Monica M Burdick

Ohio University, Athens, OH, United States

Are you Monica M Burdick?

Claim your profile

Publications (23)117.73 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Laboratory scale to industrial scale purification of biomolecules from cell culture supernatants and lysed cell solutions can be accomplished using affinity chromatography. While affinity chromatography using porous protein A agarose beads packed in columns is arguably the most common method of laboratory scale isolation of antibodies and recombinant proteins expressing Fc fragments of IgG, it can be a time consuming and expensive process. Time and financial constraints are especially daunting in small basic science labs that must recover hundreds of micrograms to milligram quantities of protein from dilute solutions, yet lack access to high pressure liquid delivery systems and/or personnel with expertise in bioseparations. Moreover, product quantification and characterization may also excessively lengthen processing time over several workdays and inflate expenses (consumables, wages, etc.). Therefore, a fast, inexpensive, yet effective protocol is needed for laboratory scale isolation and characterization of antibodies and other proteins possessing an Fc fragment. To this end, we have devised a protocol that can be completed by limited-experience technical staff in less than 9 hr (roughly one workday) and as quickly as 4 hr, as opposed to traditional methods that demand 20+ work hours. Most required equipment is readily available in standard biomedical science, biochemistry, and (bio)chemical engineering labs, and all reagents are commercially available. To demonstrate this protocol, representative results are presented in which chimeric murine galectin-1 fused to human Fc (Gal-1hFc) from cell culture supernatant was isolated using a protein A membrane adsorber. Purified Gal-1hFc was quantified using an expedited Western blotting analysis procedure and characterized using flow cytometry. The streamlined workflow can be modified for other Fc-expressing proteins, such as antibodies, and/or altered to incorporate alternative quantification and characterization methods.
    Journal of Visualized Experiments 01/2014;
  • Grady E Carlson, Eric W Martin, Monica M Burdick
    [show abstract] [hide abstract]
    ABSTRACT: Multi-color immunofluorescence microscopy to detect specific molecules in the cell membrane can be coupled with parallel plate flow chamber assays to investigate mechanisms governing cell adhesion under dynamic flow conditions. For instance, cancer cells labeled with multiple fluorophores can be perfused over a potentially reactive substrate to model mechanisms of cancer metastasis. However, multi-channel single camera systems and color cameras exhibit shortcomings in image acquisition for real-time live cell analysis. To overcome these limitations, we used a dual camera emission splitting system to simultaneously capture real-time image sequences of fluorescently labeled cells in the flow chamber. Dual camera emission splitting systems filter defined wavelength ranges into two monochrome CCD cameras, thereby simultaneously capturing two spatially identical but fluorophore-specific images. Subsequently, psuedocolored one-channel images are combined into a single real-time merged sequence that can reveal multiple target molecules on cells moving rapidly across a region of interest.
    Journal of Visualized Experiments 01/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: Advanced prostate cancer (PCa) commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. PCa cells roll on E-selectin+ BMEC through E-selectin ligand-binding interactions under shear flow, and PCa cells exhibit firm adhesion to BMEC via β1, β4 and αVβ3 integrins in static assays. However, whether these discrete PCa cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Herein, we describe how metastatic PCa cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. PCa cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic PCa tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. PCa cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1 and Rap1 were constitutively active. In homing studies, PCa cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases (α1,3 FT) in transgenic adenoma of mouse prostate (TRAMP) mice dramatically reduced PCa incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins and Rac/Rap1 GTPases in mediating PCa cell homing and entry into bone and offer new insight on the role of α1,3 fucosylation in PCa development.
