Benjamin J Moeller

University of Florida, Gainesville, Florida, United States

Are you Benjamin J Moeller?

Claim your profile

Publications (29)186.95 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MnTE-2-PyP(5+) is a potent catalytic scavenger of reactive oxygen and nitrogen species, primarily superoxide and peroxynitrite. It therefore not only attenuates primary oxidative damage, but was found to modulate redox-based signaling pathways (HIF-1alpha, NF-kappaB, SP-1, and AP-1) and thus, in turn, secondary oxidative injury also. Cancer has been widely considered an oxidative stress condition. The goal of this study was to prove if and why a catalytic SOD mimic/peroxynitrite scavenger would exert anti-cancer effects, i.e., to evaluate whether the attenuation of the oxidative stress by MnTE-2-PyP(5+) could suppress tumor growth in a 4T1 mouse breast tumor model. Tumor cells were implanted into Balb/C mouse flanks. Three groups of mice (n=25) were studied: control (PBS) and 2 and 15 mg/kg/day of MnTE-2-PyP(5+) given subcutaneously twice daily starting when the tumors averaged 200 mm(3) (until they reached approximately 5-fold the initial volume). Intratumoral hypoxia (pimonidazole, carbonic anhydrase), HIF-1alpha, VEGF, proliferating capillary index (CD105), microvessel density (CD31), protein nitration, DNA oxidation (8-OHdG), NADPH oxidase (Nox-4), apoptosis (CD31), macrophage infiltration (CD68), and tumor drug levels were assessed. With 2 mg/kg/day a trend toward tumor growth delay was observed, and a significant trend was observed with 15 mg/kg/day. The 7.5-fold increase in drug dose was accompanied by a similar (6-fold) increase in tumor drug levels. Oxidative stress was largely attenuated as observed through the decreased levels of DNA damage, protein 3-nitrotyrosine, macrophage infiltration, and NADPH oxidase. Further, hypoxia was significantly decreased as were the levels of HIF-1alpha and VEGF. Consequently, suppression of angiogenesis was observed; both the microvessel density and the endothelial cell proliferation were markedly decreased. Our study indicates for the first time that MnTE-2-PyP(5+) has anti-cancer activity in its own right. The anti-cancer activity via HIF/VEGF pathways probably arises from the impact of the drug on the oxidative stress. Therefore, the catalytic scavenging of ROS/RNS by antioxidants, which in turn suppresses cellular transcriptional activity, could be an appropriate strategy for anti-cancer therapy. Enhancement of the anti-cancer effects may be achieved by optimizing the dosing regime, utilizing more bioavailable Mn porphyrins (MnP), and combining MnP treatment with irradiation, hyperthermia, and chemotherapy. Mn porphyrins may be advantageous compared to other anti-cancer drugs, owing to their radioprotection of normal tissue and the ability to afford pain management in cancer patients via prevention of chronic morphine tolerance.
    Free Radical Biology & Medicine 08/2009; 47(7):992-1004. · 5.27 Impact Factor
  • Source
    Mark W Dewhirst, Yiting Cao, Benjamin Moeller
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia and free radicals, such as reactive oxygen and nitrogen species, can alter the function and/or activity of the transcription factor hypoxia-inducible factor 1 (HIF1). Interplay between free radicals, hypoxia and HIF1 activity is complex and can influence the earliest stages of tumour development. The hypoxic environment of tumours is heterogeneous, both spatially and temporally, and can change in response to cytotoxic therapy. Free radicals created by hypoxia, hypoxia-reoxygenation cycling and immune cell infiltration after cytotoxic therapy strongly influence HIF1 activity. HIF1 can then promote endothelial and tumour cell survival. As discussed here, a constant theme emerges: inhibition of HIF1 activity will have therapeutic benefit.
