Hong-Wu Shen

State University of New York, New York, New York, United States

Are you Hong-Wu Shen?

Claim your profile

Publications (12)41.41 Total impact

  • Xi-Ling Jiang · Hong-Wu Shen · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.
    Neuropharmacology 10/2014; 89. DOI:10.1016/j.neuropharm.2014.10.013 · 5.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor (HNF) 4α, did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In Tg-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.
    Journal of Biological Chemistry 12/2013; 289(6). DOI:10.1074/jbc.M113.526798 · 4.57 Impact Factor
  • Source
    Xi-Ling Jiang · Hong-Wu Shen · Donald E Mager · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT or street name "5-MEO") is a newer designer drug belonging to a group of naturally occurring indolealkylamines. Our recent study has demonstrated that coadministration of monoamine oxidase A (MAO-A) inhibitor harmaline (5 mg/kg) increases systemic exposure to 5-MeO-DMT (2 mg/kg) and active metabolite bufotenine. This study is aimed at delineating harmaline and 5-MeO-DMT pharmacokinetic (PK) interactions at multiple dose levels, as well as the impact of cytochrome P450 2D6 (CYP2D6) that affects harmaline PK and determines 5-MeO-DMT O-demethylation to produce bufotenine. Our data revealed that inhibition of MAO-A-mediated metabolic elimination by harmaline (2, 5 and 15 mg/kg) led to a sharp increase in systemic and cerebral exposure to 5-MeO-DMT (2 and 10 mg/kg) at all dose combinations. A more pronounced effect on 5-MeO-DMT PK was associated with greater exposure to harmaline in wild-type mice than CYP2D6-humanized (Tg-CYP2D6) mice. Harmaline (5 mg/kg) also increased blood and brain bufotenine concentrations that were generally higher in Tg-CYP2D6 mice. Surprisingly, greater harmaline dose (15 mg/kg) reduced bufotenine levels. The in vivo inhibitory effect of harmaline on CYP2D6-catalyzed bufotenine formation was confirmed by in vitro study using purified CYP2D6. Given these findings, a unified PK model including the inhibition of MAO-A- and CYP2D6-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood harmaline, 5-MeO-DMT and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models. This PK model may be further employed to predict harmaline and 5-MeO-DMT PK interactions at various doses, define the impact of CYP2D6 status, and drive harmaline-5-MeO-DMT pharmacodynamics.
    Drug metabolism and disposition: the biological fate of chemicals 02/2013; 41(5). DOI:10.1124/dmd.112.050724 · 3.25 Impact Factor
  • Hong-Wu Shen · Xi-Ling Jiang · Frank J Gonzalez · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Extrapolation of the metabolic, pharmacokinetic and toxicological data obtained from animals to humans is not always straightforward, given the remarkable species difference in drug metabolism that is due in large part to the differences in drug-metabolizing enzymes between animals and humans. Furthermore, genetic variations in drug-metabolizing enzymes may significantly alter pharmacokinetics, drug efficacy and safety. Thus, humanized transgenic mouse lines, in which the human drug-metabolizing enzymes are expressed in mouse tissues in the presence or absence of mouse orthologues, have been developed to address such challenges. These humanized transgenic mice are valuable animal models in understanding the significance of specific human drug-metabolizing enzymes in drug clearance and pharmacokinetics, as well as in predicting potential drug-drug interactions and chemical toxicity in humans. This review, therefore, aims to summarize the development and application of some humanized transgenic mouse models expressing human drug-metabolizing enzymes. The limitations of these genetically modified mouse models are also discussed.
    Current Drug Metabolism 12/2011; 12(10):997-1006. DOI:10.2174/138920011798062265 · 2.98 Impact Factor
  • Source
