidence, with families of European ancestry giving stronger evidence for markers in 8q24, whereas Asian families showed stronger evidence for association with MAFB and ABCA4. Expression studies support a role for MAFB in palatal development.
    Nature Genetics 06/2010; 42(6):525-9. · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonsyndromic orofacial clefts are a common complex birth defect caused by genetic and environmental factors and/or their interactions. A previous genome-wide linkage scan discovered a novel locus for cleft lip with or without cleft palate (CL/P) at 9q22-q33. To identify the etiologic gene, we undertook an iterative and complementary fine mapping strategy using family-based CL/P samples from Colombia, USA and the Philippines. Candidate genes within 9q22-q33 were sequenced, revealing 32 new variants. Concurrently, 397 SNPs spanning the 9q22-q33 2-LOD-unit interval were tested for association. Significant SNP and haplotype association signals (P = 1.45E - 08) narrowed the interval to a 200 kb region containing: FOXE1, C9ORF156 and HEMGN. Association results were replicated in CL/P families of European descent and when all populations were combined the two most associated SNPs, rs3758249 (P = 5.01E - 13) and rs4460498 (P = 6.51E - 12), were located inside a 70 kb high linkage disequilibrium block containing FOXE1. Association signals for Caucasians and Asians clustered 5' and 3' of FOXE1, respectively. Isolated cleft palate (CP) was also associated, indicating that FOXE1 plays a role in two phenotypes thought to be genetically distinct. Foxe1 expression was found in the epithelium undergoing fusion between the medial nasal and maxillary processes. Mutation screens of FOXE1 identified two family-specific missense mutations at highly conserved amino acids. These data indicate that FOXE1 is a major gene for CL/P and provides new insights for improved counseling and genetic interaction studies.
    Human Molecular Genetics 09/2009; 18(24):4879-96. · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visceral leishmaniasis (VL) in northeast Brazil is a disease caused by infection with the protozoan Leishmania chagasi. Infection leads to variable clinical outcomes ranging from asymptomatic infection to potentially fatal disease. Prior studies suggest the genetic background of the host contributes to the development of different outcomes after infection, although it is not known if ancestral background itself influences outcomes. VL is endemic in peri-urban areas around the city of Natal in northeast Brazil. The population of northeast Brazil is a mixture of distinct racial and ethnic groups. We hypothesized that some sub-populations may be more susceptible than others to develop different clinical outcomes after L. chagasi infection. Using microsatellite markers, we examined whether admixture of the population as a whole, or markers likely inherited from a distinct ethnic background, differed between individuals with VL, individuals with an asymptomatic infection, or individuals with no infection. There was no apparent significant difference in overall population admixture proportions among the three clinical phenotype groups. However, one marker on Chr. 22 displayed evidence of excess ancestry from putative ancestral populations among different clinical phenotypes, suggesting this region may contain genes determining the course of L. chagasi infection.
    Annals of Human Genetics 04/2009; 73(Pt 3):304-13. · 2.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cleft lip with or without cleft palate is the most common facial birth defect and it is caused by a complex interaction between genetic and environmental factors. The purpose of this review is to provide an overview of the spectrum of the genetic causes for cleft lip and cleft palate using both syndromic and nonsyndromic forms of clefting as examples. Although the gene identification process for orofacial clefting in humans is in the early stages, the pace is rapidly accelerating. Recently, several genes have been identified that have a combined role in up to 20% of all clefts. While this is a significant step forward, it is apparent that additional cleft causing genes have yet to be identified. Ongoing human genome-wide linkage studies have identified regions in the genome that likely contain genes that when mutated cause orofacial clefting, including a major gene on chromosome 9 that is positive in multiple racial groups. Currently, efforts are focused to identify which genes are mutated in these regions. In addition, parallel studies are also evaluating genes involved in environmental pathways. Furthermore, statistical geneticists are developing new methods to characterize both gene-gene and gene-environment interactions to build better models for pathogenesis of this common birth defect. The ultimate goal of these studies is to provide knowledge for more accurate risk counseling and the development of preventive therapies.