    Nature Reviews Cancer 07/2008; 8(6):425-37. · 29.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular events mediated by the Tie2 receptor are important to tumor neovascularization. Despite the complex interplay of the best-characterized Tie2 ligands, angiopoietins 1 and 2, Ang2 is purportedly "proangiogenic" in the presence of vascular endothelial growth factor. We examined whether in vivo administration of an RNA aptamer that specifically blocks Ang 2 would inhibit tumor angiogenesis and growth. Ang2-mediated Tie2 receptor phosphorylation was assessed in vitro in the absence and presence of aptamer coupled to polyethylene glycol. IN VIVO ANGIOGENESIS ASSAY: CT26 murine colon carcinoma cells expressing green fluorescent protein were delivered into mouse dorsal skinfold window chambers. Animals received daily intraperitoneal injections of phosphate-buffered saline, low-dose (Ang2 aptamer-LD; 1 mg/kg/d), or high-dose aptamer (Ang2 aptamer-HD; 10 mg/kg/d). Vascular length density was measured under fluorescence microscopy. PRIMARY TUMOR GROWTH: CT26 cells expressing luciferase were injected into flanks of BALB/c mice to allow tumor growth monitoring by bioluminescence imaging. Animals received continuous phosphate-buffered saline or aptamer (1 mg/kg/d) via ALZET pumps. Tumors were assessed for CD31/PECAM-1 immunostaining and Hoechst dye uptake. Pegylated aptamer inhibited Tie2 phosphorylation. Systemic aptamer administration reduced vascular length density (P < or = 0.03) and decreased bioluminescence emission (P < 0.04), corresponding to 50% decrease in tumor volume (P = 0.04). Control tumors displayed abundant vascular marker staining, in contrast to tumors from aptamer-treated animals. in vivo administration of a clinically relevant, pegylated RNA aptamer specifically designed against Ang2 inhibited tumor angiogenesis and growth. These findings support targeted Ang2 inhibition as a relevant anti-angiogenic, anti-neoplastic strategy.
    Journal of Surgical Research 05/2008; 146(1):16-23. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal microvasculature contributes to the pathophysiologic microenvironment of tumors. Understanding microvascular tumor oxygen transport is necessary to comprehend the factors that influence tumor biology, physiology, and therapy. Previously, we described an in vivo spectral imaging microscopy system for measurements of microvessel hemoglobin saturation (HbSat). We measure temporal fluctuations and spatial gradients in tumor microvessel oxygenation and identify instances of anastomoses between vessels with significantly different oxygenations. Slow periodic fluctuations in HbSat <0.2 cycles per minute were observed. These measurements are consistent with microelectrode measurements of fluctuating tumor oxygenation. Gradients in HbSat along individual tumor microvessels were measured that were larger in magnitude than normal tissue microvessels. Images were captured of anastomoses of tumor microvessels with diameters <or=100 microm and significantly different HbSat values (>20%). Shunting of inspired oxygen, presumably due to arteriovenous anastomoses, from tumor feeding arterioles to adjacent venules was imaged. This effect was confined to a region around the tumor and was not observed in nearby normal microvessels. Imaging measurements of tumor microvessel oxygen transport may offer insight to current questions regarding oxygen-related tumor biology and treatment responses, and spectral imaging may be a useful research tool in this regard.
    Journal of Biomedical Optics 01/2008; 13(1):014026. · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sickle red cell (SS RBC) adhesion is believed to contribute to the process of vaso-occlusion in sickle cell disease (SCD). We previously found that the LW RBC adhesion receptor can be activated by epinephrine to mediate SS RBC adhesion to endothelial alphavbeta3 integrin. To determine the contribution of LW activation to vaso-occlusive events in vivo, we investigated whether in vitro treatment of SS RBCs by epinephrine resulted in vaso-occlusion in intact microvasculature after RBC infusion into nude mice. Epinephrine enhanced human SS but not normal RBC adhesion to murine endothelial cells in vitro and to endothelium in vivo, promoting vaso-occlusion and RBC organ sequestration. Murine sickle RBCs also responded to epinephrine with increased adhesion to postcapillary endothelium in nude mice. Epinephrine-induced SS RBC adhesion, vaso-occlusion, and RBC organ trapping could be prevented by the beta-adrenergic receptor (beta-AR) antagonist, propranolol. Infusion of soluble recombinant LW also significantly reduced adhesion and vaso-occlusion. In addition, epinephrine-treated SS RBCs induced activation of murine leukocyte adhesion to endothelium as well. We conclude that LW activation by epinephrine via beta-AR stimulation can promote both SS RBC and leukocyte adhesion as well as vaso-occlusion, suggesting that both epinephrine and LW play potentially pathophysiological roles in SCD.
    Blood 11/2007; 110(7):2708-17. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this review is to examine the role that HIF-1 plays in the initiation of angiogenesis and in radiotherapy response. Although these two phenomena may at first seem unrelated, there are parallelisms to be drawn associated with the importance of reactive oxygen species in controlling the transcriptional activity of HIF-1, independently of its main driving force, hypoxia. Knowledge of the mechanisms underlying the control of HIF-1 leads to rationale for its inhibition in a range of clinical scenarios.