    Cancer Research 11/2012; · 8.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: E-selectin, expressed on inflamed endothelium, and sialyl Lewis x (sLe(x)), present on the surface of leukocytes, play a key role in leukocyte-endothelial interactions during leukocyte recruitment to sites of inflammation. HECA-452 is a monoclonal antibody (mAb) that recognizes sLe(x) and is routinely used by investigators from diverse fields who seek to unravel the mechanisms of leukocyte adhesion. The data regarding the ability of HECA-452 to inhibit carbohydrate-mediated leukocyte adhesion to E-selectin remains conflicted, in part due to the presence of a variety of potential E-selectin reactive moieties on leukocytes. Recognizing this, we utilized a complementary approach to gain insight into HECA-452 adhesion assays. Specifically, we used sLe(x) microspheres to investigate the hypothesis that HECA-452 is a non-function blocking mAb for isolated sLe(x) mediated adhesion to endothelial expressed E-selectin. Flow cytometric analysis revealed that HECA-452 recognizes and binds to the sLe(x) microspheres. Perfusion of the sLe(x) microspheres over human umbilical vein endothelial cells (HUVEC) at 1.5 dyn/cm² revealed that the microspheres attach to 4h interleukin (IL)-1β activated HUVEC specifically via E-selectin. Pretreatment of the sLe(x) microspheres with HECA-452 did not influence sLe(x) microsphere initial tethering and accumulation on IL-1β activated HUVEC. Neuraminidase and fucosidase treatments of sLe(x) microspheres revealed that sialic acid and fucose are required for E-selectin binding, whereas HECA-452 recognition of sLe(x) does not depend on the fucose moiety to the extent required for E-selectin recognition. This latter finding suggests there are potential subtle differences between the sLe(x) antigens for E-selectin and HECA-452. Combined, the data indicate that HECA-452 is a non-inhibitor of sLe(x)-mediated adhesion to endothelial expressed E-selectin.
    Journal of immunological methods 07/2012; 384(1-2):43-50. · 2.35 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Although significant progress has been made in the fight against cancer, successful treatment strategies have yet to be developed to combat those tumors that have metastasized to distant organs. Poor characterization of the molecular mechanisms of cancer spread is a major impediment to designing predictive diagnostics and effective clinical interventions against late stage disease. In hematogenous metastasis, it is widely suspected that circulating tumor cells (CTCs) express specific adhesion molecules that actively initiate contact with the vascular endothelium lining the vessel walls of the target organ. This "tethering" is mediated by ligands expressed by CTCs that bind to E-selectin expressed by endothelial cells. However, it is currently unknown whether expression of functional E-selectin ligands on CTCs is related to cancer stem cell regulatory or maintenance pathways, particularly epithelial-to-mesenchymal transition and the reverse, mesenchymal-to-epithelial transition. In this hypothesis and theory article, we explore the potential roles of these mechanisms on the dynamic regulation of selectin ligands mediating CTC trafficking during metastasis.
    Frontiers in Oncology 01/2012; 2:103.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Hematogenous metastasis involves the adhesion of circulating tumor cells to vascular endothelium of the secondary site. We hypothesized that breast cancer cell adhesion is mediated by interaction of endothelial E-selectin with its glycoprotein counter-receptor(s) expressed on breast cancer cells. At a hematogenous wall shear rate, ZR-75-1 breast cancer cells specifically adhered to E-selectin expressing human umbilical vein endothelial cells when tested in parallel plate flow chamber adhesion assays. Consistent with their E-selectin ligand activity, ZR-75-1 cells expressed flow cytometrically detectable epitopes of HECA-452 mAb, which recognizes high efficiency E-selectin ligands typified by sialofucosylated moieties. Multiple E-selectin reactive proteins expressed by ZR-75-1 cells were revealed by immunoprecipitation with E-selectin chimera (E-Ig chimera) followed by Western blotting. Mass spectrometry analysis of the 72 kDa protein, which exhibited the most prominent E-selectin ligand activity, corresponded to Mac-2 binding protein (Mac-2BP), a heretofore unidentified E-selectin ligand. Immunoprecipitated Mac-2BP expressed sialofucosylated epitopes and possessed E-selectin ligand activity when tested by Western blot analysis using HECA-452 mAb and E-Ig chimera, respectively, demonstrating that Mac-2BP is a novel high efficiency E-selectin ligand. Furthermore, silencing the expression of Mac-2BP from ZR-75-1 cells by shRNA markedly reduced their adhesion to E-selectin expressing cells under physiological flow conditions, confirming the functional E-selectin ligand activity of Mac-2BP on intact cells. In addition to ZR-75-1 cells, several other E-selectin ligand positive breast cancer cell lines expressed Mac-2BP as detected by Western blot and flow cytometry, suggesting that Mac-2BP may be an E-selectin ligand in a variety of breast cancer types. Further, invasive breast carcinoma tissue showed co-localized expression of Mac-2BP and HECA-452 antigens by fluorescence microscopy, underscoring the possible role of Mac-2BP as an E-selectin ligand. In summary, breast cancer cells express Mac-2BP as a novel E-selectin ligand, potentially revealing a new prognostic and therapeutic target for breast cancer.