    Seminars in Orthodontics 07/2008; 14(2):103-114.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-syndromic cleft lip with or without cleft palate (NSCLP) results from the complex interaction between genes and environmental factors. Candidate gene analysis and genome scans have been employed to identify the genes contributing to NSCLP. In this study, we evaluated the 16q24.1 chromosomal region, which has been identified by multiple genome scans as an NSCLP region of interest. Two candidate genes were found in the region: interferon regulatory factor 8 (IRF8) and cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2). Initially, Caucasian and Hispanic NSCLP multiplex families and simplex parent-child trios were genotyped for single nucleotide polymorphisms (SNPs) in both IRF8 and CRISPLD2. CRISPLD2 was subsequently genotyped in a data set comprised of NSCLP families from Colombia, South America. Linkage disequilibrium analysis identified a significant association between CRISPLD2 and NSCLP in both our Caucasian and Hispanic NSCLP cohorts. SNP rs1546124 and haplotypes between rs1546124 and either rs4783099 or rs16974880 were significant in the Caucasian multiplex population (P=0.01, P=0.002 and P=0.001, respectively). An altered transmission of CRISPLD2 SNPs rs8061351 (P=0.02) and rs2326398 (P=0.06) was detected in the Hispanic population. No association was found between CRISPLD2 and our Colombian population or IRF8 and NSCLP. In situ hybridization showed that CRISPLD2 is expressed in the mandible, palate and nasopharynx regions during craniofacial development at E13.5-E17.5, respectively. Altogether, these data suggest that genetic variation in CRISPLD2 has a role in the etiology of NSCLP.
    Human Molecular Genetics 10/2007; 16(18):2241-8. · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MSX1 has been considered a strong candidate for orofacial clefting, based on mouse expression studies and knockout models, as well as association and linkage studies in humans. MSX1 mutations are also causal for hereditary tooth agenesis. We tested the hypothesis that individuals with orofacial clefting with or without tooth agenesis have MSX1 coding mutations by screening 33 individuals with cleft lip with or without cleft palate (CL/P) and 19 individuals with both orofacial clefting and tooth agenesis. Although no MSX1 coding mutations were identified, the known 101C > G variant occurred more often in subjects with both CL/P and tooth agenesis (p = 0.0008), while the *6C-T variant was found more often in CL/P subjects (p = 0.001). Coding mutations in MSX1 are not the cause of orofacial clefting with or without tooth agenesis in this study population. However, the significant association of MSX1 with both phenotypes implies that MSX1 regulatory elements may be mutated.
    Journal of Dental Research 06/2006; 85(6):542-6. · 3.83 Impact Factor
  • Source
    Andrew C Lidral, Lina M Moreno
    [Show abstract] [Hide abstract]
    ABSTRACT: Orofacial clefts are common birth defects with a known genetic component to their etiology. Most orofacial clefts are nonsyndromic, isolated defects, which can be separated into two different phenotypes: (1) cleft lip with or without cleft palate and (2) cleft palate only. Both are genetically complex traits, which has limited the ability to identify disease loci or genes. The purpose of this review is to summarize recent progress of human genetic studies in identifying causal genes for isolated or nonsyndromic cleft lip with or without cleft palate. The results of multiple genome scans and a subsequent meta-analysis have significantly advanced our knowledge by revealing novel loci. Furthermore, candidate gene approaches have identified important roles for IRF6 and MSX1. To date, causal mutations with a known functional effect have not yet been described. With the implementation of genome-wide association studies and inexpensive sequencing, future studies will identify disease genes and characterize both gene-environment and gene-gene interactions to provide knowledge for risk counseling and the development of preventive therapies.
    Current Opinion in Pediatrics 01/2006; 17(6):731-9. · 2.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isolated or nonsyndromic cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex etiology. A 10-cM genome scan of 388 extended multiplex families with CL/P from seven diverse populations (2,551 genotyped individuals) revealed CL/P genes in six chromosomal regions, including a novel region at 9q21 (heterogeneity LOD score [HLOD]=6.6). In addition, meta-analyses with the addition of results from 186 more families (six populations; 1,033 genotyped individuals) showed genomewide significance for 10 more regions, including another novel region at 2q32-35 (P=.0004). These are the first genomewide significant linkage results ever reported for CL/P, and they represent an unprecedented demonstration of the power of linkage analysis to detect multiple genes simultaneously for a complex disorder.