    Hong-Wu Shen · Xi-Ling Jiang · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-Methoxy-N,N,-dimethyltryptamine (5-MeO-DMT), an abused serotonergic indolealkylamine drug, was placed into Schedule I controlled substance status in the United States as of January 19, 2011. In previous studies, we have shown the impact of monoamine oxidase A and cytochrome P450 2D6 enzymes on 5-MeO-DMT metabolism and pharmacokinetics. The aim of this study was to investigate 5-MeO-DMT pharmacokinetic properties after intravenous or intraperitoneal administration of three different doses (2, 10, and 20 mg/kg) to CYP2D6-humanized (Tg-CYP2D6) and wild-type control mice. Systemic exposure [area under the curve (AUC)] to 5-MeO-DMT was increased nonproportionally with the increase in dose. The existence of nonlinearity in serum 5-MeO-DMT pharmacokinetics was clearly manifested by dose-normalized AUC values, which were approximately 1.5- to 2.0-fold (intravenous) and 1.8- to 2.7-fold (intraperitoneal) higher in wild-type or Tg-CYP2D6 mice dosed with 10 and 20 mg/kg 5-MeO-DMT, respectively, than those in mice treated with 2 mg/kg 5-MeO-DMT. Furthermore, a two-compartment model including first-order absorption, nonlinear (Michaelis-Menten) elimination, and CYP2D6-dependent linear elimination from the central compartment was developed to characterize the intravenous and intraperitoneal pharmacokinetic data for 5-MeO-DMT in wild-type and Tg-CYP2D6 mice. In addition, 5-MeO-DMT was readily detected in mouse brain after drug treatment, and brain 5-MeO-DMT concentrations were also increased nonproportionally with the increase of dose. The results establish a nonlinear pharmacokinetic property for 5-MeO-DMT in mice, suggesting that the risk of 5-MeO-DMT intoxication may be increased nonproportionally at higher doses.
    Drug metabolism and disposition: the biological fate of chemicals 04/2011; 39(7):1227-34. DOI:10.1124/dmd.111.039107 · 3.25 Impact Factor
  • Source
    Hong-Wu Shen · Xi-Ling Jiang · Jerrold C Winter · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed.
    Current Drug Metabolism 09/2010; 11(8):659-66. DOI:10.2174/138920010794233495 · 2.98 Impact Factor
  • Source
    Hong-Wu Shen · Chao Wu · Xi-Ling Jiang · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural psychoactive indolealkylamine drug that has been used for recreational purpose. Our previous study revealed that polymorphic cytochrome P450 2D6 (CYP2D6) catalyzed 5-MeO-DMT O-demethylation to produce active metabolite bufotenine, while 5-MeO-DMT is mainly inactivated through deamination pathway mediated by monoamine oxidase (MAO). This study, therefore, aimed to investigate the impact of CYP2D6 genotype/phenotype status and MAO inhibitor (MAOI) on 5-MeO-DMT metabolism and pharmacokinetics. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes showed that CYP2D6.2 and CYP2D6.10 exhibited 2.6- and 40-fold lower catalytic efficiency (V(max)/K(m)), respectively, in producing bufotenine from 5-MeO-DMT, compared with wild-type CYP2D6.1. When co-incubated with MAOI pargyline, 5-MeO-DMT O-demethylation in 10 human liver microsomes showed significantly strong correlation with bufuralol 1'-hydroxylase activities (R(2)=0.98; P<0.0001) and CYP2D6 contents (R(2)=0.77; P=0.0007), whereas no appreciable correlations with enzymatic activities of other P450 enzymes. Furthermore, concurrent MAOI harmaline sharply reduced 5-MeO-DMT depletion and increased bufotenine formation in human CYP2D6 extensive metabolizer hepatocytes. In vivo studies in wild-type and CYP2D6-humanized (Tg-CYP2D6) mouse models showed that Tg-CYP2D6 mice receiving the same dose of 5-MeO-DMT (20mg/kg, i.p.) had 60% higher systemic exposure to metabolite bufotenine. In addition, pretreatment of harmaline (5mg/kg, i.p.) led to 3.6- and 4.4-fold higher systemic exposure to 5-MeO-DMT (2mg/kg, i.p.), and 9.9- and 6.1-fold higher systemic exposure to bufotenine in Tg-CYP2D6 and wild-type mice, respectively. These findings indicate that MAOI largely affects 5-MeO-DMT metabolism and pharmacokinetics, as well as bufotenine formation that is mediated by CYP2D6.
    Biochemical pharmacology 03/2010; 80(1):122-8. DOI:10.1016/j.bcp.2010.02.020 · 5.01 Impact Factor
  • Hong-Wu Shen · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: While a rapidly growing number of protein and peptide drugs are under development, new analytical technologies have been employed for quantitative measurement of biologics towards understanding of their pharmacokinetics and pharmacodynamics. Besides presenting the recent advance in studies on small molecule xenobiotics, the 16th North American regional meeting of the International Society for the Study of Xenobiotics in Baltimore, Maryland, USA, has provided scientists with the opportunity to share experience in utilization of new technologies for analyses of protein therapeutics and discuss potential application to future biological discovery.