    Radiotherapy and Oncology 07/2007; 83(3):249-55. · 4.52 Impact Factor
  • Benjamin J Moeller, Rachel A Richardson, Mark W Dewhirst
    [Show abstract] [Hide abstract]
    ABSTRACT: A large body of clinical evidence exists to suggest that tumor hypoxia negatively impacts radiotherapy. As a result, there has been longstanding active research into novel methods of improving tumor oxygenation, targeting hypoxic tumor cells, and otherwise modulating the effect hypoxia has on how tumors respond to radiation. Over time, as more has been learned about the many ways hypoxia affects tumors, our understanding of the mechanisms connecting hypoxia to radiosensitivity has become increasingly broad and complicated. This has opened up new potential avenues for interrupting hypoxia's negative effects on tumor radiosensitivity. Here, we will review what is currently known about the spectrum of influence hypoxia has over the way tumors respond to radiation. Particular focus will be placed on recent discoveries suggesting that hypoxia-inducible factor-1 (HIF-1), a transcription factor that upregulates its target genes under hypoxic conditions, plays a major role in determining tumor radiosensitivity. HIF-1 and/or its target genes may represent therapeutic targets which could be manipulated to influence hypoxia's impact on tumor radiosensitivity.
    Cancer and metastasis reviews 07/2007; 26(2):241-8. · 7.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The TGF-beta signaling pathway has a complex role in regulating mammary carcinogenesis. Here we demonstrate that the type III TGF-beta receptor (TbetaRIII, or betaglycan), a ubiquitously expressed TGF-beta coreceptor, regulated breast cancer progression and metastasis. Most human breast cancers lost TbetaRIII expression, with loss of heterozygosity of the TGFBR3 gene locus correlating with decreased TbetaRIII expression. TbetaRIII expression decreased during breast cancer progression, and low TbetaRIII levels predicted decreased recurrence-free survival in breast cancer patients. Restoring TbetaRIII expression in breast cancer cells dramatically inhibited tumor invasiveness in vitro and tumor invasion, angiogenesis, and metastasis in vivo. TbetaRIII appeared to inhibit tumor invasion by undergoing ectodomain shedding and producing soluble TbetaRIII, which binds and sequesters TGF-beta to decrease TGF-beta signaling and reduce breast cancer cell invasion and tumor-induced angiogenesis. Our results indicate that loss of TbetaRIII through allelic imbalance is a frequent genetic event during human breast cancer development that increases metastatic potential.
    Journal of Clinical Investigation 02/2007; 117(1):206-17. · 12.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antioxidants have the potential to protect normal tissues against radiation-induced damage, but must not protect tumor cells during radiotherapy. The major objectives were to determine whether a metalloporphyrin antioxidant affects prostate tumor response to radiation and identify possible mechanisms of interaction. C57BL/6 mice with RM-9 tumor were treated with manganese (III) meso-tetrakis (1,3-diethylimidazolium-2-yl) porphyrin (MnTDE-2-ImP) and 10 gray (Gy) radiation. Tumor volume was quantified and a subset/group was evaluated for hypoxia-inducible factor-1alpha (HIF-1alpha), bone marrow-derived cell populations and cytokines. The addition of MnTDE-2-ImP transiently increased tumor response compared to radiation alone. The group receiving drug plus radiation had reduced intratumoral HIF-1alpha and decreased capacity to secrete TNF-alpha, whereas production of IL-4 was increased. There were no toxicities associated with combination treatment. The results demonstrate that MnTDE-2-ImP did not protect the RM-9 prostate tumor against radiation; instead, radiation effectiveness was modestly increased. Possible mechanisms include reduction of radiation-induced HIF-1alpha and an altered cytokine profile.
    Anticancer research 01/2007; 27(5A):3101-9. · 1.71 Impact Factor
  • Journal of Clinical Investigation - J CLIN INVEST. 01/2007; 117(1):206-217.
  • Source
    B J Moeller, M W Dewhirst
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-inducible factor-1 (HIF-1) plays important roles in regulating radiosensitivity, making it a potentially promising target for tumour radiosensitisation. Here, we discuss the rationale for, and the potential pitfalls of, combining HIF-1 blockade with radiotherapy. In doing so, we describe clinical scenarios in which HIF-1 inhibition might optimise tumour radiosensitivity.
    British Journal of Cancer 08/2006; 95(1):1-5. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the prognosis for patients with early-stage breast cancer has improved, the therapeutic options for patients with locally advanced and metastatic disease are limited. To improve the treatment of these patients, the molecular mechanisms underlying breast cancer invasion and metastasis must be understood. In this study, we report that signaling through the G12 family of heterotrimeric G proteins (Galpha12 and Galpha13) promotes breast cancer cell invasion. Moreover, we demonstrate that inhibition of G12 signaling reduces the metastatic dissemination of breast cancer cells in vivo. Finally, we demonstrate that the expression of Galpha12 is significantly up-regulated in the earliest stages of breast cancer, implying that amplification of G12 signaling may be an early event in breast cancer progression. Taken together, these observations identify the G12 family proteins as important regulators of breast cancer invasion and suggest that these proteins may be targeted to limit invasion- and metastasis-induced patient morbidity and mortality.