    PLoS ONE 01/2012; 7(9):e44529. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34(+) cells) display greater E-selectin binding than those obtained from mouse (lin(-)/Sca-1(+)/c-kit(+) [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34(+) and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved by Western blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ~ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand-1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ~ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL." E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL's contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures.
    Blood 06/2011; 118(7):1774-83. · 9.06 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Cancer cell adhesion to vascular endothelium is a critical process in hematogenous metastasis. We hypothesized that breast cancer cells express ligands that bind under blood flow conditions to E-selectin expressed by endothelial cells. At a hemodynamic wall shear rate, BT-20 and MDA-MB-468 breast cancer cells adhered to cytokine-activated human umbilical cord vein endothelial cells (HUVECs) but not to anti-E-selectin monoclonal antibody treated HUVECs, demonstrating that adhesion was specifically mediated by E-selectin. Characterization of glycans expressed on breast cancer cells by a panel of antibodies revealed that BT-20 cells expressed sialyl Lewis X (sLe(x)) and sialyl Lewis A (sLe(a)) but MDA-MB-468 cells did not, suggesting that the former possess classical glycans involved in E-selectin mediated adhesion while the latter have novel binding epitopes. Protease treatment of the breast cancer cells failed to significantly alter the carbohydrate expression profiles, binding to soluble E-selectin-Ig chimera, or the ability of the cells to tether and roll on E-selectin expressed by HUVECs, indicating that glycosphingolipids are functional E-selectin ligands on these cells. Furthermore, extracted breast cancer cell gangliosides supported binding of E-selectin-Ig chimera and adhesion of E-selectin transfected cells under physiological flow conditions. In summary, our results demonstrate that breast cancer cells express sialylated glycosphingolipids (gangliosides) as E-selectin ligands that may be targeted for prevention of metastasis.
    Biochemical and Biophysical Research Communications 02/2011; 406(3):423-9. · 2.41 Impact Factor
  • Source
    Lei Wang, Venktesh S Shirure, Monica M Burdick, Shiyong Wu
    [show abstract] [hide abstract]
    ABSTRACT: The major aspect contributing to the mortality of melanoma is its ability to spread, or metastasize. Ultraviolet B light (UVB) is considered an indirect cause of melanoma formation. However, little is known about the potential effects of UVB to melanoma metastasis. Integrins, a large family of cell adhesion molecules (CAMs) expressed on the melanoma cell surface, are important for cell signaling, growth, and migration during metastasis. Most critically, tumor cell tissue invasion is dependent on the initial interaction of tumor cells with vascular endothelium at the target organ, and there is increasing evidence for a prominent role of melanoma very late antigen-4 (VLA-4) integrin binding to its endothelial ligand vascular cell adhesion molecule-1 (VCAM-1) in this process. This research focuses on the quantitative modulation of VLA-4 integrin expression and function on melanoma cells after UVB irradiation. The present data show that at 3, 12, and 18 h post-UVB irradiation, VLA-4 expression was unchanged relative to untreated cells, but adhesion to VCAM-1 decreased significantly. Immunofluorescence studies implied that the spatial organization of VLA-4 on the melanoma cell surface contributed to the changes in avidity for VCAM-1 upon UVB irradiation. With increased understanding of the molecular mechanisms underlying melanoma-endothelial interactions upon UVB irradiation, clinical advances for melanoma may be developed.