    Bioanalysis 02/2010; 2(2):181-4. DOI:10.4155/bio.09.175 · 3.00 Impact Factor
  • Source
    Hong-Wu Shen · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Desipramine (DMI), a CYP2D6 probe, was used as a model drug to test whether CYP2D6-humanized (Tg-CYP2D6) and wild-type control mice could be used as preclinical animal models to identify the effects of CYP2D6 genotype/phenotype on drug metabolic profiles. After the analyses by liquid chromatography coupled with tandem mass spectrometry, DMI biotransformations were compared in Tg-CYP2D6 and wild-type mouse liver microsomes (MLM), and in human CYP2D6 extensive and poor metabolizer liver microsomes. Furthermore, urinary DMI metabolic profiles in Tg-CYP2D6 and wild-type mice were evaluated. Three metabolites, 2-hydroxyl-, 10-hydroxyl, and N-desmethyl-desipramine were identified in the incubations of DMI with both wild-type and Tg-CYP2D6 MLM, as well as in human CYP2D6 extensive metabolizer liver microsomes. Three additional metabolites were found in mouse urine samples, and their chemical structures were elucidated. Although the ratio of individual metabolites produced in Tg-CYP2D6 MLM was closer to that in human CYP2D6 extensive metabolizer liver microsomes, the urinary DMI metabolic profiles did not show much difference between wild-type and Tg-CYP2D6 mice. The results suggest that other mouse enzymes have significant contribution to DMI metabolism.
    12/2009; 3(4):234-41. DOI:10.2174/187231209790218118
  • Source
    Chao Wu · Xi-Ling Jiang · Hong-Wu Shen · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Harmaline is a beta-carboline alkaloid showing neuroprotective and neurotoxic properties. Our recent studies have revealed an important role for cytochrome P450 2D6 (CYP2D6) in harmaline O-demethylation. This study, therefore, aimed to delineate the effects of CYP2D6 phenotype/genotype on harmaline metabolism, pharmacokinetics (PK) and pharmacodynamics (PD), and to develop a pharmacogenetics mechanism-based compartmental PK model. In vitro kinetic studies on metabolite formation in human CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) hepatocytes indicated that harmaline O-demethylase activity (V(max)/K(m)) was about 9-fold higher in EM hepatocytes. Substrate depletion showed mono-exponential decay trait, and estimated in vitro harmaline clearance (CL(int), microL/min/10(6)cells) was significantly lower in PM hepatocytes (28.5) than EM hepatocytes (71.1). In vivo studies in CYP2D6-humanized and wild-type mouse models showed that wild-type mice were subjected to higher and longer exposure to harmaline (5 and 15mg/kg; i.v. and i.p.), and more severe hypothermic responses. The PK/PD data were nicely described by our pharmacogenetics-based PK model involving the clearance of drug by CYP2D6 (CL(CYP2D6)) and other mechanisms (CL(other)), and an indirect response PD model, respectively. Wild-type mice were also more sensitive to harmaline in marble-burying tests, as manifested by significantly lower ED(50) and steeper Hill slope. These findings suggest that distinct CYP2D6 status may cause considerable variations in harmaline metabolism, PK and PD. In addition, the pharmacogenetics-based PK model may be extended to define PK difference caused by other polymorphic drug-metabolizing enzyme in different populations.
    Biochemical pharmacology 06/2009; 78(6):617-24. DOI:10.1016/j.bcp.2009.05.011 · 5.01 Impact Factor
  • Source