    Proceedings of the National Academy of Sciences 06/2006; 103(21):8173-8. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that hypoxia can influence tumor biology and physiology, gene expression, metastatic potential, treatment efficacy, and patient survival. Most human solid tumors have been shown to have some hypoxic regions, thus there is a strong motivation to understand the various causes of hypoxia. One key to understanding tumor hypoxia involves the study of oxygen transport to tumors, and the connection between hypoxia, tumor microvasculature, and the tumor microenvironment. Recent research has suggested that the causes of tumor hypoxia are much more complex than indicated by the classical paradigms ("chronic" and "acute" hypoxia), and several potential factors have been identified. Two such factors are temporal fluctuations in tissue pO2 and longitudinal gradients in oxygen transport. Research has shown the existence of low frequency (
    Proc SPIE 03/2006;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To analyze plasma cytokine profiles before the initiation of radiation therapy to define a cytokine phenotype that correlates with risk of developing symptomatic radiation-induced lung injury (SRILI). Symptomatic radiation-induced lung injury was evaluated in 55 patients (22 with SRILI and 33 without SRILI), according to modified National Cancer Institute common toxicity criteria. These plasma samples were analyzed by the multiplex suspension bead array system (Bio-Rad Laboratories; Hercules, CA), which included the following cytokines: interleukin (IL)-1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17, granulocyte/macrophage colony-stimulating factor, interferon-gamma, monocyte chemotactic protein 1, macrophage inflammatory protein 1beta, tumor necrosis factor alpha, and granulocyte colony-stimulating factor. Significant differences in the median values of IL-8 were observed between patients with and without SRILI. Patients who did not develop SRILI had approximately fourfold elevated levels of IL-8 as compared with patients who did subsequently develop SRILI. Significant correlations were not found for any other cytokine in this study, including transforming growth factor beta1. Patients with lower levels of plasma IL-8 before radiation therapy might be at increased risk for developing SRILI. Further studies are necessary to determine whether IL-8 levels are predictive of SRILI in a prospective trial and whether this marker might be used to determine patient eligibility for dose escalation.
    International Journal of Radiation OncologyBiologyPhysics 01/2006; 63(5):1448-54. · 4.52 Impact Factor
  • Benjamin J Moeller, Mark W Dewhirst
    International Journal of Radiation OncologyBiologyPhysics 12/2005; 63(3):970-1; author reply 971. · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To determine the effect of the superoxide dismutase mimetic Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) on tumor radioresponsiveness. Methods and Materials: Various rodent tumor (4T1, R3230, B16) and endothelial (SVEC) cell lines were exposed to MnTE-2-PyP(5+) and assayed for viability and radiosensitivity in vitro. Next, tumors were treated with radiation and MnTE-2-PyP(5+)in vivo, and the effects on tumor growth and vascularity were monitored. Results:In vitro, MnTE-2-PyP(5+) was not significantly cytotoxic. However, at concentrations as low as 2 mumol/L it caused 100% inhibition of secretion by tumor cells of cytokines protective of irradiated endothelial cells. In vivo, combined treatment with radiation and MnTE-2-PyP(5+) achieved synergistic tumor devascularization, reducing vascular density by 78.7% within 72 h of radiotherapy (p < 0.05 vs. radiation or drug alone). Co-treatment of tumors also resulted in synergistic antitumor effects, extending tumor growth delay by 9 days (p < 0.01). Conclusions: These studies support the conclusion that MnTE-2-PyP(5+), which has been shown to protect normal tissues from radiation injury, can also improve tumor control through augmenting radiation-induced damage to the tumor vasculature.
    International Journal of Radiation OncologyBiologyPhysics 11/2005; 63(2):545-52. · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that radiation increases HIF-1 activity in tumors, causing significant radioprotection of the tumor vasculature. The impact that HIF-1 activation has on overall tumor radiosensitivity, however, is unknown. We reveal here that HIF-1 plays an important role in determining tumor radioresponsiveness through regulating four distinct processes. By promoting ATP metabolism, proliferation, and p53 activation, HIF-1 has a radiosensitizing effect on tumors. Through stimulating endothelial cell survival, HIF-1 promotes tumor radioresistance. As a result, the net effect of HIF-1 blockade on tumor radioresponsiveness is highly dependent on treatment sequencing, with "radiation first" strategies being significantly more effective than the alternative. These data provide a strong rationale for pursuing sequence-specific combinations of HIF-1 blockade and conventional therapeutics.