    Molecular Carcinogenesis 11/2010; 50(1):58-65. · 4.27 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Cell migration in blood flow is mediated by engagement of specialized adhesion molecules that function under hemodynamic shear conditions, and many of the effectors of these adhesive interactions, such as the selectins and their ligands, are well defined. However, in contrast, our knowledge of the adhesion molecules operant under lymphatic flow conditions is incomplete. Among human malignancies, head and neck squamous cell cancer displays a marked predilection for locoregional lymph node metastasis. Based on this distinct tropism, we hypothesized that these cells express adhesion molecules that promote their binding to lymphoid tissue under lymphatic fluid shear stress. Accordingly, we investigated adhesive interactions between these and other cancer cells and the principal resident cells of lymphoid organs, lymphocytes. Parallel plate flow chamber studies under defined shear conditions, together with biochemical analyses, showed that human head and neck squamous cell cancer cells express heretofore unrecognized L-selectin ligand(s) that mediate binding to lymphocyte L-selectin at conspicuously low shear stress levels of 0.07-0.08 dynes/cm(2), consistent with lymphatic flow. The binding of head and neck squamous cancer cells to L-selectin displays canonical biochemical features, such as requirements for sialylation, sulfation, and N-glycosylation, but displays a novel operational shear threshold differing from all other L-selectin ligands, including those expressed on colon cancer and leukemic cells (e.g. HCELL). These data define a novel class of L-selectin ligands and expand the scope of function for L-selectin within circulatory systems to now include a novel activity within shear stresses characteristic of lymphatic flow.
    Journal of Biological Chemistry 07/2008; 283(23):15816-24. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Selectins on activated vascular endothelium mediate inflammation by binding to complementary carbohydrates on circulating neutrophils. The human neutrophil receptor for E-selectin has not been established. We report here that sialylated glycosphingolipids with 5 N-acetyllactosamine (LacNAc, Galbeta1-4GlcNAcbeta1-3) repeats and 2 to 3 fucose residues are major functional E-selectin receptors on human neutrophils. Glycolipids were extracted from 10(10) normal peripheral blood human neutrophils. Individual glycolipid species were resolved by chromatography, adsorbed as model membrane monolayers and selectin-mediated cell tethering and rolling under fluid shear was quantified as a function of glycolipid density. E-selectin-expressing cells tethered and rolled on selected glycolipids, whereas P-selectin-expressing cells failed to interact. Quantitatively minor terminally sialylated glycosphingolipids with 5 to 6 LacNAc repeats and 2 to 3 fucose residues were highly potent E-selectin receptors, constituting more than 60% of the E-selectin-binding activity in the extract. These glycolipids are expressed on human blood neutrophils at densities exceeding those required to support E-selectin-mediated tethering and rolling. Blocking glycosphingolipid biosynthesis in cultured human neutrophils diminished E-selectin, but not P-selectin, adhesion. The data support the conclusion that on human neutrophils the glycosphingolipid NeuAcalpha2-3Galbeta1-4GlcNAcbeta1-3[Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3](2)[Galbeta1-4GlcNAcbeta1-3](2)Galbeta1-4GlcbetaCer (and closely related structures) are functional E-selectin receptors.
    Blood 06/2008; 112(9):3744-52. · 9.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Selectins and fibrin(ogen) play key roles in the hematogenous dissemination of tumor cells, and especially of colon carcinomas. However, the fibrin(ogen) receptor(s) on colon carcinoma cells has yet to be defined along with its relative capacity to bind fibrinogen versus fibrin under flow. Moreover, the functional P-selectin ligand has yet to be validated using intact platelets rather than purified selectin substrates. Using human CD44-knockdown and control LS174T cells, we demonstrate the pivotal involvement of CD44 in the P-selectin-mediated binding to platelets in shear flow. Quantitative comparisons of the binding kinetics of LS174T versus P-selectin glycoprotein ligand-1 (PSGL-1)-expressing THP-1 cells to activated platelets reveal that the relative avidity of P-selectin-CD44 binding is more than sevenfold lower than that of P-selectin-PSGL-1 interaction. Using CD44-knockdown LS174T cells and microspheres coated with CD44 immunoprecipitated from control LS174T cells, and purified fibrin(ogen) as substrate, we provide the first direct evidence that CD44 also acts as the major fibrin, but not fibrinogen, receptor on LS174T colon carcinoma cells. Interestingly, binding of plasma fibrin to CD44 on the colon carcinoma cell surface interferes with the P-selectin-CD44 molecular interaction and diminishes platelet-LS174T heteroaggregation in the high shear regime. Cumulatively, our data offer a novel perspective on the apparent metastatic potential associated with CD44 overexpression on colon carcinoma cells and the critical roles of P-selectin and fibrin(ogen) in metastatic spread and provide a rational basis for the design of new therapeutic strategies to impede metastasis.