    Hong-Wu Shen · Xi-Ling Jiang · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a psychoactive indolealkylamine substance that has been used for recreational purpose and may lead to fatal toxicity. While 5-MeO-DMT is mainly inactivated via deamination, it is O-demethylated to an active metabolite, bufotenine. Quantitation of 5-MeO-DMT and bufotenine is essential to understand the exposure to and the effects of drug and metabolite. This study, therefore, aimed to develop and validate a LC-MS/MS method for simultaneous analysis of 5-MeO-DMT and bufotenine in mouse serum. METHODS: A simple protein precipitation method coupled with an optimal gradient elution was used for sample preparation and separation. Detection of 5-MeO-DMT and bufotenine was accomplished using multiple reaction monitoring of m/z 219.2→174.2 and 205.2→160.2, respectively, in the positive ion mode. 5-Methyl-N,N-dimethyltrypamine (m/z 203.2→158.3) was used as internal standard for quantification. Accuracy and precision were determined after the analyses of quality control samples. Validated assay was then employed to determine drug and metabolite concentrations in serum samples collected from mice at different time points after intraperitoneal administration of 5-MeO-DMT (2 mg/kg). RESULTS: With a total run time of 9 min, 5-MeO-DMT and bufotenine were eluted at 2.8 and 5.6 min, respectively. The assay was linear over the range 0.90-5,890 ng/mL (1.12-7,360 pg on-column) for 5-MeO-DMT and 2.52-5,510 ng/mL (3.14-6,890 pg) for bufotenine. Intra- and inter-day precision and accuracy were within 15% for both analytes. The recovery of each analyte from 20 µL of serum containing 8.08, 72.7 and 655 ng/mL of 5-MeO-DMT and 7.56, 68.1 and 613 ng/mL of bufotenine was more than 75%. Pharmacokinetic analysis revealed that the systemic exposure (area under the curve) to metabolite bufotenine was about 1/14 of that to 5-MeO-DMT. CONCLUSION: This LC-MS/MS method is a sensitive and reliable assay for quantitation of blood 5-MeO-DMT and bufotenine. Given the fact that bufotenine acts on 5-HT(2A) receptor with an affinity about 10-fold higher than 5-MeO-DMT, the active metabolite bufotenine may significantly contribute to the apparent pharmacological and toxicological effects of 5-MeO-DMT.
    Bioanalysis 04/2009; 1(1):87-95. DOI:10.4155/bio.09.7 · 3.00 Impact Factor
  • Source
    Xi-Ling Jiang · Hong-Wu Shen · Ai-Ming Yu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Pinoline, 6-methoxy-1,2,3,4-tetrahydro-beta-carboline, is a serotonin analog that selectively inhibits the activity of monoamine oxidase-A and shows antidepressant activity. Our previous study using a panel of recombinant cytochrome P450 (P450) enzymes suggests that pinoline O-demethylation may be selectively catalyzed by polymorphic CYP2D6. The current study, therefore, aimed to delineate the impact of CYP2D6 status on pinoline metabolism. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes revealed that CYP2D6.2 exhibited 5-fold lower enzyme efficiency (V(max)/K(m)) toward pinoline compared with CYP2D6.1, and CYP2D6.10 did not show any catalytic activity. Inhibition study showed that quinidine (1 microM) completely blocked pinoline O-demethylase activity in human liver microsomes, whereas other P450 isoform-selective inhibitors had no or minimal effects. Pinoline O-demethylase activities in 10 human liver microsomes showed significantly strong correlation with bufuralol 1'-hydroxylase activities (R(2)=0.93; p<0.0001) and CYP2D6 contents (R(2)=0.82; p=0.005), whereas no appreciable correlations with enzymatic activities of other P450 enzymes were found. Furthermore, we compared pinoline urinary metabolic ratio (pinoline/6-hydroxy-1,2,3,4-tetrahydro-beta-carboline) between CYP2D6-humanized and wild-type control mice after intraperitoneal injection of pinoline (30 mg/kg). Results indicated that the two genotyped mice were clearly distinguished by pinoline metabolic ratio (mean +/- S.D.), which was much higher in wild-type mice (0.29+/-0.19, n=4) than in CYP2D6-humanized transgenic mice (0.0070+/-0.0048, n=4). Our findings suggest that pinoline O-demethylation is governed by CYP2D6 status, and pinoline, at a proper concentration or dose, may be a good probe to evaluate CYP2D6 activity.
    Drug metabolism and disposition: the biological fate of chemicals 03/2009; 37(3):443-6. DOI:10.1124/dmd.108.025056 · 3.25 Impact Factor

Publication Stats

117 Citations
41.41 Total Impact Points


  • 2009-2014
    • State University of New York
      New York, New York, United States
  • 2013
    • University of California, Davis
      Davis, California, United States
  • 2010-2013
    • University at Buffalo, The State University of New York
      • Department of Pharmaceutical Sciences
      Buffalo, New York, United States