    Cancer Cell 09/2005; 8(2):99-110. · 24.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that hypoxia potently stimulates tumor angiogenesis by activating hypoxia inducible factor-1 (HIF-1)-induced proangiogenic factors, such as vascular endothelial growth factor. However, very little is known about the role of hypoxia in incipient angiogenesis in avascular tumors during their early stages of growth. To noninvasively investigate the functional significance of hypoxia and HIF-1 activation in incipient tumor angiogenesis, we genetically engineered HCT116 human colon carcinoma cells and 4T1 mouse mammary carcinoma cells with constitutively expressed red fluorescence protein as a tumor marker and green fluorescence protein (GFP) as a reporter for hypoxia and HIF-1 activation. The accuracy of GFP fluorescence in reporting hypoxia was confirmed by flow cytometry analysis and by immunohistochemical comparison with pimonidazole, a well-established hypoxia marker drug. Mouse dorsal skin-fold window chambers showed that incipient angiogenesis preceded a detectable level of hypoxia. The detectable levels of hypoxia were spatially and temporally related with more intensive secondary angiogenesis following the initial onset of new vessel formation. Selective killing of hypoxic cells by tirapazamine efficiently eliminated or delayed the detection of hypoxic cells, but it did not significantly delay the onset of incipient angiogenesis. These findings provide the first in vivo evidence that incipient tumor angiogenesis may not depend on hypoxia or HIF-1 activation. This is in contrast to the clear role of hypoxia in driving angiogenesis once initial tumor microvessel formation has occurred.
    Cancer Research 08/2005; 65(13):5498-505. · 8.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor hypoxia has been shown to be of prognostic value in several clinical trials involving radiation, chemotherapy, and surgery. Studies of tumor oxygenation at the microvascular and microregional levels can provide understanding of tumor oxygen transport on scales comparable to the diffusion distance of oxygen in tissue. To fully grasp the significance of blood oxygen delivery and hypoxia at the microvascular level, the spatial and temporal relationship of blood oxygenation data must be preserved and mapped. Using tumors grown in dorsal skin-fold window chamber models, hyperspectral imaging can provide spatial maps of blood oxygenation in terms of hemoglobin saturation at the microvascular level, and these measurements can be performed serially in the same animal in a non-invasive fashion with relative technical ease. A hyperspectral imaging system has been constructed to create image maps of hemoglobin saturation in microvasculature of tumors grown in dorsal skin-fold window chambers. Preliminary baseline studies of early tumor development using 4T1 mouse mammary carcinomas are currently being conducted with the system.© (2005) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
    03/2005;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor hypoxia has been shown to have prognostic value in clinical trials involving radiation, chemotherapy, and surgery. Tumor oxygenation studies at microvascular levels can provide understanding of oxygen transport on scales at which oxygen transfer to tissue occurs. To fully grasp the significance of blood oxygen delivery and hypoxia at microvascular levels during tumor growth and angiogenesis, the spatial and temporal relationship of the data must be preserved and mapped. Using tumors grown in window chamber models, hyperspectral imaging can provide serial spatial maps of blood oxygenation in terms of hemoglobin saturation at the microvascular level. We describe our application of hyperspectral imaging for in vivo microvascular tumor oxygen transport studies using red fluorescent protein (RFP) to identify all tumor cells, and hypoxia-driven green fluorescent protein (GFP) to identify the hypoxic fraction. 4T1 mouse mammary carcinoma cells, stably transfected with both reporter genes, are grown in dorsal skin-fold window chambers. Hyperspectral imaging is used to create image maps of hemoglobin saturation, and classify image pixels where RFP alone is present (tumor cells), or both RFP and GFP are present (hypoxic tumor cells). In this work, in vivo calibration of the imaging system is described and in vivo results are shown.
    Journal of Biomedical Optics 01/2005; 10(4):44004. · 2.88 Impact Factor

Publication Stats

2k Citations
186.95 Total Impact Points

Institutions

  • 2008
    • University of Florida
      Gainesville, Florida, United States
  • 2004–2008
    • Duke University Medical Center
      • • Department of Radiation Oncology
      • • Department of Pathology
      Durham, NC, United States
  • 2007
    • University of Texas MD Anderson Cancer Center
      Houston, Texas, United States