    AJP Cell Physiology 05/2008; 294(4):C907-16. · 3.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Basophils have been shown to accumulate in allergic airways and other extravascular sites. Mechanisms responsible for the selective recruitment of basophils from the blood into tissue sites remain poorly characterized. In this study, we characterized human basophil rolling and adhesion on HUVECs under physiological shear flow conditions. Interestingly, treatment of endothelial cells with the basophil-specific cytokine IL-3 (0.01-10 ng/ml) promoted basophil and eosinophil, but not neutrophil, rolling and exclusively promoted basophil adhesion. Preincubation of HUVECs with an IL-3R-blocking Ab (CD123) before the addition of IL-3 inhibited basophil rolling and adhesion, implicating IL-3R activation on endothelial cells. Incubation of basophils with neuraminidase completely abolished both rolling and adhesion, indicating the involvement of sialylated structures in the process. Abs to the beta(1) integrins, CD49d and CD49e, as well as to P-selectin and P-selectin glycoprotein ligand 1, inhibited basophil rolling and adhesion. Furthermore, blocking chemokine receptors expressed by basophils, such as CCR2, CCR3, and CCR7, demonstrated that CCR7 was involved in the observed recruitment of basophils. These data provide novel insights into how IL-3, acting directly on endothelium, can cause basophils to preferentially interact with blood vessels under physiological flow conditions and be selectively recruited to sites of inflammation.
    The Journal of Immunology 06/2006; 176(9):5346-53. · 5.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Engagement of vascular E-selectin and leukocyte L-selectin with relevant counter-receptors expressed on tumor cells contributes to the hematogenous spread of colon carcinoma. We recently demonstrated that the LS174T colon carcinoma cell line expresses the CD44 glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), which functions as a high affinity E- and L-selectin ligand on these cells. To define the contribution of HCELL to selectin-mediated adhesion on intact tumor cells, we measured the binding of LS174T cells transduced with CD44 short interfering RNA (siRNA) or with vector alone to 6-h interleukin-1beta-stimulated human umbilical vein endothelial cells (HUVEC) and to human peripheral blood mononuclear cells (PBMC) under physiological flow conditions. LS174T cell attachment to HUVEC was entirely E-selectin-dependent, and PBMC tethering to tumor cell monolayers was completely L-selectin-dependent. At physiological shear stress, CD44 siRNA transduction led to an approximately 50% decrease in the number of LS174T cells binding to stimulated HUVEC relative to vector alone-transduced cells. CD44 siRNA-transduced cells also rolled significantly faster than vector-transduced cells on HUVEC, indicating prominent HCELL participation in stabilizing tumor cell-endothelial adhesive interactions against fluid shear. Furthermore, HCELL was identified as the principal L-selectin ligand on LS174T cells, as PBMC binding to CD44 siRNA-transduced tumor cells was reduced approximately 80% relative to vector-transduced cells. These data indicate that expression of HCELL confers robust and predominant tumor cell binding to E- and L-selectin, highlighting a central role for HCELL in promoting shear-resistant adhesive interactions essential for hematogenous cancer dissemination.
    Journal of Biological Chemistry 06/2006; 281(20):13899-905. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The initial selectin-dependent events that mediate tumor cell tethering to platelets, leukocytes, and vascular endothelium can regulate the extravasation and colonization of metastatic cells into distant tissues. Little is known, however, about the identity of selectin counter-receptors on tumor cells, which facilitate the metastatic process. To address this issue, we performed SDS-PAGE analysis of membrane proteins, metabolic inhibition studies, blot rolling assays, and cell-free flow-based adhesion experiments using microbeads coated with CD44 immunoprecipitated from carcinomas and purified selectins as substrate. Here, we demonstrate that variant isoforms of CD44 (CD44v) on LS174T colon carcinoma cells possess P-/L-/E-selectin binding activity, in contrast to the standard isoform of CD44 (CD44s) on hematopoietic-progenitor cells (HPCs), which is primarily an L-/E-selectin ligand. Moreover, the selectin-binding determinants on CD44v from LS174T cells are sialofucosylated structures displayed on O-linked glycans, akin to those on P-selectin glycoprotein ligand-1, but distinct from the HECA-452-reactive N-glycans on CD44s expressed on HPCs. Using flow-based adhesion assays, we systematically characterize shear-dependent LS174T CD44 vs. HL60 CD44s adhesion to E-/P-/L-selectin. The novel finding that CD44v are selectin ligands offers a unifying perspective on the apparent enhanced metastatic potential associated with tumor cell CD44v overexpression and the critical role of selectins in metastasis.