    The American Journal of Human Genetics 09/2004; 75(2):161-73. · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cleft lip or palate (or the two in combination) is a common birth defect that results from a mixture of genetic and environmental factors. We searched for a specific genetic factor contributing to this complex trait by examining large numbers of affected patients and families and evaluating a specific candidate gene. We identified the gene that encodes interferon regulatory factor 6 (IRF6) as a candidate gene on the basis of its involvement in an autosomal dominant form of cleft lip and palate, Van der Woude's syndrome. A single-nucleotide polymorphism in this gene results in either a valine or an isoleucine at amino acid position 274 (V274I). We carried out transmission-disequilibrium testing for V274I in 8003 individual subjects in 1968 families derived from 10 populations with ancestry in Asia, Europe, and South America, haplotype and linkage analyses, and case-control analyses, and determined the risk of cleft lip or palate that is associated with genetic variation in IRF6. Strong evidence of overtransmission of the valine (V) allele was found in the entire population data set (P<10(-9)); moreover, the results for some individual populations from South America and Asia were highly significant. Variation at IRF6 was responsible for 12 percent of the genetic contribution to cleft lip or palate and tripled the risk of recurrence in families that had already had one affected child. DNA-sequence variants associated with IRF6 are major contributors to cleft lip, with or without cleft palate. The contribution of variants in single genes to cleft lip or palate is an important consideration in genetic counseling.
    New England Journal of Medicine 08/2004; 351(8):769-80. · 54.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-syndromic cleft lip with or without cleft palate (CL/P) is a genetically complex birth defect, with a prevalence from 1/500 to 1/1,000 live births. Evidence from linkage and linkage disequilibrium studies is contradictory suggesting that heterogeneity between study populations may exist. A recent report of a genome widescan in 92 sib pairs from the United Kingdom revealed suggestive linkage to 10 loci [Prescott et al., 2000]. The purpose of this study is to replicate those results and evaluate additional candidate genes in 49 Colombian and 13 Ohio families. Genotypes were obtained for STRPs at 1p36, 2p13 (TGFA), 4p16 (MSX1), 6p23-25, 6q25-27, 8q23-24, 11p12-q13, 12q13, 14q24 (TGFB3), 16q22-24, 17q12-21 (RARA), and Xcen-q21. Linkage was performed using parametric (dominant and recessive models) and non-parametric (GenehunterNPL and SimIBD) analyses. In addition, heterogeneity was analyzed using GenehunterHLOD, and association determined by the TDT. The Colombian families showed significant SimIBD results for 11p12-q13 (P = 0.034), 12q13 (P = 0.015), 16q22-24 (0.01), and 17q12-21 (0.009), while the Ohio families showed significant SimIBD results for 1p36 (P = 0.02), TGFA (P = 0.005), 6p23 (P = 0.004), 11p12-q13 (P = 0.048) and significant NPL results for TGFA (NPL = 3.01, P = 0.009), 4p16 (MNPL = 2.07, P = 0.03) and 12q13 (SNPL = 3.55, P = 0.007). Significant association results were obtained only for the Colombian families in the regions 1p36 (P = 0.046), 6p23-25 (P = 0.020), and 12q13 (P = 0.046). In addition several families yielded LOD scores ranging from 1.09 to 1.73, for loci at 4p16, 6p23-25, 16q22-24, and 17q13. These results confirm previous reports for these loci. However, the differences between the two populations suggest that population specific locus heterogeneity exists. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/jpages/0148-7299/suppmat/index.html.
    American Journal of Medical Genetics Part A 04/2004; 125A(2):135-44. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor 6 (IRF6) belongs to a family of nine transcription factors that share a highly conserved helix-turn-helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-alpha and -beta after viral infection, but the function of IRF6 is unknown. The gene encoding IRF6 is located in the critical region for the Van der Woude syndrome (VWS; OMIM 119300) locus at chromosome 1q32-q41 (refs 2,3). The disorder is an autosomal dominant form of cleft lip and palate with lip pits, and is the most common syndromic form of cleft lip or palate. Popliteal pterygium syndrome (PPS; OMIM 119500) is a disorder with a similar orofacial phenotype that also includes skin and genital anomalies. Phenotypic overlap and linkage data suggest that these two disorders are allelic. We found a nonsense mutation in IRF6 in the affected twin of a pair of monozygotic twins who were discordant for VWS. Subsequently, we identified mutations in IRF6 in 45 additional unrelated families affected with VWS and distinct mutations in 13 families affected with PPS. Expression analyses showed high levels of Irf6 mRNA along the medial edge of the fusing palate, tooth buds, hair follicles, genitalia and skin. Our observations demonstrate that haploinsufficiency of IRF6 disrupts orofacial development and are consistent with dominant-negative mutations disturbing development of the skin and genitalia.
    Nature Genetics 11/2002; 32(2):285-9. · 35.21 Impact Factor