    The FASEB Journal 03/2006; 20(2):337-9. · 5.70 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Metastasis of circulating tumor cells requires a multistep cascade of events initiated by adhesion of tumor cells to the vascular endothelium of involved tissues. This process occurs under the forces of blood flow and is promoted by adhesion molecules specialized to interact under shear conditions. The endothelial molecule E-selectin is a major mediator of these adhesive events, and there is strong evidence that E-selectin receptor-ligand interactions contribute to the formation of metastasis. However, little is known about the identity of E-selectin ligand(s) expressed on cancer cells. To address this issue, we did SDS-PAGE analysis of membrane proteins, metabolic inhibition studies, and blot rolling assays of LS174T, a colon carcinoma cell line known to interact with E-selectin under physiologic flow conditions. Our studies show that LS174T cells express the hematopoietic cell E/L-selectin (HCELL) glycoform of CD44, which functions as a high-affinity E-selectin glycoprotein ligand on these cells. However, in contrast to the HCELL glycoform on human hematopoietic progenitor cells, which expresses carbohydrate-binding determinant(s) for E-selectin primarily on N-glycans of standard CD44, the relevant determinant(s) on LS174T cells is expressed on O-glycans and is predominantly found on variant isoforms of CD44 (CD44v). Our finding that tumor-associated CD44 splice variant(s) express E-selectin ligand activity provides novel perspectives on the biology of CD44 in cancer metastasis.
    Cancer Research 08/2005; 65(13):5812-7. · 8.65 Impact Factor
  • Source
    Monica M Burdick, Konstantinos Konstantopoulos
    [show abstract] [hide abstract]
    ABSTRACT: This study was undertaken to characterize the adhesion of LS174T colon adenocarcinoma cells to 4-h TNF-alpha-stimulated human umbilical vein endothelial cells (HUVECs) under flow in the presence and absence of platelets and erythrocytes. Cell binding to HUVECs was significantly enhanced by simultaneous perfusion of thrombin-activated, but not resting, platelets. This increase was achieved via a platelet bridging mechanism whereby a previously tethered LS174T cell (primary tether) captures a free-flowing cell (secondary tether) that subsequently attaches to the endothelium downstream of the already adherent cell. The total number of tumor cells tethering to HUVECs and the percentage of secondary tethers relative to the total amount of cell tethering depended on platelet concentration and wall shear stress. At 0.8 dyn/cm(2) and a platelet-to-LS174T cell ratio of 25:1, the total amount of cell tethering nearly doubled as a result of platelet-induced enhancement compared with the amount without platelet perfusion. Moreover, the percentage of secondary tethers increased from background levels (<5%) in the absence of platelets to approximately 60% at a platelet-to-LS174T cell ratio of 25:1. Platelet-mediated secondary tethering is not limited to LS174T colon carcinoma cells, as THP-1 monocytoid cells also displayed this pattern of interaction. Secondary tethering was dependent on both platelet P-selectin and alpha(IIb)beta(3)-integrin for LS174T cells and P-selectin alone for THP-1 cells. Furthermore, platelet-mediated secondary tethering of both cell types occurred in the presence of red blood cells. Altogether, these results reveal a novel role for platelets in promoting cell binding to endothelium through a secondary tethering mechanism.
    AJP Cell Physiology 08/2004; 287(2):C539-47. · 3.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This study was undertaken to investigate the molecular constituents mediating LS174T colon adenocarcinoma cell adhesion to 4-h TNF-alpha-stimulated human umbilical vein endothelial cells (HUVECs) under flow. At 1 dyn/cm(2), approximately 57% of cells rolled and then became firmly adherent, whereas others continuously rolled on endothelium. Initial cell binding was primarily mediated by endothelial E-selectin. By using neuraminidase, glycolipid biosynthesis inhibitor d,l-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol. HCl, trypsin, and flow cytometry, LS174T cells were shown to express sialyl Lewis(x) (sLe(x))- and di-sLe(x)-decorated, but not sLe(a)-decorated, glycolipid and glycoprotein ligands for E-selectin. The cells preferentially employed sialylated glycoproteins over glycolipids in adhesion as measured by conversion of rolling to firm adhesion, resistance to detachment by increased shear stress, and rolling velocity. However, a nonsialylated E-selectin counterreceptor also exists. Furthermore, LS174T alpha(2), alpha(6), and beta(1) integrins support a minor pathway in adhesion to HUVECs. Finally, tumor cell attachment specifically increases HUVEC endocytosis of E-selectin. Altogether, the data indicate the complexity of carcinoma cell-endothelium adhesion via sialylated glycoconjugates, integrins, and their respective counterreceptors.
    AJP Cell Physiology 05/2003; 284(4):C977-87. · 3.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This study was undertaken to investigate the kinetics and molecular requirements of platelet binding to tumor cells in bulk suspensions subjected to a uniform linear shear field, using a human colon adenocarcinoma cell line (LS174T) as a model. The effects of shear rate (20-1000 s(-1)), shear exposure time (30-300 s), shear stress (at constant shear rate by adjusting the viscosity of the medium from 1.3-2.6 cP), cell concentration, and platelet activation on platelet-LS174T heteroaggregation were assessed. The results indicate that hydrodynamic shear-induced collisions augment platelet-LS174T binding, which is further potentiated by thrombin/GPRP-NH(2). Peak adhesion efficiency occurs at low shear and decreases with increasing shear. Intercellular contact duration is the predominant factor limiting heteroaggregation at shear rates up to 200 s(-1), whereas these interactions become shear stress-sensitive at > or = 400 s(-1). Heteroaggregation increases with platelet concentration due to an elevation of the intercellular collision frequency, whereas adhesion efficiency remains nearly constant. Moreover, hydrodynamic shear affects the receptor specificity of activation-dependent platelet binding to LS174T cells, as evidenced by the transition from a P-selectin-independent/Arg-Gly-Asp (RGD)-dependent process at 100 s(-1) to a P-selectin/alpha(IIb)beta(3)-dependent interaction at 800 s(-1). This study demonstrates that platelet activation and a fluid-mechanical environment representative of the vasculature affect platelet-tumor cell adhesive interactions pertinent to the process of blood-borne metastasis.
    Biophysical Journal 09/2002; 83(2):836-48. · 3.67 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: This study provides functional evidence that glycosphingolipids constitute ligands for E-selectin but not P-selectin. Chinese hamster ovary (CHO) cells expressing E-selectin (CHO-E) or P-selectin (CHO-P) were perfused over alpha2,3-sialyl Lewis X (alpha2,3-sLe(x)) presented as the hexaosylceramide glycosphingolipid adsorbed in a monolayer containing phosphatidylcholine and cholesterol. CHO-E cells tethered extensively and formed slow, stable rolling interactions with alpha2,3-sLe(x) glycosphingolipid but not with the comparable alpha2,6-sLe(x) glycosphingolipid. Tethering/rolling varied with wall shear stress, selectin density, and ligand density. In contrast, alpha2,3-sLe(x) glycosphingolipid supported only limited, fast CHO-P cell rolling. As calculated from a stochastic model of cell rolling, the step size between successive bond releases from the alpha2,3-sLe(x) glycosphingolipid was smaller for CHO-E than CHO-P cells, whereas the opposite effect was observed for the waiting time between these events. Detachment assays revealed stronger adhesive interactions of CHO-E than CHO-P cells with alpha2,3-sLe(x) glycosphingolipid. These findings indicate that glycosphingolipids expressing an appropriate oligosaccharide mediate cell tethering/rolling via E-selectin but not P-selectin.
    Biochemical and Biophysical Research Communications 07/2001; 284(1):42-9. · 2.41 Impact Factor

Publication Stats

439 Citations
117 Downloads
1k Views
117.73 Total Impact Points

Institutions

  • 2011–2013
    • Ohio University
      • Department of Chemical and Biomolecular Engineering
      Athens, OH, United States
  • 2006–2011
    • Brigham and Women's Hospital
      • Department of Dermatology
      Boston, MA, United States
  • 2008
    • University of Texas Medical Branch at Galveston
      Galveston, Texas, United States
  • 2001–2008
    • Johns Hopkins University
      • • Department of Chemical and Biomolecular Engineering
      • • Department of Medicine
      Baltimore, MD, United States